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Abstract: Deep learning has become a popular tool for medical image analysis, but the limited
availability of training data remains a major challenge, particularly in the medical field where data
acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a
solution by artificially increasing the number of training samples, but these techniques often produce
limited and unconvincing results. To address this issue, a growing number of studies have proposed
the use of deep generative models to generate more realistic and diverse data that conform to the true
distribution of the data. In this review, we focus on three types of deep generative models for medical
image augmentation: variational autoencoders, generative adversarial networks, and diffusion
models. We provide an overview of the current state of the art in each of these models and discuss
their potential for use in different downstream tasks in medical imaging, including classification,
segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each
model and suggest directions for future research in this field. Our goal is to provide a comprehensive
review about the use of deep generative models for medical image augmentation and to highlight
the potential of these models for improving the performance of deep learning algorithms in medical
image analysis.

Keywords: data augmentation; deep learning; medical imaging; generative models; variational
autoencoders; diffusion models

1. Introduction

In recent years, advances in deep learning have been remarkable in many fields, in-
cluding medical imaging. Deep learning is used to solve a wide variety of tasks such as
classification [1,2], segmentation [3], and detection [4] using different types of medical
imaging modalities, for instance, magnetic resonance imaging (MRI) [5], computed tomog-
raphy (CT) [6], and positron emission tomography (PET) [7]. Most of these modalities are
defined as very high-dimensional data, and the number of training samples is often limited
in the medical domain (e.g., the rarity of certain diseases). As deep learning algorithms
rely on large amounts of data, running such applications in a low-sample-size regime
can be very challenging. Data augmentation can increase the size of the training set by
artificially synthesizing new samples. It is a very popular technique in computer vision [8]
and has become inseparable from deep learning applications when rich training sets are
not available. Data generation is also used in the case of missing modalities for multi-
modal image segmentation [9]. As a result, the model can be trained to generalize images
with better quality and avoid overfitting. In addition, some deep learning frameworks,
including PyTorch [10], allow for on-the-fly data augmentation during training, rather than
physically expanding the training dataset. Basic data augmentation operations include
random rotations, cropping, flipping, or noise injection. However, these simple operations
are not sufficient when dealing with complex data such as medical images.
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Several studies have been conducted to propose data augmentation schemes more
suitable for the medical domain. The ultimate goal would be to reproduce a data distribu-
tion as close as possible to the real data, such that it is impossible, or at least difficult, to
distinguish the newly sampled data from the real data. Recent performance improvements
in deep generative models have made them particularly attractive for data augmentation.
For example, generative adversarial networks (GANs) [11] have demonstrated their ability
to generate realistic images. As a result, this architecture has been widely used in the
medical field [12,13] and has been included in several data augmentation reviews [14–16].
Nevertheless, GANs also have their drawbacks, such as learning instability, difficulty in
converging, and suffering from mode collapse [17], which is a state where the generator
produces only a few samples. Variational autoencoders (VAEs) [18] are another type of
deep generative model that has received less attention in data augmentation. VAEs out-
perform GANs in terms of output diversity and are free of mode collapse. However, the
major problem is their tendency to often produce blurry and hazy output images. This
undesirable effect is due to the regularization term in the loss function. Recently, a new
type of deep generative model called diffusion models (DMs) [19,20] has emerged and
promises remarkable results with a great ability to generate realistic and diverse outputs.
However, DMs are still in their infancy and are not yet well established in the medical field,
but are expected to be a promising alternative to previous generative models. One of the
drawbacks of DMs is their high computational cost and huge sampling time.

Different approaches have been proposed to solve this generative learning trilemma
of quality sampling, fast sampling, and diversity [21]. In this paper, we review the state
of the art of deep learning architectures for data augmentation, focusing on three types
of deep generative models for medical image augmentation: VAEs, GANs, and DMs. To
provide an accurate review, we harvested a large number of publications via the PubMed
and Google Scholar search engines. We selected only publications dating from at least 2017
using various keywords related to data augmentation in medical imaging. Following this, a
second manual filtering was performed to eliminate all cases of false positives (publications
not related to the medical field and/or data augmentation). In conclusion, 72 publications
have been kept, mainly from journals such as IEEE Transactions In Medical Imaging or
Medical Image Analysis and conferences such as Medical Image Computing and Computer
Assisted Intervention and IEEE International Symposium on Biomedical Imaging. Some
publications will be described in more detail in Section 3; these have been selected according
to two criteria: date of publication and number of citations. Nevertheless, all the articles
are available in descriptive tables as well as other information such as datasets used to
perform training. These different papers were organized according to the deep generative
model employed and the main downstream tasks targeted by the generated data (i.e.,
classification, segmentation, and cross-modal translation). Knowing the dominance of
GANs for data augmentation in the medical imaging domain, the objective of this article
is to highlight other generative models. To the best of our knowledge, this is the first
review article that compares different deep generative models for data augmentation in
medical imaging and does not focus exclusively on GANs [14–16], nor traditional data
augmentation methods [22,23]. The quantitative ratio of GAN-based articles to the rest
of the deep generative models is very unbalanced; nevertheless, we try to bring some
equilibrium to this ratio in the hope that an unbiased comparative study following this
paper may be possible in the future. To further illustrate our findings, we present a
graphical representation of the selected publications in Figure 1. This figure provides
a comprehensive overview of the number of publications per year, per modality, and
per downstream task. By analyzing these graphics, we can observe the trends and the
preferences of the scientific community in terms of the use of deep generative models for
data augmentation in medical imaging.
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Figure 1. Distribution of publications on deep generative models applied to medical imaging data
augmentation as of 2022. (a) The number of publications per architecture type and year. (b) The
distribution of publications by modality, with CT and MRI being the most-commonly studied imaging
modalities. Note that for cross-modal translation tasks, both the source and target modalities are
counted in this plot. (c) The distribution of publications by downstream task, with segmentation and
classification being the most common tasks in medical imaging. This figure illustrates the increasing
interest in using deep generative models for data augmentation in medical imaging and highlights
the diversity of tasks and modalities that have been addressed in the literature.

This article is organized as follows: Section 2 presents a brief theoretical view of the
above deep generative models. Section 3 reviews deep generative models for medical
imaging data augmentation, grouped by the targeted application. Section 4 discusses the
advantages and disadvantages of each architecture and proposes a direction for future
research. Finally, Section 5 concludes the paper.

2. Background

The main goal of deep generative models is to learn the underlying distribution of the
data and to generate new samples that are similar to the real data. Our deep generative
model can be represented as a function g : z −→ x that maps a low-dimensional latent
vector z ∈ Rd to a high-dimensional data point x ∈ RD such as d ≤ D. The latent variable
z is a realization of a random vector that is sampled from a prior distribution p(z). The
data point x is another realization sampled from the data distribution p(x). The goal of the
deep generative model is to learn the mapping function g such that the generated data g(z)
are similar to the real data x associated with z. Each deep generative model proposes its
own approach to learn the mapping function g. In this section we present a brief overview
of the most popular deep generative models. Figure 2 provides a visual representation of
their respective architectures.
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Figure 2. Illustration of the three deep generative models that are commonly used for medical image
augmentation: (a) generative adversarial networks (GANs), which consist of a generator and a
discriminator network trained adversarially to generate realistic data; (b) variational autoencoders
(VAEs), which consist of an encoder and a decoder network trained to reconstruct data and learn a
compact latent representation; and (c) diffusion models, which consist of a forward and backward
flow of information through a series of steps to model the data distribution.

2.1. Generative Adversarial Networks

GAN [11] is a class of deep generative models composed of two separate networks: a
generator and a discriminator. The generator can be seen as a mapping function G from a
random latent vector z to a data point x, where z is sampled from a fixed prior distribution
p(z) commonly modelled as a Gaussian distribution. The discriminator D is a binary
classifier that takes a data point x as input and outputs a probability D(x) such that x is
a real data point. During the training process, the generator G is trained to replicate data
points xg so that the discriminator cannot distinguish between real data points xr and the
generated data points xg. On the other hand, the discriminator D is trained to differentiate
the fake from the real data points. Those two networks are trained simultaneously in an
adversarial manner, hence the name generative adversarial network. The loss functions of
G and D can be expressed as follow :

LG = min
θ

Ez∼p(z)[log Dφ(Gθ(z))]

LD = max
φ

Ex∼p(x)[log Dφ(x)] +Ez∼p(z)[log(1− Dφ(Gθ(z)))]
(1)

where θ and φ are the corresponding learnable parameters for the generator and discrimi-
nator neural networks, respectively.

This adversarial learning has proven to be effective in capturing the underlying
distribution of the real data distribution p(x). This has been inspired by game theory and
can be seen as a minimax game between the generator and the discriminator. It is ultimately
desirable to reach a Nash equilibrium where both the generator and discriminator are
equally effective at their tasks. The loss function can be summarized as follows:

LGAN = min
θ

max
φ

Ex∼p(x)[log Dφ(x)] +Ez∼p(z)[log(1− Dφ(Gθ(z)))] (2)

Once trained, new data points can be synthesized by sampling a random latent vector
z from the prior distribution p(z) and feeding it to the generator.
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2.2. Variational Autoencoders

Variational inference is a Bayesian inference technique that allows us to estimate the
posterior distribution p(z|x) with a simpler distribution q(z|x). The aim of variational
inference is to minimize a Kullback–Leibler divergence between the posterior distribution
pθ(z|x) and the variational distribution qφ(z|x), where θ and φ are the posterior and varia-
tional distribution parameters, respectively. The Kullback–Leibler is the most commonly
used. The loss function based on Kullback–Leibler is defined as follows:

min
θ,φ

DKL(qφ(z|x)||pθ(z|x)) = min
θ,φ

Ez∼qφ [log
qφ(z|x)
pθ(z|x)

] (3)

With further simplifications, and applying Jensen’s inequality, we can rewrite the
above equation as:

log pθ(x) = −Ez∼qφ [log qφ(z|x)] +Ez∼qφ [log pθ(z, x)] + DKL(qφ(z|x)||pθ(z|x)) (4)

log pθ(x) ≥ −Ez∼qφ [log qφ(z|x)] +Ez∼qφ [log pθ(z, x)]

≥ Ez∼qφ [log pθ(x|z)]−Ez∼qφ [log
qφ(z|x)

p(z)
] = ELBO

(5)

where log pθ(x) is the marginal log likelihood of the data x, p(z) is the prior distribution
of the latent variable z, generally modeled as a Gaussian distribution, and ELBO is the
evidence lower bound. The variational distribution qφ(z|x) can be learned by minimizing
DKL(qφ(z|x)||pθ(z|x)), which is equivalent to maximizing the ELBO given a fixed θ. This
ELBO term can be further decomposed into two terms: the reconstruction term and the
regularization term. The reconstruction term measures the difference between the input
data and its reconstruction, and it is typically calculated using binary cross-entropy loss.
The regularization term ensures that the latent variables follow a desired distribution, such
as a normal distribution, and it is calculated using the Kullback–Leibler divergence between
the latent distribution and the desired distribution. Together, these two terms form the
ELBO loss function, which is used to train the VAE model. The VAE is composed of an
encoder qφ(z|x) and a decoder pθ(x|z). The encoder qφ(z|x) is a neural network that maps
the data x to the latent variable z. The decoder pθ(x|z) is a neural network that maps the
latent variable z to the data x. The VAE is trained by minimizing the reconstruction and
regularization terms (6).

Lrec = Eqφ(z|x)[log pθ(x|z)], Lreg = Eqφ(z|x)[log
qφ(z|x)

p(z)
] (6)

Once trained, new data points can be synthesized by sampling a random latent vector
z from the prior distribution qφ and feeding it to the decoder. In other words, the decoder
represents the generative model.

2.3. Diffusion Probabilistic Models

Diffusion models [19,20] are a class of generative models that are based on the diffusion
process. The diffusion process is a stochastic process that can be seen as a parameterized
Markov chain. Each transition in the chain gradually adds a Gaussian noise to an initial
data point x0 of distribution q(x). The diffusion process can be expressed as follow:

q(xt|xt−1) = N (
√

αtxt−1, βtI)

q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1)
(7)

where βt ∈ [0, 1], t = 1, . . . , T is the predefined noise variance at step t, αt = 1− βt, and T,
the total number of steps. The diffusion model is trained to reverse the diffusion process
starting with a noise input xT ∼ N(0, I) and reconstructing the initial data point x0. This
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denoising process can be seen as a generative model. The reverse diffusion process can be
expressed as follows:

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1|xt), q(xt−1|xt) = N (µ(xt, t), Σ(xt, t)) (8)

where µ(xt, t) and Σ(xt, t) are the mean and the variance of the denoising model at step
t. Similarly to the VAE, diffusion models learn to recreate the true sample at each step by
maximizing the evidence lower bound (ELBO), matching the true denoising distribution
q(xt−1|xt) and the learned denoising distribution pθ(xt−1|xt). By the end of the training,
the diffusion model will be able to map a noise input xT to the initial data point x0 throught
reverse diffusion; hence, new data points can be synthesized by sampling a random noise
vector xT from the prior distribution N (0, I) and feeding it to the model.

2.4. Exploring the Trade-Offs in Deep Generative Models: The Generative Learning Trilemma
2.4.1. Generative Adversarial Networks

The design and training of VAEs, GANs, and DMs is often subject to trade-offs between
fast sampling, high-quality samples, and mode coverage, known as the generative learning
trilemma [21]. Among these models, GANs have received particular attention due to their
ability to generate realistic images and are the first deep generative models to be extensively
used for medical image augmentation. They are known for their ability to generate high-
quality samples that are difficult to distinguish from real data. However, they may suffer
from mode collapse, a phenomenon where the model only generates samples from a limited
number of modes or patterns in the data distribution, potentially leading to poor coverage
of the data distribution and a lack of diversity in the generated samples. To address mode
collapse, several variations of GAN have been proposed. One popular approach is the
Wasserstein GAN (WGAN) [24], which replaces the Jensen–Shannon divergence used in the
original GAN with the Wasserstein distance, a metric that measures the distance between
two probability distributions. This has the benefit of improving the quality of the generated
samples. Another widely used extension is the conditional GAN (CGAN) [25], which adds
a conditioning variable y to the latent vector z in the generator, allowing for more control
over the generated samples and partially mitigating mode collapse. The CGAN can be
seen as a generative model that can generate data points x conditioned on y and models
the joint distribution p(x, y). A GAN with a conditional generator has been introduced by
Isola et al. [26] to learn to translate images from one domain to another by replacing the
traditional noise-to-image generator with a U-Net [27]. The adversarial learning process
allows the U-Net to generate more realistic images based on a better understanding of the
underlying data distribution.

Other variations of the GAN include deep convolutional GAN (DCGAN) [28], progres-
sive growing GAN (PGGAN) [29], CycleGAN [30], auxiliary classifier GAN (ACGAN) [31],
VAE-GAN [32], and many others, which have been proposed to address various issues such as
training stability, scalability, and quality of the generated samples. While these variants have
achieved good results in a variety of tasks, they also come with their own set of trade-offs.
Despite these limitations, GANs are generally fast at generating new images, making them a
good choice for data augmentation when well-trained. As an example, Figure 3 showcases
the capacity of a CycleGAN to generate realistic synthetic medical images.

2.4.2. Variational Autoencoders

VAEs are a another type of deep generative model that has gained popularity for
their ease of training and good coverage of the data distribution. Unlike GANs, VAEs are
trained to maximize the likelihood of the data rather than adversarially, making them a
good choice for tasks that require fast sampling and good coverage of the data distribution.
Using variational inference methods, VAEs are able to better approximate the real data
distribution given a random noise vector, thus making them less vulnerable to mode
collapse. Moreover, VAEs enable the extraction of relevant features and can learn a smooth
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latent representation of the data, which allows for the interpolation of points in the space
providing more control over the generated samples [33].

Figure 3. Adapted from Sandfort et al. [12], the study presented examples of true contrast CT
scans and synthetic non-contrast CT scans generated using a CycleGAN. The left columns show
the true contrast CT scans, while the right columns present the synthetic non-contrast CT scans. It
is observed that the synthetic non-contrast images generated with CycleGAN appeared convincing,
even in the presence of significant abnormalities in the contrast CT scans. The last column on the right
displays unrelated examples of non-contrast images. The letters A to F in this figure represent various
abnormalities/pathologies, and the arrows indicate their corresponding synthetic non-contrast CT images.
However, they are not essential for understanding the main purpose of the figure, which is to demonstrate
the generator’s ability to produce realistic images.

VAEs have not been as commonly used for data augmentation compared to GANs
due to the blurry and hazy nature of the generated samples. However, several proposals,
such as inverse autoregressive flow [34], InfoVAE [35], or VQ-VAE2 [36], have been made
to improve the quality of VAE-generated samples as well as the variational aspect of the
model. Despite this, most of these extensions have not yet been applied to medical image
augmentation. A more effective approach to addressing the limitations of VAEs in this
context is to utilize a hybrid model called a VAE-GAN, which combines the strengths of
both VAEs and GANs to generate high-quality, diverse, and realistic synthetic samples.
While VAE-GANs cannot fully fix the low-quality generation of VAEs, they do partially
address this issue by incorporating the adversarial training objective of GANs, which
allows for the improvement of visual quality and sharpness of the generated samples while
still preserving the ability of VAEs to learn a compact latent representation of the data. In
addition to VAE-GANs, another common architecture for medical image augmentation is
the use of conditional VAEs (CVAEs), which allows for the control of the output samples
by conditioning the generation process on additional information, such as class labels or
attributes. This can be particularly useful in medical imaging, as it allows for the generation
of synthetic samples that are representative of specific subgroups or conditions within
the data. By using conditional VAEs, it is possible to generate synthetic samples that are
more targeted and relevant to specific tasks or analyses. In summary, VAEs, VAE-GANs,
and conditional VAEs are all viable approaches for medical image augmentation, each
offering different benefits and trade-offs in terms of diversity, quality, and fidelity of the
generated samples.

2.4.3. Diffusion Models

There has been a recent surge in the use of DMs for image synthesis in the academic
literature due to their superior performance in generating high-quality and realistic syn-
thesized images compared to other deep generative models such as VAEs and GANs [37].
This success can be attributed to the way in which DMs model the data distribution by
approximating it using a series of simple distributions combined through the diffusion
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process, allowing them to capture complex, high-dimensional distributions and generate
samples that are highly representative of the underlying data. This is especially useful for
synthesizing images as natural images often have a wide range of textures, colors, and
other visual features that can be difficult to model using simpler parametric models. This
can also be applied to medical imaging where data tends to be complex. However, DMs
can also have some limitations, such as being computationally intensive to solve, especially
for large or complex systems, and requiring a significant amount of data to be accurately
calibrated. In addition, DMs have a long sampling time compared to other deep generative
models such as VAEs and GANs due to the high number of steps in the reverse diffusion
process (ranging from several hundreds to thousands). This issue is compounded when
the model is being used in real-time applications or when it is necessary to generate large
numbers of samples. As a result, researchers have proposed several solutions and variants
of diffusion models that aim to improve the sampling speed while maintaining high-quality
and diverse samples. These include strategies such as progressive distillation [38]. This
method involves distilling a trained deterministic diffusion sampler, using many steps, into
a new diffusion model that takes half as many sampling steps. Another way to improve the
sampling time is the use of improved variants such as Fast Diffusion Probabilistic Model
(FastDPM) [39], which uses a modified optimization algorithm to reduce the sampling
time and introduces a concept of continuous diffusion process, or with non-Markovian
diffusion models such as Denoising Diffusion Implicit Model (DDIM) [40]. Similarly to
VAE-GAN, ref. [21] proposes the denoising diffusion GAN, which is a hybrid architecture
between DMs and multimodal conditional GANs [25], which have been shown to produce
high-quality and diverse samples at a much faster sampling speed compared to the original
diffusion models (factor of ×2000). Overall, while diffusion models have demonstrated
great potential in the field of image synthesis, their long sampling time remains a challenge
that researchers are actively working to address.

3. Deep Generative Models for Medical Image Augmentation

Medical image processing and analysis using deep learning has developed rapidly
in the past years, and it has been able to achieve state-of-the-art results in many tasks.
However, the lack of data is still a major issue in this field. To address this, medical
image augmentation became a crucial task, and many studies have been conducted in this
direction. In this section, we will review the different deep generative models that have been
proposed to generate synthetic medical images. This review is organized into three different
categories corresponding to each one of the deep generative models. The publications are
further classified according to the downstream task targeted by the generated images. We
address here the most common tasks in medical imaging: classification, segmentation, and
cross-model image translation, which will be summarized in the form of tables.

3.1. Generative Adversarial Networks

As part of their study, Han et al. [41] proposed the use of two variants of GANs for
generating (2D) MRI sequences: a WGAN [24] and a DCGAN [28], in which combinations
of convolutions and batch normalizations replace the fully-connected layers. The results of
this study were presented in the form of a visual Turing test where an expert physician was
asked to classify real and synthetic images. For all MRI sequences except FLAIR images,
WGAN was significantly more successful at deceiving the physician than DCGAN (62%
compared to 54%). The same author further proposes using PGGAN [29] combined with
traditional data augmentation techniques such as geometric transformations. PGGAN
is a GAN with a multi-stage training strategy that progressively increases the resolution
of the generated images. The results indicate that combining PGGAN with traditionally
augmented data can slightly improve the performance of the classifier when compared to
using PGGAN alone.

Conditional synthesis is a technique that allows the generation of images conditioned
on a specific variable y. This is particularly useful in medical imaging, where tasks such as
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segmentation or cross-modal translation are widespread. A variable y serves as the ground
truth for the generated images and can be expressed in various ways, including class labels,
segmentation maps, or translation maps. In this context, Frid-Adar et al. [42] propose to use an
ACGAN [31] for synthesizing liver lesions in CT images. The ACGAN is a GAN with a dis-
criminator conditioned on a class label. Three label classes were considered: cysts, metastases,
and hemangiomas. Based solely on conventional data augmentation, the classification results
produced a sensitivity of 78.6% and a specificity of 88.4%. By adding the synthetic data augmen-
tation, the results increased to a sensitivity of 85.7% and a specificity of 92.4%. Guibas et al. [43]
propose a two-stage pipeline for generating synthetic images of fundus photographs with
associated blood vessel segmentation masks. In the first stage, synthetic segmentation masks
are generated using DCGAN, and in the second stage, these synthetic masks are translated
into photorealistic fundus images using CGAN. Comparing the Kullback–Leibler divergence
between the real and synthetic images revealed no significant differences between the two
distributions. In addition, the authors evaluated the generated images on a segmentation task
using only synthetic images, showing an F1 score of 0.887 versus 0.898 when using real images.
This negligible difference indicates the quality of the generated images. By the same token,
Platscher et al. [44] propose using a two-step image translation approach to generate MRI
images with ischemic stroke lesion masks. The first step consists of generating synthetic stroke
lesion masks using a WGAN. The newly generated fake lesions are implanted on healthy brain
anatomical segmentation masks. Finally, those segmentation masks are fed into a pretrained
image-translation model that maps the mask into a real ischemic stroke MRI. The authors
studied three different image translation models, CycleGAN [30], Pix2Pix [26], and SPADE
[45], and reported that Pix2Pix was the most successful in terms of visual quality. A U-Net [27]
was trained using both clinical and generated images and showed an improvement in the Dice
score compared to the model trained only on clinical images (63.7% to 72.8%).

Regarding cross-modal translation, Yurt et al. [46] propose a multi-stream approach
for generating missing or corrupted MRI contrasts from other high-quality ones using a
GAN-based architecture. The generator is composed of multiple one-to-one streams and
a joint many-to-one stream, which are designed to learn latent representations sensitive
to unique and common features of the source, respectively. The complementary feature
maps generated in the one-to-one streams and the shared feature maps generated in the
many-to-one stream are combined with a fusion block and fed to a joint network that
infers the final image. In their experiments, the authors compare their approach to other
state-of-the-art translation GANs and show that the proposed method is more effective
in terms of quantitative and radiological assessments. The synthesized images presented
in this study demonstrate the effectiveness of deep learning approaches applied to data
augmentation in medical imaging. Specifically, the study investigated two tasks: (a) T1-
weighted image synthesis from T2- and PD-weighted images and (b) PD-weighted image
synthesis from T1- and T2-weighted images. The results obtained from the proposed
method outperformed other variants of GANs such as pGAN [47] and MM-GAN [48],
highlighting its effectiveness for image synthesis in medical imaging.

In summary, the use of GANs for data augmentation has been demonstrated to
be a successful approach. The studies discussed in this section have employed some
of the most innovative and known GAN architectures in the medical field, including
WGAN, DCGAN, and Pix2Pix, and have primarily focused on three tasks: classification,
segmentation, and cross-modal translation. Custom-made GAN variants have also been
proposed in the current state of the art (see Table 1), some of which could be explored
further. Notably, conditional synthesis has proven to be particularly useful for tasks such as
segmentation and cross-modal translation, as seen with the ACGAN and Pix2Pix, resulting
in an improved classification performance. Additionally, two-stage pipeline approaches
have been proposed for generating synthetic images conditioned on segmentation masks.
To further illustrate the use of GANs for medical image augmentation, we present a
summary of the relevant studies in Table 1. This table includes information about the
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dataset, imaging modality, and evaluation metrics used in each study, as well as the specific
type of GAN architecture employed. A further discussion will be presented in Section 4.

Table 1. Overview of GAN-based architectures for medical image augmentation, including hybrid
status of architectures (if applicable), indicating used combinations of VAEs, GANs, and DMs.

Reference Architecture Hybrid Status Dataset Modality 3D Eval. Metrics

Classification

[42] DCGAN, ACGAN Private CT Sens., Spec.
[41] DCGAN, WGAN BraTS2016 MR Acc.
[49] PGGAN, MUNIT BraTS2016 MR X Acc., Sens., Spec.,
[50] AE-GAN Hybrid (V + G) BraTS2018, ADNI MR X MMD, MS-SSIM
[51] ICW-GAN OpenfMRI, HCP MR X Acc., Prec., F1

NeuroSpin, IBC Recall
[52] ACGAN IEEE CCX X-ray Acc., Sens., Spec.

Prec., Recall, F1
[53] PGGAN BraTS2016 MR Acc., Sens., Spec.
[54] ANT-GAN BraTS2018 MR Acc.
[55] MG-CGAN LIDC-IDRI CT Acc., F1
[56] FC-GAN Hybrid (V + G) ADHD, ABIDE MR Acc., Sens., Spec., AUC
[57] TGAN Private Ultrasound Acc., Sens., Spec.
[58] AAE Private MR Prec., Recall, F1

[59] DCGAN,
InfillingGAN DDSM CT LPIPS, Recall

[60] SAGAN COVID-CT,
SARS-COV2 CT Acc.

[61] StyleGAN Private MR -
[62] DCGAN PPMI MR Acc., Spec., Sens.

[63] TMP-GAN CBIS-DDMS,
Private CT Prec., Recall, F1, AUC

[64] VAE-GAN Hybrid (V + G) Private MR Acc., Sens., Spec.
[65] CounterSynth UK Biobank, OASIS MR X Acc., MSE, SSIM, MAE

Segmentation

[43] CGAN DRIVE Fundus
photography KLD, F1

[66] DCGAN SCR X-ray Dice, Hausdorff
[67] CB-GAN BraTS2015 MR Dice, Prec., Sens.
[68] Pix2Pix BraTS2015, ADNI MR X Dice
[12] CycleGAN NIHPCT CT Dice
[69] CM-GAN Private MR KLD, Dice

hausdorff
[70] CGAN COVID-CT CT FID, PSNR, SSIM, RMSE
[71] Red-GAN BraTS2015, ISIC MR Dice

[44] Pix2Pix, SPADE,
CycleGAN Private MR Dice

[72] StyleGAN LIDC-IDRI CT Dice, Pres., Sens.

[73] DCGAN, GatedConv Private X-ray MAE, PSNR, SSIM, FID,
AUC

Cross-modal
translation

[74] CycleGAN Private MR↔ CT X Dice
[75] CycleGAN Private MR→ CT MAE, PSNR
[76] Pix2Pix ADNI, Private MR→ CT X MAE, PSNR, Dice
[77] MedGAN Private PET→ CT SSIM, PSNR, MSE

VIF, UQI, LPIPS

[47] pGAN, CGAN BraTS2015, MIDAS,
IXI T1←→ T2 SSIM, PSNR

[69] CM-GAN Private MR KLD, Dice
hausdorff

[46] mustGAN IXI, ISLES T1↔ T2↔ PD SSIM, PSNR
[78] CAE-ACGAN Hybrid (V + G) Private CT→MR X PSNR, SSIM, MAE
[79] GLA-GAN ADNI MR→ PET SSIM, PSNR, MAE

Acc., F1

Other

[80] VAE-CGAN Hybrid (V + G) ACDC MR X -

Note: V = variational autoencoders, G = generative adversarial networks.
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3.2. Variational Autoencoders

Zhuang et al. [51] present an empirical evaluation of 3D functional MRI data aug-
mentation using deep generative models such as VAEs and GANs. The results indicate
that CVAE and conditional WGAN can produce diverse, high-quality brain images. A 3D
convolutional neural network (CNN) was used to further evaluate the generated samples
on the original and augmented data in a classification task, demonstrating an accuracy
improvement of 3.17% when using CVAE augmented data and 3.72% when using CWGAN
augmented data. As part of Pesteie et al. [81], a revised variant of the CVAE is proposed,
called the ICVAE, which separates the embedding space of the input data and the condi-
tioning variables. This allows the generated image characteristics to be independent of
the conditioning variables, resulting in a more diverse output. In contrast, the standard
CVAE encodes the data and conditioning variables in a shared embedding space. The
authors evaluate the ICVAE on classification and segmentation tasks using transverse
ultrasound images of the spine and FLAIR MRI images of the brain, respectively. The
results demonstrate an improvement of 8.0± 1.0% in classification accuracy and 4.5± 0.5%
in the Dice score compared to the model trained on real images only. The ICVAE model is
able to generate more realistic MRI images by encoding appearance features independently
of the structures in its latent space. The authors demonstrate the generation of synthetic
MRI and ultrasound images using the ICVAE architecture, which are conditioned on a
tumor segmentation mask and a label indicating the center-line of the spine, respectively.
The CVAE architecture is also shown for comparison. Chadebec et al. [82] introduce a novel
Geometry-aware VAE for high dimensional data augmentation in low sample size settings.
This model combines Riemannian metric learning with normalizing flows to improve the
expressiveness of the posterior distribution and learn meaningful latent representations of
the data. Additionally, the authors propose a new non-prior sampling scheme based on
Hamiltonian Monte Carlo, since the standard procedure utilizing the prior distribution is
highly dependent upon the data, especially for small datasets. As a result, the generated
samples are remarkably more realistic than those generated by a conventional VAE, and
the model is more resilient to the lack of data. An evaluation of the synthetic data on a
classification task shows an improvement in accuracy from 66.3% to 74.3% using 50 real
+ 5000 synthetic MRIs, compared to using only the original data. The original paper by
Chadebec et al. [82] includes a challenge in which readers are invited to identify the real
brain MRIs from fake ones.

Other studies suggest the use of VAEs to improve the segmentation task performance.
Huo et al. [83] introduce a progressive VAE-based architecture (PAVAE) for generating
synthetic brain lesions with associated segmentation masks. The authors propose a two-
step pipeline where the first step consists in generating synthetic segmentation masks
based on a conditional adversarial VAE. The CVAE is assisted by a “condition embedding
block” that encodes high-level semantic information of the lesion into the feature space.
The second step involves generating photorealistic lesion images conditioned on the lesion
mask using “mask embedding blocks”, which encodes the lesion mask into the feature
space during generation, similar to SPADE. The authors compare their approach to other
state-of-the-art methods and show that PAVAE can produce more realistic synthetic lesions
with associated segmentation masks. A segmentation network is trained using both real
and synthetic lesions and shows an improvement in the Dice score compared to the model
trained only on real images (66.69% to 74.18%).

In a recent paper, Yang et al. [78] propose a new model for cross-domain translation
called conditional variational autoencoding GAN (CAE-ACGAN). CAE-ACGAN combines
the advantages of both VAEs and GANs in a single end-to-end architecture. The integration
of VAE and GAN, along with the implementation of an auxiliary discriminative classifier
network, allows for a partial resolution of the challenges posed by image blurriness and
mode collapse. Moreover, the VAE incorporates skip connections between the encoder and
decoder, which enhances the quality of the images generated. In addition to translating 3D
CT images into their corresponding MR, the CAE-ACGAN generates more realistic images
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as a result of its discriminator, which serves as a quality-assurance mechanism. Based on
PSNR and SSIM scores, the CAE-ACGAN model showed a mild improvement over other
state-of-the-art architectures, such as Pix2Pix and WGAN-GP [84].

Table 2 compiles a summary of the relevant studies using VAEs in medical data
augmentation. In contrast to GANs, the number of studies employing VAEs for data
augmentation in medical imaging is relatively low. However, almost half of these studies
have utilized hybrid architectures, combining VAEs with adversarial learning. Interestingly,
we observe that unlike GANs, there are not many VAE variants in medical imaging. Most
commonly used VAE architectures are either conditional, such as vanilla CVAE and ICVAE,
or hybrid architectures, such as IntroVAE, PAVAE, and ALVAE. Further discussion on
the effectiveness of VAEs for medical image augmentation and the specific architectures
utilized in previous studies will be presented in Section 4.

Table 2. Overview of VAE-based architectures for medical image augmentation, including hybrid status
of architectures (if applicable), indicating the combination of VAEs and GANs used in each study.

Reference Architecture Hybrid Status Dataset Modality 3D Eval. Metrics

Classification

[81] ICVAE Private MR Acc., Sens., Spec.
Ultrasound Dice, Hausdroff, . . .

[51] CVAE OpenfMRI,
HCP MR X Acc., Prec., F1

NeuroSpin, IBC Recall
[82] GA-VAE ADNI, AIBL MR X Acc., Spec., Sens.
[85] MAVENs Hybrid (V + G) APCXR X-ray FID, F1
[61] IntroVAE Hybrid (V + G) Private MR -
[86] DR-VAE HCP MR -
[64] VAE-GAN Hybrid (V + G) Private MR Acc., Sens., Spec.
[87] VAE Private MR Acc.
[88] RH-VAE OASIS MR X Acc.

Segmentation

[89] VAE-GAN Hybrid (V + G) Private Ultrasound MMD, 1-NN, MS-SSIM
[90] AL-VAE Hybrid (V + G) Private OCT 1 MMD, MS, WD
[83] PA-VAE Hybrid (V + G) Private MR X PSNR, SSIM, Dice

NMSE, Jacc., . . .

Cross-modal
translation

[78] CAE-ACGAN Hybrid (V + G) Private CT→MR X PSNR, SSIM, MAE

[91] 3D-UDA Private FLAIR↔ T1↔
T2 X SSIM, PSNR, Dice

Other

[92] CVAE ACDC, Private MR X -
[92] CVAE Private MR X Dice, Hausdorff
[93] Slice-to-3D-VAE HCP MR X MMD, MS-SSIM
[94] GS-VDAE MLSP MR Acc.
[80] VAE-CGAN Hybrid (V + G) ACDC MR X -
[95] MM-VAE UK Biobank MR X MMD
[96] DM-VAE Private Otoscopy -

1 OCT stands for “esophageal optical coherence tomography”. V = variational autoencoders, G = generative
adversarial networks.

3.3. Diffusion Models

In their study, Pinaya et al. [97] introduce a new approach for generating high-
resolution 3D MR images using a latent diffusion model (LDM) [98]. LDMs are a type
of generative model that combine autoencoders and diffusion models to synthesize new
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data. The autoencoder component of the LDM compresses the input data into a lower-
dimensional latent representation, while the diffusion model component generates new
data samples based on this latent representation. The LDM in this work was trained on data
from the UK Biobank dataset and conditioned on clinical variables such as age and sex. The
authors compare the performance of their LDM to VAE-GAN [32] and LSGAN [99], using
the Fréchet inception distance [100] as the evaluation metric. The results show that the LDM
outperforms the other models, with an FID of 0.0076 compared to 0.1567 for VAE-GAN and
0.0231 for LSGAN (where a lower FID score indicates a better performance). Even when
conditioned on specific variables, the synthetic MRIs generated by this model demonstrate
its ability to produce diverse and realistic brain MRI samples based on the ventricular
volume and brain volume. As a valuable contribution to the scientific community, the
authors also created a dataset of 100,000 synthetic MRIs that was made openly available for
further research.

Fernandez et al. [101] introduce a generative model, named brainSPADE, for synthe-
sizing labeled brain MRI images that can be used for training segmentation models. The
model combines a diffusion model with a VAE-GAN, with the GAN component partic-
ularly utilizing SPADE normalization to incorporate the segmentation mask. The model
consists of two components: a segmentation map generator and an image generator. The
segmentation map generator is a VAE that takes as input a segmentation map, then en-
codes and builds a latent space from it. To focus on semantic information and disregard
insignificant details, the latent code is then diffused and denoised using LDMs. This creates
an efficient latent space that emphasizes meaningful information while filtering out noise
and other unimportant details. A VAE decoder then generates an artificial segmentation
map from this latent space. The image generator is a SPADE model that builds a style
latent space from an arbitrary style and combines it with the artificial segmentation map to
decode the final output image. The performance of the brainSPADE model is evaluated on
a segmentation task using nnU-Net [102], and the results show that the model performs
comparably when trained on synthetic data compared to when it is trained on real data,
and that using a combination of both significantly improves the model’s performance.

Lyu and Wang [103] conducted a study that investigated the use of diffusion models
for image translation in medical imaging, specifically the conversion of MRI to CT scans.
In their study, the authors utilized two diffusion-based approaches: the conditional DDPM
and conditional score-based model which utilizes stochastic differential equations [104].
These methods involved conditioning the reverse process on T2-weighted MRI images.
To evaluate the performance of these diffusion models in comparison to other methods
(conditional WGAN and U-Net), the authors conducted experiments on the Gold Atlas
male pelvis dataset [105] using three novel sampling methods and compared the results
to those obtained using GAN- and CNN-based approaches. The results indicated that
the diffusion models outperformed both the GAN- and CNN-based methods in terms of
structural similarity index (SSIM) and peak signal-to-noise ratio (PNSR).

We present a summary of the relevant studies utilizing diffusion models for medical
image augmentation in Table 3. This table includes details about the dataset, imaging
modality, and evaluation metrics used in each study, as well as the specific diffusion model
employed. Upon examining this table, we notice that all the studies included are relatively
recent, with the earliest study dating back to 2022. This suggests that diffusion models
have gained increasing attention in the field of medical image augmentation and synthesis
in recent years. Additionally, we see that in 2022, diffusion models received more attention
for these tasks compared to GANs and VAEs, highlighting their growing popularity and
potential for use in various scenarios.
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Table 3. Overview of the diffusion-model-based architectures for medical image augmentation that
have been published to date (to our knowledge, no such studies were released before 2022). The table
includes the reference, architecture name, and hybrid status (if applicable), indicating the combination
of VAEs, GANs, and DMs used in each study. The table provides a useful summary of the current
state of the art in this area and can help guide researchers in selecting appropriate approaches for
their specific needs.

Reference Architecture Hybrid Status Dataset Modality 3D Eval. Metrics

Classification

[97] CLDM UK Biobank MR X FID, MS-SSIM
[106] DDPM ICTS MR X MS-SSIM
[107] LDM CXR8 X-ray AUC
[108] MF-DPM TCGA Dermoscopy Recall
[109] RoentGen Hybrid (D + V) MIMIC-CXR X-ray Accuracy
[110] IITM-Diffusion BraTS2020 MR -
[111] DALL-E2 Fitzpatrick Dermoscopy Accuracy
[112] CDDPM ADNI MR X MMD, MS-SSIM, FID
[113] DALL-E2 Private X-ray -
[114] DDPM OPMR MR X Acc., Dice
[115] LDM MaCheX X-ray MSE, PSNR, SSIM

Segmentation

[116] DDPM ADNI, MRNet, MR, CT Dice
LIDC-IDRI

[101] brainSPADE Hybrid
(V + G + D)

SABRE,
BraTS2015 MR Dice, Accuracy

OASIS, ABIDE Precision, Recall
[110] IITM-Diffusion BraTS2020 MR -

Cross-
modal
translation

[117] SynDiff Hybrid (D + G) IXI, BraTS2015 CT→MR PSNR, SSIM
MRI-CT-PTGA

[118] UMM-CSGM BraTS2019 FLAIR↔ T1↔
T1c↔ T2 PSNR, SSIM, MAE

[103] CDDPM MRI-CT-PTGA CT↔MR PSNR, SSIM

Other

[119] DDM ACDC MR X PSNR, NMSE, DICE

Note: V = variational autoencoders, G = generative adversarial networks, D = diffusion models.

4. Key Findings and Implications

In this review, we focused on generative deep models applied to medical data aug-
mentation, specifically VAEs, GANs, and diffusion models. These approaches each have
their own strengths and limitations, as described by the generative learning trilemma [21],
which states that it is generally difficult to achieve high-quality sampling, fast sampling,
and mode coverage simultaneously. As illustrated in Figure 1a, the number of publications
on data augmentation using VAEs increases by approximately 81% from 2017 to 2022,
while the number using GANs has remained relatively stagnant. This trend may be due
to the fact that most possible fields of research using GANs have already been explored,
making it difficult to go beyond current methods using these architectures. However, we
have also seen an increase in the use of more complex architectures combining multiple
generative models [64,78], which have shown promising results in terms of both quality
and mode coverage. On the other hand, the number of studies using diffusion models has
drastically increased starting from 2022, and these models have shown particular potential
for synthesizing high-quality images with good mode coverage [120].
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Basic data augmentation operators such as Gaussian noise addition, cropping, and
padding are commonly used to augment data and generate new images for training [8].
However, the complex structures of medical images, which encompass anatomical variation
and irregular tumor shapes, may render these basic operations unsuitable, resulting in
the production of irrelevant images that disrupt the logical image structure [22], and
additionally, can lead to image deformations and the generation of aberrant data that can
adversely impact the model performance. One basic data augmentation operator that is not
well suited for medical images is flipping images, which can sometimes cause anatomical
inconsistencies [121]. To overcome this issue, deformable augmentation techniques have
been introduced, such as random displacement fields and spline interpolation, to augment
the data in a more realistic way. These techniques have proved to be useful [22]; however,
they are strongly dependent on the data and limited in some cases. Recent advances in deep
learning have led to the development of generative models that can be trained to generate
realistic images and simulate the underlying data distribution. These synthesized images
are more truthful than those generated using traditional data augmentation techniques.
They guarantee a better coherence of the general structure of medical images and greater
variability, providing a more effective way to generate realistic and diverse data.

The use of GANs in medical imaging, as seen in Table 1, has been widespread and
applied to a variety of modalities and datasets, demonstrating their versatility and potential
for various applications within the field. When it comes to classification, DCGAN and
WGAN have been the most-commonly used architectures and are considered safe bets in
this domain. For example, Zhuang et al. [51] demonstrated a 3% accuracy improvement
in generating fMRIs using an improved WGAN. These architectures, with their capacity
for high-quality generation and good mode coverage, offer significant potential for the
generation of synthetic images for medical imaging classification. In the case of segmenta-
tion and translation, the architectures that have shown the most promise include Pix2Pix,
CycleGAN, and SPADE, all of which have proven their potential for conditional generation
and cross-modal translation. Platscher et al. [44] conducted a comparative study of these
three architectures, demonstrating their capacity to generate high-quality images suitable
for medical image segmentation and translation tasks (improvement of 9.1% in Dice score).
These architectures can significantly reduce the need for manual annotation of medical
images and thus significantly reduce the time and cost required for data annotation.

On the other hand, VAEs have been utilized in fewer studies for medical image
augmentation, as shown in Table 2. They have been employed in other tasks such as
reconstruction, as demonstrated by Biffi et al. [92] and Volokitin et al. [93], who used
CVAE for 3D volume reconstruction, and interpretability of features, as exemplified by
Hyang et al. [94], who identified biomarkers using VAEs. Furthermore, VAEs are often
used in hybrid architectures with adversarial learning techniques. The most promising
architectures include PAVAE [83] and IntroVAE [122], alongside conditional VAEs, for
various purposes including classification, segmentation, and translation tasks. However,
while VAEs have shown potential in these areas, there is still room for improvement. One
study that particularly shows promising results is that of Chadebec and Allassonnière [88],
who propose to model the latent space of a VAE as a Riemannian manifold, allowing
high-quality image generation comparable to GANs. Chadebec and Allassonnière [88]
demonstrated an improvement of 8% in accuracy using synthetic images generated with
their proposed VAE model. Nevertheless, this architecture requires a high computational
cost and time, which is a significant drawback in practical applications.

Table 3 presents a summary of the relevant studies utilizing diffusion models for
medical image augmentation. These studies, all of which are relatively recent, with the
earliest dating back to 2022, suggest that diffusion models have gained increasing attention
in medical image augmentation and synthesis in recent years. Furthermore, in 2022,
diffusion models have been the most-commonly used generative models for medical image
augmentation compared to GANs and VAEs, highlighting their growing popularity and
potential for use in various scenarios. Of the diffusion models studied, DDPM and LDM are
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the most prevalent, alongside conditional variants such as CDDPM [103] and CLDM [97].
Notably, the difference between LDM and DDPM is the ability of LDM to model long-range
dependencies within the data by constructing a low-dimensional latent representation and
diffusing it, while DDPMs apply the diffusion process directly to the input images. This can
be especially useful for medical image augmentation tasks that require capturing complex
patterns and structures. For instance, Saeed et al. [114] demonstrated the capacity of LDM
conditioned on text for a task of lesion identification, achieving an accuracy improvement
of 5.8%. These findings suggest that diffusion models have a promising potential for future
medical image augmentation and synthesis research. To further exemplify the potential
of diffusion models in generating realistic medical images, we present in Figure 4 a set
of synthesized MRI images using a DDPM. These generated images exhibit high visual
fidelity and are almost indistinguishable from the real images. One of the reasons for this
high quality is the DDPM’s ability to model the diffusion process of the image density
function. By doing so, the DDPM can generate images with increased sharpness and fine
details, as seen in the synthesized MRI images.

Figure 4. Synthesized MRIs using a diffusion-based probabilistic model (DDPM) [20] trained on the
BraTS2020 dataset. The first row shows a sample of original images, while the second row shows a
sample of synthesized images generated using the DDPM.

These studies have covered a range of modalities, including MRI, CT, and ultrasound,
as well as dermoscopy and otoscopy. Classification is the most common downstream
task targeted in these studies, but there have also been multiple state-of-the-art solutions
proposed for more complex tasks such as generating multimodal missing images (e.g., from
CT to MRI) and multi-contrast MRI images. In order to provide ground truth segmentation
masks for tasks such as segmentation, most studies have explored the field of conditional
synthesis. This allows for greater control over the synthesized images and can help to
stabilize training [25], as the model is given explicit guidance on the desired output. For our
discussion on medical image augmentation, we have also compiled two summary tables
to provide a comprehensive overview of the datasets and metrics used in the reviewed
studies. Table 4 presents a summary of the datasets used in the reviewed studies. This
table includes information about the title of the dataset, a reference, and a link to the public
repository if available, as well as the studied modality and anatomy. From examining this
table, we see that MRI is the most-commonly used modality, followed by CT. In terms of
anatomy, brain studies dominate, with lung studies coming in second. It is worth noting
that the BraTS dataset is widely used across multiple studies, highlighting its importance
in the field. Additionally, we notice the presence of private datasets in this table, which
is not surprising given that many medical studies are associated with specific medical
centers and may not be publicly available. When we consider the state of the art of medical
imaging studies (see Figure 1b), we notice that the PET and ultrasound modalities are
less represented compared to the others. One reason for the scarcity of PET studies is the
limited availability of nuclear doctors compared to radiologists. Nuclear doctors specialize
in nuclear medicine, and PET is one such imaging modality that uses radioactive tracers
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to produce 3D images of the body. Due to the limited number of nuclear doctors, there
are fewer medical exams that use PET, leading to less publicly available data for research
purposes [123]. On the other hand, ultrasound is an operator-dependent modality and
requires a certain level of field knowledge. Additionally, ultrasound is not as effective as
other modalities such as CT and MRI in detecting certain pathologies, which may also
contribute to its lower representation in the state of the art. Despite these limitations, both
PET and ultrasound remain important imaging modalities in clinical practice, and future
research should aim to explore their full potential in the field of medical imaging.

Table 4. Summary of the datasets utilized in various publications of deep generative models, or-
ganized by modality and body part. For each dataset, the corresponding availability is indicated
as public, private, or under certain conditions (UC). Additionally, if a public link for the dataset is
available, it is provided.

Abbreviation Reference Availability Dataset Modality Anatomy

ADNI UC Alzheimers disease
neuroimaging Initiative MR, PET Brain

BraTS2015 Public Brain tumor segmentation challenge MR Brain
BraTS2016 Public Brain tumor segmentation challenge MR Brain
BraTS2017 Public Brain tumor segmentation challenge MR Brain
BraTS2019 Public Brain tumor segmentation challenge MR Brain
BraTS2020 Public Brain tumor segmentation challenge MR Brain
IEEE CCX Public IEEE Covid Chest X-ray dataset X-ray Lung
UK Biobank UC UK Biobank MR Brain, Heart

NIHPCT Public National Institutes of Health
Pancreas-CT dataset CT Kidney

DataDecathlon Public Medical Segmentation
Decathlon dataset CT Liver, Spleen

MIDAS [124] Public Michigan institute for data science MR Brain

IXI Public Information eXtraction from
Images Dataset MR Brain

DRIVE [125] Public Digital Retinal Images for
Vessel Extraction

Fundus
photography Retinal fundus

ACDC [126] Public Automated Cardiac
Diagnosis Challenge MR Heart

MRI-CT PTGA [105] Public MRI-CT Part of the Gold Atlas project CT, MR Pelvis

ICTS [50] Public
National Taiwan University Hospital’s
Intracranial Tumor
Segmentation dataset

MR Brain

CXR8 [127] Public ChestX-ray8 X-ray Lung
C19CT Public COVID-19 CT segmentation dataset CT Lung
TCGA Private The Cancer Genome Atlas Program Microscopy -
UKDHP [128] UC UK Digital Heart Project MR Heart

SCR [129] Public SCR database : Segmentation in
Chest Radiographs X-ray Lung

HCP [130] Public Human connectom project dataset MR Brain

AIBL UC Australian Imaging Biomarkers and
Lifestyle Study of Ageing MR, PET Brain

OpenfMRI Public OpenfMRI MR Brain
IBC Public Individual Brain Charting MR Brain

NeuroSpin Private Institut des sciences du vivant
Frédéric Joliot MR Brain

OASIS Public The Open Access Series of
Imaging Studies MR Brain

APCXR [131] Public The anterior-posterior Chest
X-Ray dataset X-ray Lung

Fitzpatrick [132] Public Fitzpatrick17k dataset Dermoscopy Skin

ISIC Public The International Skin Imaging
Collaboration dataset Dermoscopy Skin
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Table 4. Cont.

Abbreviation Reference Availability Dataset Modality Anatomy

DDSM Public The Digital Database for Screening
Mammography CT Breast

CBIS-DDMS Public Curated Breast Imaging Subset
of DDSM CT Breast

LIDC-IDRI Public
The Lung Image Database Consortium
(LIDC) and Image Database Resource
Initiative (IDRI)

CT Lung

COVID-CT [133] Public - CT Lung
SARS-COV2 [134] Public CT Lung
MIMIC-CXR [135] Public Massachusetts Institute of Technology CT Lung

PPMI Public Parkinson’s Progression
Markers Initiative MR Brain

ADHD Public Attention Deficit
Hyperactivity Disorder MR Brain

MRNet Public MRNet dataset MR Knee

MLSP Public MLSP 2014 Schizophrenia
Classification Challenge MR Brain

SABRE [136] Public The Southall and Brent Revisited cohort MR Brain, Heart

ABIDE Public The Autism Brain Imaging
Data Exchange MR Brain

OPMR [137] Public Open-source prostate MR data MR Pelvis
MaCheX [115] Public Massive Chest X-ray Dataset X-ray Lung

Second, Table 5 provides a summary of the metrics used to evaluate the performance
of the various models discussed in the review. It is clear from this table that a variety of
metrics are employed, ranging from traditional evaluation measures to more recent ones.
Currently, many studies rely on shallow metrics such as the mean absolute error, peak
signal-to-noise ratio [138], or structural similarity [139], which do not accurately reflect the
visual quality of the image. For instance, while optimizing pixel-wise loss can produce
a clearer image, it may result in lower numerical scores compared to using adversarial
loss [140]. To address this challenge, researchers have proposed different methods for
evaluation. The most well-known approach is to validate the quality of the generated
samples through downstream tasks such as segmentation or classification. An overview
of the augmentation process using a downstream task is depicted in Figure 5. Another
approach is to use deep-learning-based metrics such as the learned perceptual image
patch similarity (LPIPS) [141], Fréchet inception distance (FID) [100], or inception score
(IS) [142], which are designed to better reflect human judgments of image quality. These
deep-learning-based metrics take into account not only pixel-wise similarities, but also
high-level features and semantic information in the images, making them more effective in
evaluating the visual quality of the generated images. LPIPS, for instance, measures the
perceptual similarity between two images by using a pretrained deep neural network. FID
and IS are other popular deep-learning-based metrics for image generation, and they have
been widely used in various image generation tasks to assess the quality and diversity of
the generated samples. However, these metrics may not always align perfectly with human
perception, and further studies are needed to assess their effectiveness for different types
of medical images.
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Table 5. Summary of quantitative measures used in the reviewed publications.

Abbrv. Reference Metric Name Description

Dice [143] Sørensen–Dice
coefficient

A measure of the similarity between two sets of data, calculated as twice the size of the
intersection of the two sets divided by the sum of the sizes of the two sets

Hausdorff [144] Hausdorff distance A measure of the similarity between two sets of points in a metric space

FID [100] Fréchet inception
distance

A measure of the distance between the distributions of features extracted from real and
generated images, based on the activation patterns of a pretrained inception model

IS [142] Inception score A measure of the quality and diversity of generated images, based on the activation
patterns of a pretrained Inception model

MMD [145] Maximum mean
discrepancy

A measure of the difference between two probability distributions, defined as the
maximum value of the difference between the two means

1-NN [146] 1-nearest neighbor
score

A method for classification or regression that involves finding the data point in a
dataset that is most similar to a given query point

(MS-)SSIM [139] (Multi-scale) structural
similarity

A measure of the similarity between two images based on their structural information,
taking into account luminance, contrast, and structure.

MS [147] Mode score
A measure of the quality of samples generated with two probabilistic generative
models based on the difference in maximum mean discrepancies between a reference
distribution and simulated distribution

WD [148] Wasserstein distance A measure of the distance between two probability distributions, defined as the
minimum amount of work required to transform one distribution into the other

PSNR [138] Peak signal-to-noise
ratio

A measure of the quality of an image or video, based on the ratio between the
maximum possible power of a signal and the power of the noise that distorts the signal

(N)MSE - (Normalized) mean
squared error A measure of the average squared difference between the predicted and actual values

Jacc. [143] Jaccard index A measure of the overlap between two sets of data, calculated as the ratio of the area
of intersection to the area of union

MAE - Mean absolute error A measure of the average magnitude of the errors between the predicted and
actual values

AUC [149] Area under the curve A measure of the performance of a binary classifier, calculated as the area under the
receiver operating characteristic curve

LPIPS [141] Learned perceptual
image patch similarity

An evaluation metric that measures the distance between two images in a perceptual
space based on the activation of a deep CNN

KLD [150] Kullback–Leibler
divergence

A measure of the difference between two probability distributions, often used to
compare the similarity of the distributions, with a smaller KL divergence indicating a
greater similarity

VIF [151] Visual information
fidelity

A measure that quantifies the Shannon information that is shared between the
reference and the distorted image

UQI [152] Universal quality index
A measure of the quality of restored images. It is based on the principle that the
quality of an image can be quantified using the correlation between the original and
restored images

Figure 5. Illustration of the augmentation pipeline for a generative-model-based data augmentation.
The input data, x, are fed into the generative model, g, which synthesizes additional data samples to
augment the training set. The downstream architecture, e, which may take the form of a convolutional
neural network or U-Net, is then trained on a combination of the synthesized data and real data from
the training set. The training set is split into training and validation sets, where the validation set
contains only real data for evaluation purposes. After training, the model can be evaluated using
various test sets.

Despite the advancements made by generative models in medical data augmentation,
several challenges still remain. A common issue in GANs, known as mode collapse, occurs
when the generator only produces a limited range of outputs, rather than the full range of
possibilities. While techniques such as minibatch discrimination and the incorporation of
auxiliary tasks [142] have been suggested as potential solutions, further research is needed
to effectively address this issue. In addition, there is a balance to be struck between the sam-
ple quality and the generation speed, which affects all generative models. GANs are known
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for their ability to generate high-quality samples quickly, allowing them to be widely used
in medical imaging and data augmentation [14,15,153]. Another approach for stabilizing
the training of GANs is to use WGAN [24]. WGAN improves upon the original GAN by us-
ing the Wasserstein distance instead of the Jensen–Shannon divergence as the cost function
for training the discriminator network. While these approaches have demonstrated success
in improving GAN images and partially addressing mode collapse and training instability,
there is still room for improvement. Diffusion models have overshadowed GANs during
the latest years, particularly due to the success of text-to-image generation architectures
such as DALL-E [154], Imagen [155], and stable diffusion [98]. These diffusion models
naturally produce more realistic images than GANs. However, in our view, GANs have
only been set aside and not entirely disregarded. With the recent release of GigaGAN [156]
and StyleGAN-T [157], GANs have made a resurgence by producing comparable or even
better results than diffusion models. This renewed interest in GANs demonstrates the
continued relevance of this approach to image generation and indicates that GANs may
still have much to offer in advancing the field. Future research could explore hybrid models
that combine the strengths of both GANs and diffusion models to create even more realistic
and high-quality images.

VAEs have not gained as much attention in the medical imaging field, due to their
tendency to produce blurry and hazy generated images. However, some studies have used
conditional VAEs or hybrid architectures to address this issue and improve the quality of
the samples produced. Researchers are therefore exploring the use of hybrid models that
combine the strengths of multiple generative models, as well as improved VAE variations
that offer enhanced image quality. Hybrid architectures, such as VAE-GANs [32], have
demonstrated the potential to partially address the issues of both VAEs and GANs, allowing
a better-quality generation and good mode coverage. Interestingly, recent research has even
combined all three generative models into a single pipeline [101]. This study has shown
comparable results on a segmentation task when using a fully synthetic dataset compared
to using the real dataset. These promising results suggest that hybrid architectures could
open up new possibilities. However, these models can be complex and challenging to
train, and more research is needed to fully realize their potential. In fact, many VAEs used
in medical imaging are hybrid architectures, as they offer a good balance between the
strengths and weaknesses of both VAEs and GANs [85,101]. It is important to note that
VAEs have an advantage over GANs in operating better with smaller datasets due to the
presence of an encoder [158], which can extract relevant features from the input images
and significantly reduce the search space required for generating new images through
the process of reconstruction. This feature also makes VAEs a form of dimensionality
reduction, and the representation obtained by the encoder can provide a better starting
point for the decoder to approximate the real data distribution more accurately. In contrast,
GANs have a wider search space, which may lead to challenges in learning features
effectively. For instance, we show in Figure 6 a comparison between synthesized MRIs
using vanilla VAE [18] and the Hamiltonian VAE [159]. In addition to the advantage of
operating better with smaller datasets, VAEs also offer a disentangled, interpretable, and
editable latent space. This means that the encoded representation of an input image can be
separated into independent and interpretable features, allowing for better understanding
and manipulation of the underlying data. Another option is the use of improved variants of
VAEs, which have been proposed to generate high-quality images. There has been limited
exploration of improved VAE variants such as VQ-VAE2 [36], IAF-VAE [34], or Hamiltonian
VAE [159] in the medical imaging field, but these variants have shown promise in generating
high-quality images in other domains. It may be worth exploring their potential for medical
image augmentation, as they offer the possibility of improving the quality of the generated
images without sacrificing other important characteristics such as fast sampling and good
mode coverage.
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Figure 6. Figure presenting a comparison between synthesized MRIs generated by a VAE and a
Hamiltonian VAE [159]. Both models were trained on a limited training set of 100 images from
BraTS2020 Challenge dataset. The first row showcases original images, while the second and third
rows present synthesized images generated by the VAE and Hamiltonian VAE, respectively. While
the images generated by both models appear slightly fuzzy, the Hamiltonian VAE demonstrates
enhanced performance in generating realistic images. This comparison highlights the robustness of
the VAE and Hamiltonian VAE for generating new images from a small dataset [158].

Diffusion models have more recently been applied to medical imaging [120], and
some studies have demonstrated high-quality results [106]. These models are capable of
synthesizing highly realistic images and have a good mode coverage while keeping the
training stable, but suffer from a long sampling time due to the high number of steps in the
diffusion process. This limitation may be less significant in medical imaging applications,
which are not typically used in real time, but researchers are likely to continue working on
optimizing diffusion models for faster sampling. It may also be possible to trade off some
sample quality for faster sampling in diffusion models [21], as realism is a key requirement
for data augmentation in medical imaging. For example, Song et al. [40] proposes a
variant of diffusion models called Training-free Denoising Diffusion Implicit Model (DDIM)
aimed to speed up the sampling process by replacing the Markovian process with a non-
Markovian one in the DDPM. This resulted in a faster sampling procedure that did not
significantly compromise the quality of the samples. Fast Diffusion Probabilistic Model
(FastDPM) [39] introduces the concept of a continuous diffusion process with smaller time
steps in order to reduce the sampling time. These efforts to improve the efficiency of
diffusion models demonstrate the ongoing interest in finding ways to balance the sample
quality and generation speed in medical imaging applications.

There are several other factors to consider when discussing the use of generative models
for medical data augmentation. One important factor is the incorporation of domain-specific
techniques and knowledge into the design of these models [160]. By incorporating knowledge
of anatomy and physiology, for example, researchers can improve the realism and utility of the
generated data. Another important factor is the ethical considerations of using synthetic data
for medical applications, including the potential for biased or unrealistic generated data and
the need for proper validation and testing. To further improve the performance and efficiency
of medical data augmentation, researchers are also exploring the use of generative models in
combination with other techniques such as transfer learning [23,161] or active learning [162,163].
The role of interpretability and explainability in these models is also important to consider,
particularly in the context of clinical decision making and regulatory requirements. In addition
to data augmentation, generative models have the potential to be used for other medical
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applications such as generating synthetic patient records or synthesizing medical images from
non-image data [109].

5. Conclusions

In this review, we examine the use of deep generative models for medical image aug-
mentation. The limited availability of training data remains a major challenge in medical
image analysis with deep learning approaches, which can be addressed by data augmentation
techniques. However, traditional techniques still produce limited and unconvincing results.
We focus on three types of deep generative models for medical image augmentation, VAEs,
GANs, and DMs, and provide an overview of the current state of the art in each of these models.
While deep generative models offer several advantages over traditional data augmentation
techniques, including the ability to generate realistic new images that capture the underlying
distribution of the training dataset, they also have some limitations. VAEs offer the ability
to learn a meaningful and disentangled representation of the data, which can be useful for
interpretability and latent space addition. Despite these advantages, VAEs may produce fuzzy
images that lack important details, which can be especially problematic in medical imaging. To
address this limitation, improved VAE variants have been developed, such as vector quantized
VAE, which uses powerful priors to generate synthetic samples with higher coherence and
fidelity. Another approach involves combining VAEs with adversarial learning to improve
the level of detail in the generated images. Alternatively, GANs have been found to generate
high-quality images with fine details, and can be memory-efficient due to their upsampling-only
architecture. However, GANs can be difficult to train and may suffer from mode collapse.
Techniques such as WGAN and minibatch discrimination can help stabilize GAN training,
and increasing the size of the training set can also be effective. Diffusion models have also
been shown to generate high-quality images with increased sharpness and fine details, better
than previous generative models, but they require significant computational resources to
train and may be less interpretable. Researchers are currently exploring ways to reduce the
sampling time of diffusion models, such as with progressive distillation, FastDPM, and DDIM
variants. Overall, while each approach has its own strengths and weaknesses, continued
research and development will be crucial for improving the effectiveness of deep generative
models in various applications, including medical imaging. This evaluation of the strengths
and limitations of each model can suggest directions for future research in this field including
the exploration of hybrid architectures and improved variants, the incorporation of domain-
specific knowledge, and the combination with other techniques such as transfer learning or
active learning. The aim of this review is to emphasize the potential of deep generative models
in enhancing the performance of deep learning algorithms for medical image analysis. By
identifying the challenges of the current methods, we seek to increase awareness of the need
for further contributions in this field.
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117. Özbey, M.; Dar, S.U.; Bedel, H.A.; Dalmaz, O.; Özturk, Ş.; Güngör, A.; Çukur, T. Unsupervised medical image translation with
adversarial diffusion models. arXiv 2022, arXiv:2207.08208.

118. Meng, X.; Gu, Y.; Pan, Y.; Wang, N.; Xue, P.; Lu, M.; He, X.; Zhan, Y.; Shen, D. A Novel Unified Conditional Score-based Generative
Framework for Multi-modal Medical Image Completion. arXiv 2022, arXiv:2207.03430.

119. Kim, B.; Ye, J.C. Diffusion deformable model for 4D temporal medical image generation. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; pp. 539–548.

120. Kazerouni, A.; Aghdam, E.K.; Heidari, M.; Azad, R.; Fayyaz, M.; Hacihaliloglu, I.; Merhof, D. Diffusion models for medical image
analysis: A comprehensive survey. arXiv 2022, arXiv:2211.07804.

121. Abdollahi, B.; Tomita, N.; Hassanpour, S. Data Augmentation in Training Deep Learning Models for Medical Image Analysis; Springer:
Berlin/Heidelberg, Germany, 2020. pp. 167–180.

122. Huang, H.; He, R.; Sun, Z.; Tan, T.; et al. Introvae: Introspective variational autoencoders for photographic image synthesis. Adv.
Neural Inf. Process. Syst. 2018, 31.

123. Amyar, A.; Ruan, S.; Vera, P.; Decazes, P.; Modzelewski, R. RADIOGAN: Deep convolutional conditional generative adversarial
network to generate PET images. In Proceedings of the 2020 7th International Conference on Bioinformatics Research and
Applications, Berlin, Germany, 13–15 September 2020; pp. 28–33.

124. Bullitt, E.; Zeng, D.; Gerig, G.; Aylward, S.; Joshi, S.; Smith, J.K.; Lin, W.; Ewend, M.G. Vessel tortuosity and brain tumor
malignancy: A blinded study1. Acad. Radiol. 2005, 12, 1232–1240. [CrossRef]

125. Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of
the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [CrossRef] [PubMed]

126. Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.A.; Cetin, I.; Lekadir, K.; Camara, O.; Ballester, M.A.G.; et al.
Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE
Trans. Med. Imaging 2018, 37, 2514–2525. [CrossRef]

127. Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks
on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106.

128. Bai, W.; Shi, W.; de Marvao, A.; Dawes, T.J.; O’Regan, D.P.; Cook, S.A.; Rueckert, D. A bi-ventricular cardiac atlas built from
1000+ high resolution MR images of healthy subjects and an analysis of shape and motion. Med. Image Anal. 2015, 26, 133–145.
[CrossRef] [PubMed]

129. Van Ginneken, B.; Stegmann, M.B.; Loog, M. Segmentation of anatomical structures in chest radiographs using supervised
methods: A comparative study on a public database. Med. Image Anal. 2006, 10, 19–40. [CrossRef] [PubMed]

130. Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.; Yacoub, E.; Ugurbil, K.; Consortium, W.M.H.; et al. The WU-Minn
human connectome project: An overview. Neuroimage 2013, 80, 62–79. [CrossRef]

131. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al.
Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [CrossRef]

132. Groh, M.; Harris, C.; Soenksen, L.; Lau, F.; Han, R.; Kim, A.; Koochek, A.; Badri, O. Evaluating deep neural networks trained on
clinical images in dermatology with the fitzpatrick 17k dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1820–1828.

133. Yang, X.; He, X.; Zhao, J.; Zhang, Y.; Zhang, S.; Xie, P. COVID-CT-dataset: A CT scan dataset about COVID-19. arXiv 2020,
arXiv:2003.13865.

134. Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K. SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for
SARS-CoV-2 identification. MedRxiv 2020. [CrossRef]

135. Johnson, A.E.; Pollard, T.J.; Greenbaum, N.R.; Lungren, M.P.; Deng, C.y.; Peng, Y.; Lu, Z.; Mark, R.G.; Berkowitz, S.J.; Horng, S.
MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv 2019, arXiv:1901.07042.

136. Jones, S.; Tillin, T.; Park, C.; Williams, S.; Rapala, A.; Al Saikhan, L.; Eastwood, S.V.; Richards, M.; Hughes, A.D.; Chaturvedi,
N. Cohort Profile Update: Southall and Brent Revisited (SABRE) study: A UK population-based comparison of cardiovascular
disease and diabetes in people of European, South Asian and African Caribbean heritage. Int. J. Epidemiol. 2020, 49, 1441–1442e.
[CrossRef]

137. Saha, A.; Twilt, J.; Bosma, J.; van Ginneken, B.; Yakar, D.; Elschot, M.; Veltman, J.; Fütterer, J.; de Rooij, M.; Huisman, H. Artificial
Intelligence and Radiologists at Prostate Cancer Detection in MRI: The PI CAI Challenge. In Proceedings of the RSNA, Chicago,
IL, USA, 27 November–1 December 2022.

138. Kynkäänniemi, T.; Karras, T.; Laine, S.; Lehtinen, J.; Aila, T. Improved precision and recall metric for assessing generative models.
Adv. Neural Inf. Process. Syst. 2019, 32.

http://dx.doi.org/10.1016/j.acra.2005.05.027
http://dx.doi.org/10.1109/TMI.2004.825627
http://www.ncbi.nlm.nih.gov/pubmed/15084075
http://dx.doi.org/10.1109/TMI.2018.2837502
http://dx.doi.org/10.1016/j.media.2015.08.009
http://www.ncbi.nlm.nih.gov/pubmed/26387054
http://dx.doi.org/10.1016/j.media.2005.02.002
http://www.ncbi.nlm.nih.gov/pubmed/15919232
http://dx.doi.org/10.1016/j.neuroimage.2013.05.041
http://dx.doi.org/10.1016/j.cell.2018.02.010
http://dx.doi.org/10.1101/2020.04.24.20078584
http://dx.doi.org/10.1093/ije/dyaa135


J. Imaging 2023, 9, 81 28 of 28

139. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

140. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

141. Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 18–22 June 2018;
pp. 586–595.

142. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. Adv. Neural
Inf. Process. Syst. 2016, 29.

143. Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised dice overlap as a deep learning loss function for
highly unbalanced segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support,
Proceedings of the Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with
MICCAI 2017, Québec City, QC, Canada, 14 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 240–248.

144. Rockafellar, R.T.; Wets, R.J.B. Variational Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009;
Volume 317.

145. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012,
13, 723–773.

146. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
147. Bounliphone, W.; Belilovsky, E.; Blaschko, M.B.; Antonoglou, I.; Gretton, A. A test of relative similarity for model selection in

generative models. arXiv 2015, arXiv:1511.04581.
148. Vaserstein, L.N. Markov processes over denumerable products of spaces, describing large systems of automata. Probl. Peredachi

Informatsii 1969, 5, 64–72.
149. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
150. Nguyen, X.; Wainwright, M.J.; Jordan, M.I. Estimating divergence functionals and the likelihood ratio by convex risk minimization.

IEEE Trans. Inf. Theory 2010, 56, 5847–5861. [CrossRef]
151. Sheikh, H.R.; Bovik, A.C. A visual information fidelity approach to video quality assessment. First Int. Workshop Video Process.

Qual. Metrics Consum. Electron. 2005, 7, 2117–2128.
152. Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [CrossRef]
153. Tavse, S.; Varadarajan, V.; Bachute, M.; Gite, S.; Kotecha, K. A Systematic Literature Review on Applications of GAN-Synthesized

Images for Brain MRI. Future Internet 2022, 14, 351. [CrossRef]
154. Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-shot text-to-image generation. In

Proceedings of the International Conference on Machine Learning, PMLR, Online, 18–24 July 2021; pp. 8821–8831.
155. Saharia, C.; Chan, W.; Saxena, S.; Li, L.; Whang, J.; Denton, E.L.; Ghasemipour, K.; Gontijo Lopes, R.; Karagol Ayan, B.; Salimans,

T.; et al. Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural Inf. Process. Syst. 2022,
35, 36479–36494.

156. Kang, M.; Zhu, J.Y.; Zhang, R.; Park, J.; Shechtman, E.; Paris, S.; Park, T. Scaling up GANs for Text-to-Image Synthesis. arXiv
2023, arXiv:2303.05511.

157. Sauer, A.; Karras, T.; Laine, S.; Geiger, A.; Aila, T. Stylegan-t: Unlocking the power of gans for fast large-scale text-to-image
synthesis. arXiv 2023, arXiv:2301.09515.

158. Delgado, J.M.D.; Oyedele, L. Deep learning with small datasets: Using autoencoders to address limited datasets in construction
management. Appl. Soft Comput. 2021, 112, 107836. [CrossRef]

159. Caterini, A.L.; Doucet, A.; Sejdinovic, D. Hamiltonian variational auto-encoder. Adv. Neural Inf. Process. Syst. 2018, 31.
160. He, Y.; Wang, L.; Yang, F.; Clarysse, P.; Robini, M.; Zhu, Y. Effect of different configurations of diffusion gradient directions

on accuracy of diffusion tensor estimation in cardiac DTI. In Proceedings of the 16th IEEE International Conference on Signal
Processing (ICSP), Beijing, China, 21–24 October 2022; Volume 1, pp. 437–441.

161. Talo, M.; Baloglu, U.B.; Yıldırım, Ö.; Acharya, U.R. Application of deep transfer learning for automated brain abnormality
classification using MR images. Cogn. Syst. Res. 2019, 54, 176–188. [CrossRef]

162. Ren, P.; Xiao, Y.; Chang, X.; Huang, P.Y.; Li, Z.; Gupta, B.B.; Chen, X.; Wang, X. A survey of deep active learning. ACM Comput.
Surv. (CSUR) 2021, 54, 1–40. [CrossRef]

163. Rahimi, S.; Oktay, O.; Alvarez-Valle, J.; Bharadwaj, S. Addressing the exorbitant cost of labeling medical images with active
learning. In Proceedings of the International Conference on Machine Learning in Medical Imaging and Analysis, Barcelona,
Spain, 24–25 May 2021; p. 1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1109/TIT.2010.2068870
http://dx.doi.org/10.1109/97.995823
http://dx.doi.org/10.3390/fi14120351
http://dx.doi.org/10.1016/j.asoc.2021.107836
http://dx.doi.org/10.1016/j.cogsys.2018.12.007
http://dx.doi.org/10.1145/3472291

	Introduction
	Background
	Generative Adversarial Networks
	Variational Autoencoders
	Diffusion Probabilistic Models
	Exploring the Trade-Offs in Deep Generative Models: The Generative Learning Trilemma
	Generative Adversarial Networks
	Variational Autoencoders
	Diffusion Models


	Deep Generative Models for Medical Image Augmentation
	Generative Adversarial Networks
	Variational Autoencoders
	Diffusion Models

	Key Findings and Implications
	Conclusions
	References

