
Citation: Rangu, S.; Veramalla, R.;

Salkuti, S.R.; Kalagadda, B. Efficient

Approach to Color Image

Segmentation Based on Multilevel

Thresholding Using EMO Algorithm

by Considering Spatial Contextual

Information. J. Imaging 2023, 9, 74.

https://doi.org/10.3390/

jimaging9040074

Academic Editors: Vien Cheung,

Jean-Baptiste Thomas and

Peter Rhodes

Received: 3 February 2023

Revised: 15 March 2023

Accepted: 17 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Efficient Approach to Color Image Segmentation Based
on Multilevel Thresholding Using EMO Algorithm
by Considering Spatial Contextual Information
Srikanth Rangu 1, Rajagopal Veramalla 1 , Surender Reddy Salkuti 2,* and Bikshalu Kalagadda 3

1 Department of ECE, Kakatiya Institute of Technology and Science, Warangal 506015, India
2 Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Republic of Korea
3 Department of ECE, Kakatiya University, Warangal 506009, India
* Correspondence: surender@wsu.ac.kr

Abstract: The process of image segmentation is partitioning an image into its constituent parts and is
a significant approach for extracting interesting features from images. Over a couple of decades, many
efficient image segmentation approaches have been formulated for various applications. Still, it is a
challenging and complex issue, especially for color image segmentation. To moderate this difficulty,
a novel multilevel thresholding approach is proposed in this paper based on the electromagnetism
optimization (EMO) technique with an energy curve, named multilevel thresholding based on EMO
and energy curve (MTEMOE). To compute the optimized threshold values, Otsu’s variance and
Kapur’s entropy are deployed as fitness functions; both values should be maximized to locate optimal
threshold values. In both Kapur’s and Otsu’s methods, the pixels of an image are classified into
different classes based on the threshold level selected on the histogram. Optimal threshold levels
give higher efficiency of segmentation; the EMO technique is used to find optimal thresholds in
this research. The methods based on an image’s histograms do not possess the spatial contextual
information for finding the optimal threshold levels. To abolish this deficiency an energy curve is
used instead of the histogram and this curve can establish the spatial relationship of pixels with their
neighbor pixels. To study the experimental results of the proposed scheme, several color benchmark
images are considered at various threshold levels and compared with other meta-heuristic algorithms:
multi-verse optimization, whale optimization algorithm, and so on. The investigational results are
illustrated in terms of mean square error, peak signal-to-noise ratio, the mean value of fitness reach,
feature similarity, structural similarity, variation of information, and probability rand index. The
results reveal that the proposed MTEMOE approach overtops other state-of-the-art algorithms to
solve engineering problems in various fields.

Keywords: color image; multilevel thresholding; Otsu’s and Kapur’s methods; spatial contextual
information; inter-class variance; entropy

1. Introduction

Digital image segmentation is a technique of partitioning the image into regions to
extract information about features of an image with homogeneous features in terms of
intensity level, texture structure, color information, etc. The image segmentation schemes
available from the literature, multi-level thresholding [1] of grayscale on the histogram of
an image is a highly established method and is used in various applications from satellite
image segmentation [2–4] to medical images. The important multilevel thresholding-based
segmentation techniques are Kapur’s and Otsu’s methods [5,6]. Segmentation can often be
used as a preprocessing step in object recognition, computer vision, image analysis, and
so on in different applications such as medical [7], agricultural, industrial, fault detection,
weather forecasting, etc. In general, the majority of segmentation techniques are based on
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discontinuity and similarity; among abundant methods available thresholding is the most
important technique for both grayscale and color images.

Image segmentation is a significant step in image processing. Major advances in image
segmentation are in the area of biomedical imaging to investigate the function, structure,
and pathology of the human body, and in other industrial applications from robotics to
satellite image segmentation.

In the multilevel thresholding method of segmentation, the pixels are grouped into
different classes or groups (two or more) based on the gray-levels and multiple threshold
values. The quality level of segmentation is affected by the technique used to compute
threshold values. The use of a classical or traditional method of selecting the thresholds is
computationally expensive as the technique needs to search in a huge range of sample space
to identify the optimized levels using the objective function; at this stage, optimization
techniques can be applicable and then there is a scope of research computing the optimized
threshold levels.

The various significant multilevel thresholding approaches are based on image his-
tograms. The techniques based on histograms have two major disadvantages, which are
(i) spatial contextual information (relationships among the pixels in an image) not consid-
ered for finding the histogram, which leads to less efficiency in computing the optimized
threshold levels on the histogram, and (ii) methods based on the histogram are incompetent
for applications of segmentation with thresholding levels greater than two (MT).

Techniques with histogram plots are incapable of owning spatial contextual infor-
mation to compute optimized thresholds. To conquer the drawbacks of the histogram of
an image, a novel methodology is proposed: multilevel thresholding based on EMO and
energy curve (MTEMOE). A curve that has similar characteristics to the histogram and
the spatial contextual information of image pixels is named an “energy curve” and can be
used in place of the histogram; an electro-magnetism optimization algorithm is used to
select and optimize gray levels; an Energy Curve characteristics are similar to a histogram.
For each value in an image, energy is computed in the grayscale range of that image. The
threshold levels can be computed based on valleys and peak points on the energy curve.

In general, to find out the optimized threshold values, there are two types of compu-
tational techniques, called parametric and nonparametric [8]. In the case of parametric
techniques, statistical parameters are used, depending on initial conditions, and hence
are inflexible to be applied. In the case of nonparametric techniques, thresholds are com-
puted based on some criteria such as Otsu’s inter-class variance and Kapurs’s entropy
functions [9–11]. The thresholding method holds properties such as simplicity [12,13],
accuracy, and robustness, which can be classified into two major categories: bi-level and
multilevel [11]; the pixels of an image are classified into different classes based on the
threshold level selected on the histogram. All the pixels are grouped into two classes based
on threshold level in the case of bi-level thresholding. In the second category of multilevel
thresholding, pixels are categorized into more than two classes. Nevertheless, the primary
constraints in multilevel thresholding are accuracy, stability, time for execution, and so on.

In the case of color images [14], each pixel consists of three components (red, green,
and blue) [15]; due to this heavy load, the segmentation of color images might be more
exigent and intricate. Accordingly, it is essential to find the optimal thresholds by using
optimization algorithms by maximizing the inter-class variance in Otsu’s method and the
histogram entropy in the case of Kapur’s method on a histogram of an image. As per
the no-free-lunch (NFL) principle [16], no algorithm can solve all types of optimization
problems [17]; one optimization algorithm may be very useful in one type of application
and not succeed in solving other kinds of applications; thus, it is indispensable to devise
and transform new algorithms.

Techniques with histogram plots are incapable of owning spatial contextual informa-
tion to compute optimized thresholds. To conquer the drawbacks of the histogram of an
image, a novel methodology is presented in this chapter; a curve that has similar character-
istics to that of the histogram and considers spatial contextual information of image pixels
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named an “energy curve” [6] can be used in place of the histogram; the harmony search
algorithm [5] is used to select optimized gray levels; energy curve characteristics are similar
to a histogram. For each value in an image, energy is computed in the grayscale range
of that image. The threshold levels can be computed based on valleys and peak points
on the Energy Curve. In the literature, numerous optimization techniques along with the
efficiencies and applications in particular fields are available, to mention a few, PSO [18],
ACO [19], BFO [20], ABC [21], GWO [22], MFO [23], SSA [24], FA [25], WOA [26], SCA [27],
KHO [28], BA [29], FPA [30], and MVO [31]. Moreover, several modified algorithms have
been used in the multilevel thresholding field. For example, Chen et al. [32] proposed an
improvised algorithm (IFA) to segment compared with PSO [33] and other methods [15,34].

From the above discussion, the techniques mentioned above mainly spotlight gray-
scale images and extend to color images to some scale. Additionally, color satellite images
have the features of complex backgrounds and poor resolution [35]; in this situation, it is
very difficult to segment such color images. In this article, a new approach is projected
for color image segmentation [36,37] and it aims at satellite images from experimental
results. The proposed method is based on Kapur’s and Otsu’s methods with EMO on the
energy curve to find optimal threshold levels. In a clearer way, the proposed model uses
the energy curve instead of the histogram of an image. Multilevel thresholding [38,39] with
EMO on energy curve, named MTEMOE, for color image segmentation, improves spotless
performance in many aspects. The proposed segmentation approach is experienced on
color images including satellite images and natural images and compared with competitive
algorithms: MFO, WOA, FPA, MVO, SCA, ACO, ABC, and PSO. The segmented images
are evaluated concerning seven metrics, which validate the dominance of MTEMOE.

2. Multilevel Thresholding
2.1. Otsu Method

This technique [5,9] is used for multi-level thresholding (MT), in which gray levels
will be partitioned into different regions or classes; in this process thresholding (th) levels
are selected; the set of rules to be followed for bi-level thresholding are

C1← p if 0 ≤ p < th, C2← p if th ≤ p < L− 1 (1)

where C1 and C2 are two classes, p indicates the pixel value for the gray levels {1, 2, 3, . . . , L− 1}
in an image and L− 1 indicates the maximum gray level. If the gray level is below the
threshold th then that pixel is grouped into class C1, else it is grouped into class C2. The
set of rules for multi-level thresholding (MT) are

C1← p if 0 ≤ p < th1
C2← p if th1 ≤ p < th2
Ci← p if thi ≤ p < thi + 1
Cn← p if thn ≤ p < thn + 1

(2)

From Equation (2), C1, C2, . . . , Cn indicates different classes, and threshold levels to
find objects represented by {th1, th2, ..., thi, thi + 1, thn}; these thresholds can be computed
based on either a histogram or an energy curve. By use of these threshold levels, all the
pixels will be classified into different classes or exclusive regions. The significant methods
of segmentation of images based on threshold levels are Otsu’s and Kapur’s methods and,
in both cases, threshold levels can be computed by maximizing the cost function (inter-class
variance). In this work, optimized threshold levels are used by Otsu’s method th values [23].
In this method, inter-class variance is considered the objective function, also called a cost
function. For experimentation, grayscale images are considered. The below expression
gives the probability distribution for each gray level

Phi
c =

hi
c

NP
,

NP

∑
i=1

Phi
c = 1 (3)
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From Equation (3), the pixel value is denoted by i, with the range of grayscale is
(0 ≤ i ≤ L− 1), where c = 1, 2, 3 for RGB and c = 1 for a grayscale image, and total image
pixels are represented by NP; the histogram of considered images is represented by hi

c. In
bi-level thresholding, the total pixels in the image are grouped into two classes

C1 =
Phc

1
wc

0(th)
, ...

Phc
th

wc
0(th)

, C2 =
Phc

th+1
wc

1(th)
, ...

Phc
L

wc
1(th)

(4)

whereas w0(th) and w1(th) are the probabilities distributions for C1 and C2, as is shown
below as

wc
0(th) =

th

∑
j=1

Phc
i , wc

1(th) =
th

∑
j=th+1

Phc
i (5)

The means of two classes µc
0 and µc

1 are computed by Equation (6), and the variance
between classes σ2c

being given by Equation (7).

µc
0 =

th

∑
i=1

iPhc
i

wc
0(th)

,µc
1 =

L

∑
i=th+1

iPhc
i

wc
1(th)

(6)

σ2c
= σc

1 + σc
2 (7)

Notice that, for both Equations (6) and (7), c is determined by the type of image,
where σc

1 and σc
2 in Equation (5) are the variances of classes C1 and C2 which are given in

Equation (8).
σc

1 = wc
0(µ

c
0 + µc

T)
2,σc

2 = wc
1(µ

c
1 + µc

T)
2 (8)

where µc
T = wc

0µ
c
0 + wc

1µ
c
1 and wc

0 + wc
1 = 1. Based on the values σc

1 and σc
2, Equation (9)

presents the objective function:

J(th) = max
(
σ2c

(th)
)

, 0 ≤ th ≤ L− 1 (9)

From Equation (9), σ2c
(th) is the total variance between two various regions after

segmentation by Otsu’s scheme [40,41] for given th; the optimization techniques required to
find the threshold level (th) by maximizing the fitness function are as shown in Equation (8).
Similarly for multi-level thresholding (MT), the objective (or fitness) function J(th), shown
in Equation (11) to segment an image into k classes, requires k variances.

J(TH) = max
(
σ2c

(thi)
)

, 0 ≤ thi ≤ L− 1, where i = 1, 2 . . . , k (10)

where TH is a vector, TH = [th1, th2, th3 . . . . . . thk−1] for multi-level thresholding, and the
variances between classes can be computed from Equation (12).

σ2c
=

k

∑
i=1

σc
i =

k

∑
i=1

wc
i (µ

c
i − µc

T)
2 (11)

where ith represents i class, wc
i indicates probability of ith classes and µc

j is the mean of the
ith class. For MT segmentation, these parameters are anticipated as below:

wc
0(th) =

th1

∑
i=1

Phc
i , wc

1(th) =
th1

∑
i=th1+1

Phc
i · · ·wc

k−1(th) =
th1

∑
i=thk+1

Phc
i (12)

Furthermore, the averages of each class can be computed as

µc
0 =

th1

∑
i=1

iPhc
i

wc
0(th1)

,µc
1 =

th2

∑
i=th1+1

iPhc
i

wc
0(th2)

· · ·µc
k−1 =

L

∑
i=thk+1

iPhc
i

wc
1(thk)

(13)
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2.2. Multilevel Thresholding with Kapur’s Method

One more important nonparametric technique that is used to compute the optimal
threshold values is Kapur’s method, entropy as an objective function. This method focuses
on finding the optimal thresholds by maximizing the overall entropy. The entropy measures
the compactness and separability between classes. For the multilevel, the objective function
of Kapur’s method is defined as,

J(TH) = max

(
k

∑
i=1

HC
i

)
, 0 ≤ thi ≤ L− 1, where i = 1, 2 . . . k (14)

where TH is a vector, TH = [th1, th2, th3 . . . . . . thk−1]. Each entropy is calculated separately
with its th value, given for k entropies

Hc
1 =

th1

∑
i=1

Phc
i

wc
0

ln
(

Phc
i

wc
0

)
Hc

2 =
th1

∑
i=1

Phc
i

wc
1

ln
(

Phc
i

wc
1

)
· · ·Hc

k =
th1

∑
i=thk+1

Phc
i

wc
k−1

ln

(
Phc

i
wc

k−1

)
(15)

Phc
i is the probability distribution of the particular intensity levels and it is obtained

using (5). The values of the probability occurrence (wc
0, wc

1, wc
2, . . . ,wc

k−1) of the k classes are
obtained using (12). In the end, by using Equation (2) classify the pixels into various classes.

2.3. Electro-Magnetism Optimization (EMO) Algorithm

The EMO [12] can be used to discover the solutions to global problems which are nonlinear
in nature, and it can be used for minimization and maximization problems. For maximizing
(x), x = {x1, x1, . . . x1} ∈ R where x ∈ R, whereas X = {x ∈ R|l1 ≤ xi ≤ ui, i = 1, 2, . . . n} is
a solution set limited between (l1) and (ui) lower and upper limits, respectively. The EMO
uses N, n-dimensional points xi,t as a population, the X indicates a solution set from the
above expression, and t represents several generations or iterations by using the algorithm.
Similar to other evolutionary optimization techniques, in EMO the initial population can
also be taken as St = {x1,t, x2,t . . . , xN,t} (being t = 1), selected from uniformly distributed
random samples of the search region, X, whereas St is the resultant solution set at the tth

iteration. At the first iteration St should be initialized by arbitrary values randomly, then
the EMO algorithm executes until the stopping criterion is satisfied.

In every iteration of EMO, two essential operations will take place; the first operation is
the solution set St moved to another different location or solution by means of the attraction
and repulsion mechanism of the electromagnetism theory [11]; in the next operation
positions moved as per the electromagnetism technique are auxiliary moved locally by
local search and reach a member of St+1 in the (t + 1)th iteration. These two operations
bring the solutions to the set close to global optimization solutions.

In EMO, similarly to electromagnetism theory, each solution xi,t ∈ St is treated as a
charged particle, whereas the magnitude of the particle’s charge is treated as an object
function, the solutions with better or optimal (higher/lower) object functions are associated
with higher charges than the other set of solutions and also have a greater repulsion–
attraction mechanism. In the evolution process of EMO, the points or solutions with higher
charges can attract other points in the search space St and points with a lower charge repel
other points.

The total force Ft
i exerted at each point, (xi,t), can be calculated by a combination of

attraction-repulsion forces and each xi,t ∈ St is moved towards its total force to the location
yi,t. After this step, a local search algorithm is used to find the vicinity of every yi,t by yi,t to
zi,t. The solution set xi,t+1 ∈ St+1 at (t + 1)th iteration is subsequently computed as:

xi,t+1 = yi,t if f
(

yi,t

)
≤ f(zi,t)

xi,t+1 = zi,t, otherwise
(16)

A detailed description of each step in EMO is given in Algorithm 1 below.



J. Imaging 2023, 9, 74 6 of 42

Algorithm 1: A summary of the EMO algorithm is given below

i.
InputParameters: Maximum number of iterations max Itermax, local search
parameters such as local Iterlocal, and δ, and the size of the population N

ii.
Initialize: set the iteration counter 1 = t, initialize the number of St uniformly in X,
and identify the best point in St

iii. Itermax do
iv. Ft

i ← CalcF(St)
v. yi,t ← Move

(
xi,t, Ft

i
)

vi. zi,t ← Local
(

Iterlocal,δ, yi,t

)
vii. xi,t+1 ← Select

(
St+1, yi,t, zi,t)

viii. end while

Step 1: The algorithm runs for Itermax iterations or generations; n× Iterlocal is the
maximum number of locations zi,t.

Step 2: The points xi,t, t = 1 are selected uniformly in X, i.e., xi,t in Unif(X), i = 1,2, . . . ,
N where Unif represents the uniform distribution. The cost function f(xi,t) is computed at
each iteration and the best point is identified as follows:

xB
t = argmax{f(xi,t)} where xi,t ∈ St (17)

From Equation (17), xB
t is the element of St that gives the maximum numerical value

in terms of the fitness function or objective function f.
Step 3: while t < Itermax do
Step 4: At this step, a value

(
qi,t

)
is assigned to each point xi,t, the charge qi,t of xi,t

depends on the function f(xi,t) and the points which have the best cost function have more
charge than other points. At every point, the charges can be computed by Equation (18) as
given below:

qit = exp

−n
f(xi,t)− f

(
xB

t
)

N
∑

j=1
f(xi,t)− f

(
xB

t
)
 (18)

Then, at this point, the force Ft
i,j, connecting two points xi,t and xj,t, can be found by

using Equation (19).

Ft
i,j = (xj,t − xi,t)

qj,t.qi,t

||xj,t − xi,t||2
if, f(xi,t > xj,t) (19)

In the end, the total force Ft
i computed at each xi,t is

Ft
i =

N

∑
j=1,j 6=i

Ft
i,j (20)

Step 5: each point xi,t except for xB
t is moved along the total force Ft

i using:

xi,t = xi,t + λ
Ft

i

||Ft
i ||

(RNG), i = 1, 2, . . . , N, i 6= B (21)

where λ in Unif(0, 1) for each coordinate of xi,t, and RNG is the range of movement toward
the upper or lower limits.

Step 6: For each, yi,t a maximum of local Iterlocal, points are generated in each coordi-
nate direction in the δ neighborhood of yi,t. This means that the process of generating local
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points is continued for each yi,t until either a better zi,t is found or the n× Iterlocal the trail
is reached.

Step 7: xi,t+1εSt+1 are chosen from yi,t and zi,t by using Equation (20), and the best
solution is recognized by using Equation (21).

The significant steps of the EMO algorithm are given in [8] and the EMO algorithm
needs a smaller number of iterations to generate solutions for complex nonlinear optimiza-
tion problems.

Table 1 depicted the comparative parameters and expressions used for evaluating the
proposed method. The main reason for selecting the EMO is, that it gives much better
results, as shown in Tables 2–17. The EMO has been used for solving various optimization
problems, including image-processing tasks such as multilevel thresholding. EMO is known
for its efficiency in solving complex optimization problems. In the context of multilevel
thresholding, EMO can efficiently search for the optimal set of thresholds that maximize
the image segmentation quality. EMO is a population-based algorithm that can search
the entire solution space and avoid getting stuck in local optima. This is important for
multilevel thresholding because the optimal set of thresholds may be located in a complex
and highly nonlinear search space. EMO can be easily adapted to handle different types
of objective functions and constraints. EMO is robust to noise; in the context of multilevel
thresholding, it can handle images with different levels of noise and variability. EMO
requires a few parameters to be tuned, which makes it easy to use.

Table 1. Different metrics to test the efficiency of the algorithms.

S.No Comparative
Parameters Formula Remarks

1 The mean value of fitness
(MEAN)

It can be calculated as the
average value of fitness values
of objective values at each
iteration of the algorithm.

Inter-class variance and entropy are the objective
functions for Otsu’s and Kapur’s methods.

3 Peak signal-to-noise ratio
(PSNR) 20log10

(
MAX
RMSE

)2 The MAX is the maximum gray value taken as
255.

4 Mean square error (MSE)
MSE = (RMSE)2

RMSE =√
∑

R0
i=1 ∑

C0
j=1(I(i,j)−Is(i,j))2

R0×C0

I(i, j) is the input image and the segmented
image is Is(i, j). C0 × R0 is the size of the image.

5 Structural similarity (SSIM) =
(2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)

µx and µy are the mean intensities of input and
segmented images. σxy is the covariance, σ2

x and
σ2

y are the variance of images.

6 Feature similarity index
(FSIM) = ∑xεΩ SL(x)PCm(x)

∑xεΩ PCm(x)

SL(x) is the similarity between images. PCm(x)
is the maximum phase congruency of two
images.

7 Probability Rand Index (PRI)

The internal validation
measurePRIis an indication of
resemblance between two
regions in an image or
clusters; it is expressed as
given below
PRI = a+b

a+b+c+d

Whereas dataset X is portioned into two subsets
C1 and C2, the number of pairs of pixels (or
elements) that are present in both subsets C1 and
C2 is indicated by a.
b indicates the number of pairs of elements in X
that are a different subset in C1 and a different
subset in C2.
c indicates the number of pairs of elements in X
that are the same subset in C1 and a different
subset in C2.
d denotes the number of pairs of elements in X
that are a different subset in C1 and the same
subset in C2.
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Table 1. Cont.

S.No Comparative
Parameters Formula Remarks

8 Variation of information (VOI)

VOI = Ent(Is) + Ent
(

IR
)
−

2MI
(

Is, IR
)

MI
(

Is, IR
)
= Ent(Is) +

Ent
(

IR
)
− Ent

(
Is, IR

)
Is is the segmented image, IR is the reference

image, Ent is entropy, Ent
(

Is, IR
)

is joint entropy.

Table 2. Comparison of PSNR computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.

Image N PSNR

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 14.2867 14.2850 14.1218 16.6767 13.9373 16.6382 15.3040 14.1319 14.2850 17.411

6 0.7623 17.4474 20.0144 18.0251 22.0077 19.5418 19.9410 21.2326 17.4474 23.3624

8 24.5806 23.6349 22.7130 19.2523 24.1795 23.4068 19.5648 23.2057 22.6762 26.4105

10 26.9502 26.7858 26.4701 24.2091 25.8698 22.9264 21.8110 24.9282 26.8866 29.3038

Image 2

4 13.5789 13.3799 13.2111 14.0750 13.1322 16.9569 12.6058 13.2116 13.3799 16.9332

6 21.2486 19.1958 19.1717 16.7705 18.0188 20.6228 20.3663 18.9082 19.2011 23.2135

8 25.1726 24.9161 24.9029 19.3409 21.8487 18.1980 23.7460 24.3227 24.1126 27.0255

10 27.6556 26.0105 25.7441 23.4190 21.3457 25.1496 25.1499 23.7446 27.4677 29.7932

Image 3

4 14.9730 14.7516 14.7516 14.6601 14.6416 14.3734 14.3436 14.7839 14.8017 19.6832

6 19.6315 15.3583 15.3563 20.8057 18.0842 19.5661 15.4180 15.1249 15.4616 23.8255

8 21.8110 20.2832 20.2763 16.1667 21.7836 21.4141 20.3278 20.8963 19.9967 26.1728

10 24.0922 20.8407 20.7880 16.9484 21.0673 22.9669 15.8518 23.5685 22.0379 28.1644

Image 4

4 22.6650 22.6187 22.6187 20.3850 22.5610 21.9843 22.1260 22.2906 22.5522 21.0083

6 23.3561 24.8435 22.8323 22.1698 21.1181 23.1694 20.0681 22.5925 23.0749 26.5867

8 25.8717 25.9515 25.6615 24.8007 25.1022 20.6755 20.9384 24.5891 23.1128 28.2479

10 28.3709 27.2012 28.3390 24.2414 22.9892 26.3917 25.8571 23.5946 27.5801 29.3581

Image 5

4 22.6650 22.6187 22.6187 20.3850 22.5610 21.9843 22.1260 22.2906 22.5522 19.2267

6 23.3561 24.8435 22.8323 22.1698 21.1181 23.1694 20.0681 22.5925 23.0749 23.5926

8 25.8717 25.9515 25.6615 24.8007 25.1022 20.6755 20.9384 24.5891 23.1128 25.8969

10 28.3709 27.2012 28.3390 24.2414 22.9892 26.3917 25.8571 23.5946 27.5801 28.7066

Image 6

4 21.5290 21.5290 21.5290 20.8569 21.0864 20.1992 19.9682 22.2765 21.5068 19.3631

6 24.3622 24.3605 24.3905 23.6272 22.4015 21.0277 21.5290 24.3142 23.0741 24.6747

8 27.8633 26.4006 26.2061 26.7374 24.9330 24.2707 24.8640 24.5837 26.2940 26.9835

10 29.1790 27.7527 29.1194 22.7830 24.2800 27.0600 25.0170 27.2259 29.0730 28.3946

Image 7

4 25.5470 25.4570 25.4570 24.1766 19.1235 24.5240 19.4536 19.0881 25.4570 25.195

6 29.7362 27.6434 28.9754 26.1089 25.7468 19.7999 28.1928 27.1875 28.9557 28.6755

8 33.6300 30.7366 30.6802 29.5335 28.6656 22.0921 30.9938 27.1974 33.3217 33.1943

10 36.4519 29.9769 33.7857 30.3995 24.9723 27.8741 31.9742 29.1914 34.1678 36.1217
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Table 2. Cont.

Image N PSNR

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 8

4 22.6392 22.5244 22.5244 18.4377 19.0066 20.8646 20.8291 22.5279 22.5244 20.4749

6 26.1655 25.8536 25.8350 22.4239 19.0136 20.1567 24.5617 21.3842 25.8134 26.2102

8 28.6575 27.7273 27.5732 24.9561 26.0938 25.7541 25.7131 24.5071 28.6420 28.6113

10 30.5915 28.401 30.2800 23.3037 22.4820 21.9794 26.6112 26.8636 30.2009 31.1743

Image 9

4 19.8193 19.7421 19.7421 17.0760 19.4905 17.2988 19.2776 19.4984 19.8087 21.3238

6 22.6291 22.5596 22.6157 21.7415 20.7706 18.7977 22.0371 21.3628 22.6060 24.1806

8 25.1702 24.9523 25.0680 21.7143 21.5330 21.4059 23.9504 23.9585 25.0186 27.439

10 27.0309 26.7189 26.6886 22.8024 23.8913 23.0109 22.6262 24.3817 26.6501 30.0399

Average 24.6188 23.6325 23.8026 21.6728 21.7482 21.7316 21.9444 22.4984 23.7086 25.7213

Table 3. Comparison of MSE computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.

Image N MSE-Kapur

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 2423.32 2424.22 2517.14 1397.72 2626.34 1410.17 1917.33 2511.23 2424.28 1183.26

6 545.564 1170.47 648.102 1024.60 409.55 722.602 659.140 489.575 1170.47 299.806

8 197.301 281.571 348.158 772.419 226.473 296.753 718.782 310.824 351.125 148.604

10 131.237 136.302 146.579 246.702 168.305 331.467 428.533 209.054 133.175 76.3309

Image 2

4 2956.02 2986.04 3104.45 2544.33 3161.27 1310.45 3568.64 3104.05 2986.03 1317.53

6 355.465 782.530 786.885 1367.80 1026.15 487.773 597.653 836.101 781.568 310.2633

8 197.617 209.639 210.277 756.819 424.825 984.645 274.458 240.330 252.243 128.9824

10 111.562 162.940 173.249 295.925 476.991 198.665 198.650 274.547 116.495 68.19623

Image 3

4 2152.35 2177.33 2177.33 2223.71 2233.28 2375.45 1899.97 2151.26 2152.30 699.4559

6 707.825 1893.42 1894.34 540.146 1010.88 718.566 1867.60 1998.01 1848.93 269.4824

8 428.524 609.199 610.169 1571.85 431.236 469.541 602.970 528.995 650.742 156.9641

10 253.433 535.808 542.347 1312.95 508.565 328.393 1690.17 285.908 406.716 99.2294

Image 4

4 352.032 355.804 355.804 595.089 336.500 411.762 316.575 383.729 361.295 515.5257

6 300.242 213.170 338.727 394.552 502.651 313.429 640.131 357.955 320.322 142.6955

8 168.231 165.168 176.575 215.281 159.537 556.585 523.894 226.032 317.543 97.33978

10 94.6216 123.869 95.3183 244.874 326.710 149.250 168.800 284.196 113.518 75.38247

Image 5

4 1525.07 1529.68 1529.63 2356.50 1356.78 1662.81 1220.39 1689.70 1558.81 776.9809

6 623.770 650.887 636.915 634.497 469.579 1258.92 702.469 441.362 666.638 284.3285

8 325.161 343.619 335.542 425.048 553.578 861.665 568.193 357.963 326.081 167.2593

10 195.209 237.657 205.215 407.361 330.530 264.978 529.601 203.436 236.277 87.58311

Image 6

4 457.273 457.273 457.273 533.814 506.337 621.104 655.032 384.975 459.617 752.9573

6 236.608 238.250 320.382 282.072 374.051 513.229 457.273 240.802 238.152 221.6207

8 106.353 148.943 155.764 137.829 208.824 243.228 212.170 226.312 152.644 130.2358

10 78.5562 109.097 79.6421 342.597 242.706 127.961 204.821 123.164 80.4963 94.10666

Image 7

4 185.090 185.090 185.090 248.551 795.662 229.447 737.426 802.177 185.090 392.2657

6 69.0973 111.875 82.3258 159.289 173.142 680.915 98.5827 124.258 82.7000 176.0072

8 28.1892 54.8811 55.5983 72.3988 88.4136 401.668 51.7245 123.975 30.2638 78.27992

10 14.7190 65.3712 27.1964 59.3091 206.943 106.089 41.2723 78.3322 62.5614 63.22813



J. Imaging 2023, 9, 74 10 of 42

Table 3. Cont.

Image N MSE-Kapur

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 8

4 354.124 363.613 363.613 931.783 817.366 532.874 537.243 363.320 363.613 582.895

6 157.227 168.935 169.662 372.125 816.056 627.207 227.463 472.784 170.506 155.6182

8 25.7542 88.5788 113.698 207.717 159.844 109.735 174.491 230.341 88.8945 89.52624

10 62.0859 93.9654 60.9653 303.882 367.180 412.227 141.894 133.882 56.7455 49.61927

Image 9

4 677.871 690.033 690.033 1274.95 731.182 1211.21 767.929 729.868 679.526 479.4026

6 354.950 360.679 356.051 435.445 544.529 857.653 406.786 475.113 356.846 248.325

8 197.722 207.897 202.433 438.178 456.855 470.421 261.845 261.355 204.750 117.2682

10 128.822 138.417 139.384 341.065 265.432 325.078 355.185 237.088 140.626 64.43033

Average 477.194 568.672 563.662 707.477 652.618 627.331 678.474 608.111 70.219 294.4718

Table 4. Comparison of SSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.

Image N SSIM-Kapur

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 0.9275 0.9190 0.9209 0.9206 0.9016 0.8788 0.9193 0.9146 0.9213 0.9568

6 0.9768 0.9600 0.9652 0.9624 0.9758 0.9419 0.9723 0.9681 0.9653 0.9713

8 0.9882 0.9858 0.9830 0.9389 0.9860 0.9877 0.9837 0.9861 0.9852 0.9636

10 0.9958 0.9947 0.9952 0.9879 0.9885 0.9927 0.9914 0.9949 0.9908 0.9932

Image 2

4 0.9386 0.9353 0.9339 0.9475 0.9295 0.9353 0.9305 0.9357 0.9357 0.9619

6 0.9785 0.9735 0.9731 0.9634 0.9636 0.9662 0.9762 0.9738 0.9741 0.9815

8 0.9935 0.9874 0.9861 0.9794 0.9878 0.9790 0.9896 0.9924 0.9920 0.9967

10 0.9953 0.9951 0.9944 0.9850 0.9894 0.9907 0.9876 0.9934 0.9952 0.9971

Image 3

4 0.9417 0.9393 0.9395 0.9382 0.9404 0.9332 0.9397 0.9390 0.9397 0.961

6 0.9611 0.9460 0.9464 0.9733 0.9549 0.9649 0.9559 0.9432 0.9490 0.9724

8 0.9785 0.9673 0.9662 0.9572 0.9713 0.9615 0.9726 0.9766 0.9675 0.9881

10 0.9890 0.9772 0.9725 0.9694 0.9853 0.9809 0.9722 0.9882 0.9770 0.9888

Image 4

4 0.9886 0.9881 0.9881 0.9873 0.9876 0.9878 0.9879 0.9885 0.9879 0.9988

6 0.9942 0.9932 0.9934 0.9897 0.9905 0.9922 0.9873 0.9904 0.9939 0.9971

8 0.9959 0.9951 0.9959 0.9938 0.9919 0.9877 0.9883 0.9934 0.9955 0.9921

10 0.9973 0.9971 0.9972 0.9924 0.9910 0.9894 0.9951 0.9943 0.9970 0.999

Image 5

4 0.9699 0.9695 0.9695 0.9632 0.9638 0.9606 0.9695 0.9658 0.9691 0.9964

6 0.9869 0.9858 0.9865 0.9817 0.9836 0.9789 0.9855 0.9894 0.9863 0.9921

8 0.9916 0.9915 0.9914 0.9910 0.9872 0.9859 0.9833 0.9918 0.9911 0.9986

10 0.9952 0.9949 0.9945 0.9936 0.9932 0.9920 0.9917 0.9953 0.9943 0.9934

Image 6

4 0.9887 0.9887 0.9887 0.9870 0.9837 0.9826 0.9766 0.9874 0.9888 0.9885

6 0.9935 0.9927 0.9935 0.9899 0.9906 0.9885 0.9903 0.9930 0.9931 0.98871

8 0.9965 0.9960 0.9957 0.9950 0.9918 0.9928 0.9934 0.9945 0.9959 0.9984

10 0.9978 0.9973 0.9975 0.9935 0.9921 0.9932 0.9929 0.9968 0.9975 0.9986

Image 7

4 0.9915 0.9811 0.9811 0.9810 0.9768 0.9768 0.9730 0.9759 0.9809 0.9939

6 0.9950 0.9946 0.9946 0.9838 0.9883 0.9903 0.9913 0.9931 0.9948 0.9252

8 0.9971 0.9954 0.9959 0.9932 0.9952 0.9956 0.9888 0.9947 0.9958 0.9994

10 0.9980 0.9977 0.9964 0.9972 0.9956 0.9948 0.9927 0.9973 0.9976 0.9908
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Table 4. Cont.

Image N SSIM-Kapur

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 8

4 0.9855 0.9853 0.9853 0.9771 0.9797 0.9796 0.9799 0.9851 0.9853 0.9918

6 0.9932 0.9930 0.9929 0.9900 0.9840 0.9820 0.9850 0.9899 0.9931 0.9899

8 0.9961 0.9956 0.9954 0.9912 0.9939 0.9905 0.9936 0.9918 0.9954 0.9829

10 0.9974 0.9969 0.9971 0.9934 0.9920 0.9909 0.9949 0.9946 0.9971 0.9995

Image 9

4 0.9799 0.9795 0.9795 0.9735 0.9774 0.9708 0.9744 0.9742 0.9796 0.993

6 0.9902 0.9898 0.9895 0.9767 0.9805 0.9816 0.9857 0.9881 0.9892 0.9892

8 0.9935 0.9934 0.9933 0.9843 0.9903 0.9895 0.9922 0.9933 0.9932 0.9976

10 0.9963 0.9962 0.9961 0.9918 0.9855 0.9926 0.9920 0.9938 0.9962 0.9948

Average 0.98539 0.982472 0.98237 0.97811 0.97945 0.97720 0.97989 0.98217 0.98281 0.9867

Table 5. Comparison of FSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.

Image N FSIM

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 0.6875 0.6716 0.6749 0.6783 0.6558 0.6183 0.6754 0.6725 0.6754 0.74

6 0.7756 0.7626 0.7607 0.7405 0.7728 0.7182 0.7392 0.7532 0.7679 0.8089

8 0.8377 0.8365 0.8217 0.7294 0.8117 0.7807 0.7907 0.8218 0.8319 0.8787

10 0.8988 0.8890 0.8903 0.8268 0.8315 0.8444 0.8313 0.8727 0.8733 0.9108

Image

4 0.7613 0.7611 0.7597 0.7578 0.7452 0.7329 0.7496 0.7590 0.7563 0.7461

6 0.8234 0.8114 0.8109 0.7829 0.7881 0.8038 0.8111 0.8077 0.8150 0.8696

8 0.8982 0.8769 0.8704 0.8184 0.8409 0.8127 0.8499 0.8835 0.8910 0.8978

10 0.9233 0.9206 0.9153 0.8541 0.8561 0.8782 0.8540 0.9007 0.9216 0.9421

Image

4 0.7674 0.7664 0.7662 0.7441 0.7665 0.7537 0.7469 0.7681 0.7670 0.8265

6 0.8118 0.8001 0.7997 0.7927 0.7977 0.7878 0.7765 0.7995 0.8005 0.8310

8 0.8344 0.8326 0.8324 0.7906 0.8188 0.8149 0.8230 0.8355 0.8330 0.9001

10 0.8663 0.8561 0.8517 0.7883 0.8428 0.8417 0.8339 0.8691 0.8629 0.9168

Image 4

4 0.8245 0.8241 0.8242 0.8196 0.8161 0.8114 0.8149 0.8183 0.8205 0.7890

6 0.8852 0.8756 0.8746 0.8334 0.8330 0.8650 0.8300 0.8391 0.8726 0.8751

8 0.9122 0.9094 0.8972 0.8718 0.8583 0.8294 0.8176 0.8775 0.9003 0.9129

10 0.9349 0.9246 0.9341 0.8766 0.8367 0.8171 0.8906 0.8766 0.9283 0.9446

Image 5

4 0.7856 0.7854 0.7854 0.7641 0.7842 0.7222 0.7585 0.7809 0.7842 0.7800

6 0.8603 0.8576 0.8551 0.8370 0.8397 0.8069 0.8318 0.8678 0.8596 0.9032

8 0.9010 0.8983 0.9007 0.8793 0.8568 0.8419 0.8550 0.9038 0.8993 0.9350

10 0.9308 0.9287 0.9305 0.8953 0.9008 0.8995 0.8811 0.9311 0.9306 0.9834

Image 6

4 0.7456 0.7454 0.7454 0.7311 0.7209 0.7069 0.7327 0.7359 0.7453 0.7363

6 0.8079 0.7953 0.8077 0.7717 0.7710 0.7751 0.7684 0.8032 0.7963 0.8682

8 0.8682 0.8544 0.8662 0.8326 0.7871 0.8044 0.8282 0.8236 0.8659 0.8621

10 0.8965 0.8862 0.8946 0.8066 0.7853 0.8316 0.8154 0.8731 0.8828 0.8851

Image 7

4 0.9068 0.8824 0.8792 0.8687 0.8546 0.8298 0.8384 0.8384 0.8774 0.9252

6 0.9418 0.9377 0.9376 0.8928 0.8940 0.8857 0.8980 0.8921 0.9400 0.9198

8 0.9623 0.9500 0.9537 0.9161 0.9393 0.9279 0.8830 0.9298 0.9569 0.9647

10 0.9732 0.9707 0.9633 0.9553 0.9182 0.9146 0.9186 0.9442 0.9657 0.9746
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Table 5. Cont.

Image N FSIM

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 8

4 0.9160 0.9139 0.9139 0.8562 0.8902 0.8572 0.8179 0.9099 0.9139 0.9111

6 0.9593 0.9591 0.9592 0.9170 0.9100 0.8888 0.9158 0.9004 0.9589 0.9599

8 0.9716 0.9772 0.9740 0.9472 0.9555 0.9605 0.9378 0.9537 0.9736 0.9759

10 0.9805 0.9849 0.9846 0.9479 0.9473 0.9299 0.9595 0.9620 0.9812 0.9827

Image 9

4 0.9290 0.9289 0.9286 0.8854 0.9117 0.8562 0.8693 0.9203 0.9282 0.8489

6 0.9539 0.9577 0.9574 0.9050 0.9361 0.9106 0.9135 0.9472 0.9566 0.9541

8 0.9622 0.9682 0.9672 0.9468 0.9437 0.9495 0.9489 0.9658 0.9676 0.9756

10 0.9792 0.9797 0.9790 0.9558 0.9479 0.9613 0.9523 0.9630 0.9783 0.9897

Average 0.8798 0.8744 0.87409 0.83936 0.84350 0.83251 0.83774 0.86113 0.87443 0.89237

Table 6. Comparison of PRI computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.

Image N PRI-Kapur-EMO

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 0.6470 0.6352 0.6418 0.5833 0.5986 0.4005 0.6423 0.6350 0.6422 0.5264

6 0.7467 0.7427 0.7182 0.7070 0.7198 0.6157 0.6552 0.6828 0.7247 0.6681

8 0.7948 0.7945 0.7693 0.6684 0.7489 0.6820 0.7519 0.7934 0.7839 0.7899

10 0.8282 0.82827 0.8201 0.7990 0.7611 0.7693 0.7777 0.8033 0.8170 0.8188

Image 2

4 0.6210 0.6008 0.5931 0.6372 0.5361 0.5523 0.5907 0.5731 0.6010 0.5698

6 0.7332 0.7214 0.7234 0.7045 0.7064 0.7020 0.7147 0.7121 0.6969 0.6712

8 0.7919 0.7797 0.7790 0.7006 0.7050 0.7393 0.7059 0.7802 0.7729 0.7458

10 0.8265 0.8078 0.8013 0.7267 0.7053 0.8069 0.7511 0.7678 0.8250 0.8225

Image 3

4 0.5290 0.5092 0.5109 0.5044 0.5226 0.4611 0.5122 0.5103 0.5125 0.4985

6 0.6597 0.5466 0.5496 0.6219 0.6039 0.6781 0.6335 0.5237 0.5700 0.63255

8 0.7125 0.6771 0.6647 0.6287 0.6602 0.6378 0.7067 0.7190 0.6807 0.6043

10 0.7903 0.7526 0.7165 0.6949 0.7875 0.7894 0.6729 0.7781 0.7496 0.7192

Image 4

4 0.6152 0.6193 0.6193 0.6214 0.6046 0.6412 0.6049 0.6004 0.6117 0.4589

6 0.7180 0.7014 0.6903 0.6401 0.6035 0.6577 0.6116 0.6421 0.6935 0.6546

8 0.7476 0.7558 0.7605 0.7389 0.6795 0.7027 0.6658 0.7412 0.7263 0.721

10 0.7966 0.7927 0.7802 0.7521 0.6231 0.7273 0.7363 0.7132 0.7840 0.7524

Image 5

4 0.7942 0.7914 0.7925 0.7704 0.7677 0.7311 0.7576 0.7902 0.7939 0.7542

6 0.8487 0.8364 0.8441 0.8348 0.8201 0.7911 0.8087 0.8466 0.8433 0.8525

8 0.8838 0.8815 0.8830 0.8595 0.8463 0.8234 0.8523 0.8750 0.8822 0.8778

10 0.9048 0.9031 0.9057 0.8831 0.8706 0.8735 0.8673 0.8951 0.9003 0.8952

Image 6

4 0.6642 0.6639 0.6642 0.6286 0.6329 0.5797 0.6621 0.6638 0.6634 0.61258

6 0.7566 0.7414 0.7453 0.7465 0.6773 0.7694 0.6809 0.7580 0.7231 0.7299

8 0.8141 0.7982 0.7906 0.7986 0.7316 0.7832 0.7763 0.7762 0.7948 0.7788

10 0.8455 0.8276 0.8431 0.7847 0.7402 0.7664 0.7938 0.8281 0.8320 0.8436

Image 7

4 0.4376 0.3253 0.3242 0.3180 0.3403 0.3340 0.2412 0.2772 0.3280 0.3658

6 0.4615 0.4502 0.4540 0.4148 0.3937 0.3654 0.3925 0.4566 0.4581 0.4589

8 0.5227 0.5154 0.4970 0.5117 0.4590 0.4837 0.4901 0.4265 0.5133 0.6384

10 0.6222 0.5989 0.5442 0.5579 0.5417 0.6113 0.5790 0.5440 0.5320 0.6683
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Table 6. Cont.

Image N PRI-Kapur-EMO

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 8

4 0.7585 0.7337 0.7337 0.7337 0.7143 0.7049 0.7005 0.7183 0.7341 0.6867

6 0.8129 0.8096 0.8094 0.7717 0.7809 0.7490 0.7476 0.7663 0.8017 0.8423

8 0.8544 0.8464 0.8360 0.7986 0.8283 0.7916 0.8389 0.7878 0.8395 0.8507

10 0.8738 0.8612 0.8717 0.8397 0.7780 0.7937 0.8621 0.8378 0.8684 0.865

Image 9

4 0.7531 0.7520 0.7514 0.7140 0.7380 0.6981 0.7412 0.7518 0.7524 0.6142

6 0.8214 0.8201 0.8041 0.7613 0.7619 0.7749 0.7381 0.7831 0.8200 0.6983

8 0.8563 0.8479 0.8494 0.8191 0.8003 0.8017 0.8063 0.8350 0.8337 0.775

10 0.8825 0.8765 0.8760 0.8490 0.8210 0.8411 0.8425 0.8437 0.8726 0.8384

Average 0.7424 0.7262 0.7210 0.6979 0.6836 0.6841 0.6920 0.7065 0.7216 0.7027

Table 7. Comparison of VOI computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Kapur’s method with N = 4, 6, 8, and 10.

Image N VOI-Kapur-EMO

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 5.3330 5.3576 5.3336 5.4371 5.4764 5.9613 5.2945 5.3470 5.3324 5.4929

6 4.8227 4.8497 4.9617 4.9534 4.9410 5.2220 5.1722 5.0549 4.9153 4.7986

8 4.5099 4.5170 4.6569 5.0336 4.7645 4.9313 4.7757 4.5355 4.5731 4.4826

10 4.2423 4.3121 4.3065 4.4640 4.6410 4.5176 4.5288 4.3774 4.3215 4.2165

Image 2

4 5.2284 5.3003 5.3176 5.2022 5.4836 5.4641 5.3048 5.3813 5.2958 5.1645

6 4.7333 4.8488 4.8459 4.9018 4.9639 4.8143 4.9237 4.8548 4.7964 4.8883

8 4.4419 4.5026 4.5222 4.8948 4.9212 4.9252 4.7919 4.5447 4.5486 4.3051

10 4.2167 4.2874 4.3251 4.5219 4.7620 4.3481 4.6797 4.4438 4.2172 4.1258

Image 3

4 5.1486 5.1894 5.1876 5.2404 5.1837 5.3184 5.1667 5.1845 5.1814 5.1224

6 4.6392 4.9628 4.9574 4.6476 4.8242 4.7506 4.7276 5.0135 4.9010 4.6039

8 4.4126 4.5210 4.5607 4.7344 4.6110 4.6030 4.4475 4.3978 4.5123 4.3412

10 4.1030 4.1800 4.3102 4.4259 4.1170 4.1168 4.4745 4.1607 4.1549 4.1243

Image 4

4 5.1787 5.1617 5.1614 5.1402 5.2015 5.0637 5.1667 5.1457 5.1851 5.1776

6 4.7021 4.7650 4.8077 4.9795 5.0493 4.7123 4.9176 4.9828 4.8211 4.6573

8 4.4405 4.4753 4.4438 4.5795 4.7648 4.6895 4.8842 4.5344 4.5506 4.3403

10 4.2049 4.2094 4.2883 4.4242 4.8911 4.6964 4.4474 4.5626 4.2779 4.2658

Image 5

4 5.0841 5.0933 5.0841 5.1615 5.2042 5.3147 5.2377 5.1676 5.0848 5.0065

6 4.6610 4.7338 4.6999 4.7572 4.8916 4.9611 4.8981 4.6937 4.7025 4.6558

8 4.3212 4.3385 4.3278 4.4909 4.6591 4.6347 4.5010 4.3848 4.3361 4.2331

10 4.0469 4.0638 4.1039 4.2530 4.4220 4.3279 4.3399 4.1630 4.0583 4.3297

Image 6

4 5.2650 5.2676 5.2650 5.3632 5.3958 5.5519 5.2872 5.2788 5.2674 5.1710

6 4.7954 4.9082 4.8970 4.8278 5.1177 4.9170 5.0589 4.7993 4.9751 4.4071

8 4.4488 4.5450 4.6060 4.5046 4.9017 4.5562 4.6108 4.6814 4.5639 4.0305

10 4.1773 4.3155 4.2042 4.4149 4.8285 4.5117 4.5394 4.2892 4.2814 4.3887
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Table 7. Cont.

Image N VOI-Kapur-EMO

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 7

4 4.4371 4.6715 4.6934 4.6916 4.6462 4.7513 4.9261 4.8303 4.6838 4.7709

6 4.3105 4.3017 4.3222 4.3926 4.5140 4.5557 4.4991 4.3334 4.3303 4.4257

8 4.0766 4.0629 4.1389 3.8737 4.2378 4.1750 4.2134 4.3480 4.1253 4.0134

10 3.7302 3.8034 3.9591 3.8714 3.9576 3.7968 3.9279 3.9594 3.9441 3.5823

Image 8

4 5.2353 5.2396 5.2396 5.3274 5.3096 5.2584 5.3555 5.2864 5.2396 5.1201

6 4.7303 4.7425 4.7413 4.8706 4.8987 5.0754 5.0003 4.9568 4.7932 4.7156

8 4.3851 4.4530 4.5217 4.7100 4.6106 4.6958 4.4705 4.7702 4.5139 4.7666

10 4.1701 4.2839 4.1797 4.3947 4.7208 4.6088 4.2242 4.4325 4.2204 4.2265

Image 9

4 5.2527 5.2685 5.2758 5.3564 5.3178 5.4439 5.2739 5.3524 5.2705 5.1827

6 4.8043 4.8097 4.8980 5.0513 5.1684 4.9999 5.1457 5.0007 4.8105 4.7817

8 4.4959 4.5616 4.5543 4.7000 4.8973 4.8750 4.8079 4.6274 4.6573 4.4210

10 4.2281 4.2806 4.2873 4.4128 4.7177 4.4756 4.4871 4.4928 4.3162 4.1244

Average 4.5837 4.6440 4.6662 4.75016 4.8614 4.82281 4.79189 4.73248 4.65997 4.5683

Table 8. Comparison of MEAN computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFOwith the proposed model using Kapur’s method with N = 4, 6, 8, and 10.

Proposed Method

N EMO_Kapur EMO_OTSU

Image R G B R G B

Image 1

4 22.7245 20.6617 21.9151 1.8715 × 1010 2.7645 × 1010 2.3448 × 1010

6 31.3838 31.1731 30.2143 1.8715 × 1010 2.7645 × 1010 2.3448 × 1010

8 38.9241 37.9386 37.6682 1.8715 × 1010 2.7645 × 1010 2.3448 × 1010

10 45.6957 44.2571 44.3222 1.8715 × 1010 2.7645 × 1010 2.3448 × 1010

Image 2

4 23.1335 21.3695 21.3695 1.2788 × 1011 2.2774 × 1011 2.2464 × 1011

6 31.7350 30.2454 30.6368 2.2774 × 1011 1.2788 × 1011 2.2464 × 1011

8 38.7069 37.1543 37.7688 2.2774 × 1011 2.2464 × 1011 1.2788 × 1011

10 45.7586 45.4235 44.4192 2.2774 × 1011 2.2464 × 1011 1.2788 × 1011

Image 3

4 23.3813 20.7151 23.1100 1.3372 × 1010 1.0266 × 1010 8.4907 × 109

6 31.6050 30.3837 31.5643 1.3372 × 1010 1.0266 × 1010 8.4907 × 109

8 39.2754 38.5151 39.1151 1.3372 × 1010 1.0266 × 1010 8.4907 × 109

10 46.0921 45.6209 44.8967 1.3372 × 1010 1.0266 × 1010 8.4907 × 109

Image 4

4 22.0506 20.3480 22.4926 7.1205 × 1010 1.1270 × 1011 6.8970 × 1010

6 30.1096 28.7478 29.7487 7.1205 × 1010 1.1270 × 1011 6.8970 × 1010

8 37.5105 36.9517 38.4094 7.1205 × 1010 1.1270 × 1011 6.8970 × 1010

10 44.1471 43.7316 44.8359 7.1205 × 1010 1.1270 × 1011 6.8970 × 1010

Image 5

4 23.0147 21.6803 22.5429 2.8927 × 1011 3.1468 × 1011 2.4490 × 1011

6 31.1646 31.0380 30.4736 2.8927 × 1011 3.1468 × 1011 2.4490 × 1011

8 38.3985 37.7448 38.5851 2.8927 × 1011 3.1468 × 1011 2.4490 × 1011

10 44.9580 45.6851 45.2806 2.8927 × 1011 3.1468 × 1011 2.4490 × 1011
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Table 8. Cont.

Proposed Method

N EMO_Kapur EMO_OTSU

Image R G B R G B

Image 6

4 22.4669 21.5328 21.5243 2.8820 × 1010 2.3478 × 1010 8.8752 × 109

6 31.3892 29.5077 29.6574 2.8820 × 1010 2.3478 × 1010 8.8752 × 109

8 39.0856 37.1529 37.6348 2.8820 × 1010 2.3478 × 1010 8.8752 × 109

10 45.9102 42.9632 44.0875 2.8820 × 1010 2.3478 × 1010 8.8752 × 109

Image 7

4 22.9682 19.4795 21.3255 1.8752 × 1010 1.6944 × 1010 3.6049 × 109

6 31.2527 29.0121 30.4313 1.8752 × 1010 1.6944 × 1010 3.6049 × 109

8 38.2344 35.3177 37.6600 1.8752 × 1010 1.6944 × 1010 3.6049 × 109

10 45.5786 42.0219 43.9885 1.8752 × 1010 1.6944 × 1010 3.6049 × 109

Image 8

4 22.5804 22.6632 21.8942 1.1475 × 1011 1.0766 × 1011 5.5300 × 1010

6 35.5656 33.8955 34.6598 1.1475 × 1011 1.0766 × 1011 5.5300 × 1010

8 37.9865 37.9041 38.1715 1.1475 × 1011 1.0766 × 1011 5.5300 × 1010

10 45.7055 44.2770 45.0063 1.1475 × 1011 1.0766 × 1011 5.5300 × 1010

Image 9

4 79.7932 79.2440 79.2472 2.1651 × 1011 3.3482 × 1011 3.7903 × 1011

6 22.3258 22.0532 21.7375 2.1651 × 1011 3.3482 × 1011 3.7903 × 1011

8 31.4954 29.6734 30.1372 2.1651 × 1011 3.3482 × 1011 3.7903 × 1011

10 39.0669 37.7023 37.6457 2.1651 × 1011 3.3482 × 1011 3.7903 × 1011

Average 42.72888 41.809 41.9909 1.83× 1011 2.59× 1011 2.71× 1011

Table 9. Comparison of PSNR computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFOwith the proposed model using Otsu’s method with N = 4, 6, 8, and 10.

Image N PSNR

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 16.3860 16.4406 16.4308 16.1198 15.9518 16.5188 15.9471 15.7504 16.3509 19.6804

6 18.9503 18.6464 18.6453 17.0514 18.8871 16.2863 17.6779 18.8405 18.6600 22.3901

8 22.1062 21.6261 23.1484 19.1913 20.1582 24.3537 18.3762 22.1011 21.6192 23.9987

10 23.7705 23.3273 23.3233 23.5426 22.8207 22.5577 22.1879 22.6202 22.8891 28.0707

Image 2

4 16.6237 16.8918 16.7502 15.5177 16.8216 15.2934 17.3576 16.6367 16.6237 18.8124

6 19.9297 19.9122 20.1880 18.9867 21.2966 18.3149 20.8387 18.9461 19.9028 24.6275

8 22.3808 22.2341 22.1322 24.7995 23.1557 21.8098 20.5504 22.4373 22.2379 24.8692

10 25.5448 22.2341 24.6603 26.0898 25.3696 25.8321 20.5533 23.6078 24.6386 26.0680

Image 3

4 16.4184 16.1060 16.4101 13.9539 17.0046 18.1521 16.7390 16.3032 16.1370 20.5265

6 19.9828 19.5770 19.6195 19.1009 15.4523 21.3334 19.6198 19.5441 19.5530 24.4963

8 22.7395 22.0050 21.9373 19.5140 14.9593 21.9748 20.7408 16.1947 22.1665 28.0946

10 24.2109 23.6942 23.6708 20.8159 23.3595 21.9945 26.2623 19.0748 23.4534 27.7046

Image 4

4 21.7144 21.7140 21.7517 21.2717 21.7111 23.5486 17.4448 21.6892 21.7140 26.2798

6 24.9365 24.9499 24.9711 23.8558 23.2487 22.7919 23.2571 24.5169 24.9234 29.6004

8 28.2781 27.8412 27.8172 25.0977 26.4994 26.4631 23.0717 26.3194 27.4682 32.1619

10 29.7479 29.7163 28.8792 26.5819 19.5857 26.4818 28.1911 27.0843 29.3546 34.1414
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Table 9. Cont.

Image N PSNR

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 5

4 14.8363 14.8311 14.8393 12.3275 14.9024 13.5501 13.3716 14.3507 14.6782 19.5873

6 17.7317 17.6955 17.5783 16.3833 16.4033 19.7073 17.9584 20.1421 17.7269 22.7009

8 20.2708 20.0328 20.0432 19.2313 21.8799 20.3893 21.8624 20.5749 19.7951 24.5320

10 21.9833 22.3498 22.9532 20.2590 21.6939 18.9397 22.8995 19.1012 21.2030 26.2652

Image 6

4 17.3196 17.4019 17.3845 16.6688 8.1594 12.7024 13.8483 14.6232 17.3196 23.3272

6 22.0303 21.7427 21.3055 21.3326 8.3820 17.8780 23.8202 21.1869 21.4152 23.5649

8 24.6298 23.5592 24.2151 23.9717 15.8327 24.4255 24.3540 10.3526 24.2388 27.4039

10 27.6155 30.0282 26.7338 28.1801 15.3929 26.2118 26.7839 15.1460 26.9620 30.1257

Image 7

4 17.0406 17.0447 17.0409 15.6237 18.9268 26.6051 26.9731 16.7555 17.0104 26.8075

6 19.3985 2.7706 2.7706 17.7746 16.3519 23.1112 22.4328 13.5358 19.3658 28.9907

8 22.7231 2.7706 20.7583 27.0120 23.5447 29.1942 21.3682 22.1778 21.9322 32.2855

10 27.8591 2.7706 22.6694 2.7706 28.7546 30.0138 12.3543 25.4857 2.8175 28.8837

Image 8

4 12.3553 12.4126 12.3557 12.4771 14.3196 10.9526 15.7630 19.3305 12.0893 21.3351

6 17.8286 17.8180 17.8605 18.3484 17.9321 16.5747 21.3367 18.1996 17.7560 26.3956

8 21.2291 3.4714 20.4676 20.4749 18.4503 20.7354 21.3140 21.6457 21.1268 28.9553

10 24.0933 3.4714 22.6721 23.4736 22.7114 16.4386 24.3220 16.6142 23.8562 31.0910

Image 9

4 15.8561 15.6938 15.8340 14.9129 15.7650 14.7494 15.1135 15.7597 15.6550 21.0972

6 19.4060 19.0694 18.9712 19.2740 16.0860 16.5833 18.6378 21.2941 18.8624 26.3328

8 22.9089 22.4093 21.9344 20.4690 19.4735 20.6358 22.6642 23.2027 21.8292 30.3863

10 25.2257 24.1457 24.6802 22.1094 22.3322 21.0518 22.7531 25.7185 23.7436 32.6120

Average 21.2795 18.289 20.3723 19.5712 18.9882 20.6710 20.5207 19.6351 20.1965 26.2278

Table 10. Comparison of MSE computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.

Image N MSE

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 1494.51 1475.82 1479.16 1588.94 1651.68 1449.46 1653.48 1730.05 1506.67 699.907

6 828.028 888.056 888.275 1282.26 840.169 1529.14 1109.97 874.585 885.276 375.0338

8 400.368 447.168 314.952 783.336 622.564 238.619 945.053 400.843 447.880 258.9467

10 272.918 302.235 302.520 287.620 339.636 360.835 392.904 355.687 334.323 101.3936

Image 2

4 1414.80 1330.12 1374.24 1825.26 1351.81 1922.02 1194.93 1410.62 1414.80 854.7525

6 660.860 663.536 622.700 821.135 482.416 958.506 536.061 828.859 664.974 224.0425

8 375.835 388.752 397.975 215.342 314.418 428.643 572.847 354.681 388.413 211.9143

10 181.383 388.752 222.356 159.992 188.852 169.775 572.463 283.335 223.471 160.7979

Image 3

4 1483.35 1594.03 1486.21 2616.30 1296.09 995.099 1377.87 1523.20 1582.63 576.0104

6 652.823 716.768 709.797 799.811 1825.94 478.348 709.746 722.213 720.747 230.9141

8 346.045 409.811 416.244 727.240 2075.66 412.666 548.278 1561.85 394.849 100.8371

10 246.600 277.754 279.254 538.876 300.003 410.796 153.761 804.646 293.589 110.3114

Image 4

4 438.168 438.205 434.423 485.192 438.496 287.221 1171.15 440.713 438.205 153.1441

6 208.656 208.012 206.998 267.610 307.761 341.890 307.164 229.82 209.286 71.29193

8 96.6658 106.895 107.489 201.050 145.593 146.814 320.563 151.750 116.483 39.52668

10 68.9119 69.4147 84.1704 142.853 715.340 146.185 98.6201 127.241 75.4424 25.05765
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Table 10. Cont.

Image N MSE

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 5

4 2135.33 2137.82 2133.85 3840.84 2103.04 2871.26 2991.75 2387.92 2214.41 715.073

6 1096.23 1105.40 1135.72 1495.41 1488.58 695.577 1040.57 629.324 1097.59 349.1326

8 610.943 645.363 643.810 776.151 421.786 594.500 423.484 569.622 681.670 229.0237

10 411.860 378.529 329.429 612.604 440.239 830.066 333.524 799.767 492.920 153.6598

Image 6

4 1205.40 1182.73 1187.55 1400.21 9934.32 3490.10 2680.7 2242.71 1205.47 302.2459

6 407.424 435.319 481.429 478.427 9438.04 1059.96 269.818 494.758 469.419 286.1478

8 223.925 286.523 246.359 260.561 1697.58 234.709 238.606 5995.41 245.019 118.2198

10 112.598 64.6047 137.942 98.8710 1878.42 155.562 136.361 1988.32 130.882 63.16992

Image 7

4 1285.30 1284.14 1285.35 1781.25 832.535 142.093 130.548 1372.62 1291.32 135.6221

6 746.842 3435.82 3435.82 1085.56 1506.27 317.659 371.367 2880.74 753.742 82.03711

8 350.520 3435.82 546.068 129.383 287.479 78.2817 474.529 380.256 21.9322 38.41761

10 105.163 3435.82 351.671 3435.82 86.6203 64.8187 3781.45 183.868 3398.81 84.08342

Image 8

4 3780.54 3731.0 3780.28 3676.02 2405.19 5221.88 1725.08 758.633 3786.56 478.1568

6 1072.16 1074.7 1064.25 951.136 1046.80 1430.92 477.979 984.288 1080.15 149.1147

8 489.974 2923.71 583.880 582.888 929.082 548.963 480.488 445.158 489.974 82.70854

10 253.366 2923.71 351.453 292.227 348.290 1476.44 240.372 1418.05 253.366 50.58018

Image 9

4 1688.44 1752.75 1697.01 2097.92 1724.25 2178.42 1591.21 1762.36 1768.52 505.0802

6 745.555 805.642 824.069 769.197 1601.33 1428.13 889.810 482.687 844.971 151.2866

8 332.804 373.378 416.522 583.683 734.065 561.690 352.099 311.036 426.741 59.49088

10 195.214 250.330 221.338 400.074 380.069 510.392 344.961 174.271 274.613 35.6353

Average 733.8752 1149.1232 838.3489 1041.4180 1449.4559 949.0955 851.0990 1057.2747 850.6977 229.5213

Table 11. Comparison of SSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.

Image N SSIM-O

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 0.9394 0.9395 0.9395 0.9239 0.9361 0.9284 0.9365 0.9330 0.9393 0.8898

6 0.9696 0.9669 0.9661 0.9486 0.9568 0.9624 0.9663 0.9672 0.9688 0.9755

8 0.9847 0.9835 0.9843 0.9836 0.9822 0.9668 0.9784 0.9728 0.9817 0.9857

10 0.9928 0.9883 0.9878 0.9898 0.9859 0.9882 0.9865 0.9877 0.9874 0.9954

Image 2

4 0.9472 0.9462 0.9469 0.9322 0.9311 0.9373 0.9465 0.9105 0.9466 0.9358

6 0.9738 0.9737 0.9733 0.9669 0.9707 0.9677 0.9818 0.9569 0.9744 0.9748

8 0.9844 0.9837 0.9836 0.9801 0.9779 0.9823 0.9825 0.9879 0.9837 0.9844

10 0.9912 0.9901 0.9893 0.9873 0.9849 0.9898 0.9865 0.9910 0.9910 0.9955

Image 3

4 0.9559 0.9461 0.9469 0.9289 0.9463 0.9430 0.9458 0.9474 0.9481 0.9599

6 0.9781 0.9766 0.9767 0.9700 0.9550 0.9728 0.9771 0.9744 0.9764 0.9689

8 0.9871 0.9856 0.9852 0.9843 0.9642 0.9865 0.9776 0.9707 0.9865 0.9879

10 0.9907 0.9893 0.9890 0.9832 0.9897 0.9744 0.9890 0.9748 0.9890 0.9911

Image 4

4 0.9857 0.9857 0.9858 0.9839 0.9860 0.9774 0.9780 0.9859 0.9858 0.9861

6 0.9938 0.9937 0.9935 0.9906 0.9919 0.9907 0.9925 0.9937 0.9938 0.9942

8 0.9968 0.9967 0.9967 0.9948 0.9945 0.9939 0.9936 0.9958 0.9967 0.9971

10 0.9978 0.9976 0.9974 0.9950 0.9838 0.9958 0.9966 0.9967 0.9977 0.9979
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Table 11. Cont.

Image N SSIM-O

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 5

4 0.9416 0.9408 0.9414 0.9329 0.9453 0.9314 0.9390 0.9283 0.9410 0.95187

6 0.9783 0.9700 0.9694 0.9702 0.9602 0.9723 0.9750 0.9709 0.9697 0.98109

8 0.9865 0.9825 0.9828 0.9792 0.9826 0.9798 0.9837 0.9854 0.9826 0.9877

10 0.9892 0.9887 0.9889 0.9814 0.9839 0.9799 0.9890 0.9832 0.9877 0.9900

Image 6

4 0.9540 0.9539 0.9542 0.9258 0.8634 0.9504 0.9223 0.9553 0.9538 0.9489

6 0.9842 0.9795 0.9792 0.9784 0.9062 0.9427 0.9817 0.9786 0.9821 0.9852

8 0.9913 0.9911 0.9910 0.9800 0.9646 0.9874 0.9908 0.9264 0.9914 0.9925

10 0.9975 0.9968 0.9958 0.9946 0.9696 0.9928 0.9935 0.9760 0.9959 0.9988

Image 7 4 0.9887 0.9805 0.9805 0.9611 0.9866 0.9802 0.9796 0.9865 0.9802 0.98898

6 0.9890 0.7963 0.7964 0.9910 0.9811 0.9939 0.9827 0.9724 0.9890 0.9945

8 0.9953 0.7987 0.9923 0.9928 0.9946 0.9936 0.9926 0.9810 0.9936 0.9968

10 0.9969 0.6464 0.9949 0.7993 0.9811 0.9958 0.9794 0.9950 0.8029 0.9978

Image 8

4 0.9371 0.9371 0.9372 0.9656 0.9560 0.9305 0.9351 0.9226 0.9369 0.9487

6 0.9842 0.9804 0.9804 0.9802 0.9787 0.9692 0.9808 0.9855 0.9806 0.9845

8 0.9912 0.8135 0.9899 0.9597 0.9875 0.9910 0.9886 0.9903 0.9906 0.9925

10 0.9952 0.8156 0.9939 0.9860 0.9921 0.9874 0.9935 0.9859 0.9949 0.9958

Image 9

4 0.9517 0.9511 0.9511 0.9477 0.9508 0.9292 0.9472 0.9506 0.9514 0.9625

6 0.9810 0.9793 0.9789 0.9674 0.9639 0.9740 0.9672 0.9807 0.9791 0.9811

8 0.9894 0.9869 0.9887 0.9855 0.9776 0.9860 0.9818 0.9870 0.9870 0.9985

10 0.9952 0.9947 0.9941 0.9904 0.9863 0.9905 0.9901 0.9958 0.9939 0.8898

Average 0.9801 0.9479 0.9728 0.9670 0.9680 0.972 0.9752 0.9717 0.9730 0.9803

Table 12. Comparison of FSIM computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.

Image N FSIM

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 0.6964 0.6988 0.6991 0.6818 0.6945 0.6882 0.6789 0.6468 0.6960 0.7303

6 0.7898 0.7800 0.7772 0.7372 0.7239 0.7316 0.7779 0.7855 0.7782 0.8091

8 0.8357 0.8328 0.8332 0.8245 0.7911 0.7670 0.8018 0.7181 0.8299 0.8446

10 0.8705 0.8704 0.8688 0.8431 0.7797 0.8132 0.8512 0.7951 0.8667 0.8934

Image 2

4 0.7564 0.7457 0.7544 0.7359 0.6661 0.7326 0.7440 0.7039 0.7525 0.8099

6 0.8201 0.8165 0.8198 0.7929 0.7701 0.8025 0.8082 0.7514 0.8174 0.8706

8 0.8655 0.8633 0.8609 0.8785 0.8118 0.8241 0.8505 0.8414 0.8592 0.8579

10 0.9022 0.8977 0.8950 0.8792 0.9014 0.8788 0.8615 0.8758 0.9003 0.8443

Image 3

4 0.7309 0.7303 0.7368 0.7451 0.7412 0.7112 0.7245 0.7359 0.7312 0.8224

6 0.7973 0.7915 0.7951 0.7713 0.7622 0.7756 0.7912 0.7895 0.7922 0.8786

8 0.8494 0.8422 0.8427 0.8236 0.7705 0.8079 0.8035 0.8034 0.8337 0.9181

10 0.8762 0.8692 0.8690 0.8311 0.8409 0.8021 0.8562 0.8070 0.8728 0.9189

Image 4

4 0.8214 0.8212 0.8212 0.8112 0.8205 0.7817 0.7841 0.8215 0.8212 0.8430

6 0.8910 0.8914 0.8941 0.8700 0.8675 0.8462 0.8712 0.8852 0.8926 0.9124

8 0.9318 0.9305 0.9315 0.9019 0.9031 0.8909 0.8775 0.9170 0.9286 0.9318

10 0.9500 0.9483 0.9464 0.9035 0.8112 0.9184 0.9271 0.9269 0.9479 0.9446
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Table 12. Cont.

Image N FSIM

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 5

4 0.7487 0.7450 0.7474 0.7123 0.6931 0.7053 0.7260 0.6547 0.7471 0.8122

6 0.8329 0.8298 0.8327 0.8114 0.7323 0.7935 0.8148 0.8340 0.8325 0.8663

8 0.8788 0.8773 0.8734 0.8670 0.8156 0.8438 0.8676 0.8677 0.8748 0.8961

10 0.9027 0.9017 0.9061 0.8491 0.8379 0.8548 0.8870 0.8569 0.8992 0.9160

Image 6

4 0.7146 0.7118 0.7134 0.6894 0.6311 0.6550 0.6651 0.6936 0.7103 0.7740

6 0.8061 0.8016 0.7956 0.7954 0.7113 0.6985 0.7667 0.7508 0.8000 0.7830

8 0.8567 0.8529 0.8540 0.8085 0.6770 0.7953 0.8009 0.7403 0.8560 0.8376

10 0.9117 0.8988 0.8993 0.8354 0.7020 0.8283 0.8384 0.7161 0.8989 0.8710

Image 7

4 0.8415 0.8435 0.8439 0.7543 0.8313 0.8670 0.8120 0.8616 0.8383 0.8982

6 0.9093 NaN NaN 0.8888 0.8326 0.8953 0.8560 NaN 0.9075 0.9455

8 0.9369 NaN 0.9311 0.8700 0.9038 0.9187 0.8522 0.8636 0.9367 0.9614

10 0.9559 NaN 0.9486 NaN 0.8531 0.9307 0.8982 0.8894 NaN 0.9462

Image 8

4 0.8125 0.8173 0.8138 0.8777 0.7630 0.7839 0.8035 0.8073 0.8111 0.8636

6 0.8968 0.8958 0.8965 0.9127 0.8890 0.8600 0.8928 0.8789 0.8962 0.9294

8 0.9379 NaN 0.9343 0.8637 0.8632 0.9329 0.9164 0.9310 0.9346 0.9545

10 0.9594 NaN 0.9561 0.9124 0.9400 0.8680 0.9538 0.9166 0.9574 0.9683

Image 9

4 0.8632 0.8501 0.8511 0.8476 0.8478 0.8133 0.8411 0.8515 0.8562 0.8645

6 0.9275 0.9219 0.9179 0.8992 0.8840 0.8915 0.8827 0.9238 0.9263 0.9125

8 0.9491 0.9440 0.9495 0.9318 0.8575 0.9209 0.9225 0.9437 0.9421 0.9375

10 0.9681 0.9653 0.9652 0.9572 0.9199 0.9544 0.9407 0.9757 0.9628 0.9775

Average 0.8609 0.844 0.8564 0.8318 0.8011 0.8217 0.8318 0.8217 0.8545 0.8818

Table 13. Comparison computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and
MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.

Image N PRI for Otsu with EMO

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 0.6945 0.6941 0.6944 0.6502 0.6877 0.6805 0.6783 0.5500 0.6943 0.6854

6 0.8013 0.7993 0.7976 0.7546 0.7143 0.6889 0.7569 0.8008 0.7996 0.8099

8 0.8483 0.8471 0.8385 0.8253 0.7470 0.7660 0.7971 0.5964 0.8451 0.8486

10 0.8871 0.8810 0.8799 0.8345 0.6986 0.7743 0.8192 0.7571 0.8792 0.8945

Image 2

4 0.6603 0.6598 0.6599 0.6220 0.3651 0.5653 0.5918 0.5077 0.6597 0.6877

6 0.7905 0.7898 0.7894 0.7473 0.6506 0.7530 0.6818 0.6818 0.7875 0.7819

8 0.8410 0.8415 0.8429 0.7968 0.7797 0.7674 0.7819 0.7491 0.8404 0.8519

10 0.8755 0.8735 0.8745 0.8188 0.8229 0.8124 0.7796 0.8107 0.8754 0.8676

Image 3

4 0.5691 0.5593 0.5605 0.4360 0.5458 0.4990 0.5531 0.5661 0.5598 0.5488

6 0.7414 0.7377 0.7378 0.6898 0.5048 0.7104 0.7087 0.6402 0.7372 0.6587

8 0.8280 0.8125 0.8065 0.7647 0.6554 0.7817 0.7246 0.7088 0.8126 0.6813

10 0.8663 0.8583 0.8507 0.7772 0.8574 0.6977 0.8003 0.5442 0.8477 0.7494

Image 4

4 0.6876 0.6755 0.6755 0.6755 0.6657 0.6434 0.6385 0.6730 0.6746 0.6795

6 0.7855 0.7810 0.7818 0.7615 0.7281 0.7152 0.7261 0.7646 0.7794 0.782

8 0.8374 0.8303 0.8233 0.8077 0.7848 0.7912 0.7247 0.7969 0.8199 0.8216

10 0.8694 0.8562 0.8656 0.8231 0.6977 0.8357 0.8228 0.8438 0.8682 0.8708
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Table 13. Cont.

Image N PRI for Otsu with EMO

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 5

4 0.7796 0.7695 0.7742 0.7370 0.6891 0.7514 0.7499 0.6413 0.7735 0.7612

6 0.8573 0.8538 0.8504 0.8320 0.7043 0.8033 0.8265 0.8480 0.8499 0.8447

8 0.8900 0.8879 0.8900 0.8593 0.8205 0.8512 0.8701 0.8772 0.8887 0.8846

10 0.9164 0.9134 0.9076 0.8799 0.8323 0.8780 0.8863 0.8753 0.9112 0.9084

Image 6

4 0.7586 0.7404 0.7488 0.7476 0.5164 0.6219 0.7302 0.5437 0.7386 0.7496

6 0.8252 0.8227 0.8112 0.8159 0.5650 0.7537 0.7364 0.7478 0.8215 0.8145

8 0.8643 0.8628 0.8577 0.8351 0.4608 0.7692 0.7923 0.7273 0.8645 0.8353

10 0.8880 0.8829 0.8862 0.7944 0.7184 0.8071 0.8199 0.5512 0.8841 0.8742

Image 7

4 0.6198 0.6198 0.6191 0.5138 0.2837 0.4030 0.3894 0.3804 0.6188 0.6266

6 0.7519 0.5113 0.5115 0.5782 0.5191 0.4573 0.4652 0.2884 0.7513 0.7895

8 0.8357 0.5641 0.8300 0.5235 0.5360 0.5801 0.5792 0.3682 0.8283 0.8145

10 0.8568 0.3171 0.8470 0.4666 0.5364 0.5900 0.5247 0.5319 0.5726 0.8836

Image 8

4 0.7494 0.7559 0.7502 0.6977 0.5501 0.7573 0.7108 0.6869 0.7494 0.7436

6 0.8242 0.8215 0.8227 0.7983 0.7435 0.7045 0.7708 0.7165 0.8216 0.8256

8 0.8686 0.5826 0.8682 0.8200 0.7062 0.7879 0.8222 0.8191 0.8669 0.8674

10 0.8970 0.5995 0.8930 0.8240 0.8085 0.6796 0.8416 0.8397 0.8918 0.8919

Image 9

4 0.7616 0.7470 0.7547 0.7469 0.7440 0.7047 0.7366 0.7555 0.7608 0.75477

6 0.8312 0.8243 0.8303 0.8041 0.7947 0.7814 0.7996 0.8157 0.8312 0.8164

8 0.8739 0.8627 0.8736 0.8452 0.6707 0.8326 0.8261 0.8545 0.8676 0.8612

10 0.8934 0.8909 0.8882 0.8629 0.7996 0.8357 0.8664 0.8682 0.8821 0.8995

Average 0.8090 0.759 0.7970 0.7435 0.6640 0.7175 0.7313 0.6868 0.7959 0.7982

Table 14. Comparison of VOI computed by SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC,
and MFO with the proposed model using Otsu’s method with N = 4, 6, 8, and 10.

Image N VOI

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 1

4 5.1597 5.1735 5.1635 5.2914 5.1898 5.1906 5.1953 5.5639 5.1738 5.2185

6 4.6087 4.6091 4.6208 4.7486 4.9652 5.0643 4.8396 4.6954 4.6196 4.5787

8 4.2244 4.2283 4.2972 4.3304 4.6424 4.7098 4.5490 5.1978 4.2383 4.2931

10 3.8522 3.8926 0.8799 4.1881 4.9009 4.5518 4.3579 4.5962 3.9094 4.1352

Image 2

4 5.2490 5.2678 5.2622 5.4100 6.0261 5.5241 5.4267 5.6839 5.2694 5.1835

6 4.6131 4.6186 4.6180 4.7996 5.2373 4.8048 4.9939 5.1233 4.6389 4.4032

8 4.2176 4.2241 4.2256 4.4096 4.5629 4.6096 4.5286 4.6637 4.2457 4.1839

10 3.9058 3.9201 3.9192 4.2513 4.2760 4.2297 4.4573 4.2364 3.9104 4.1574

Image 3

4 5.0987 5.1648 5.1315 5.4153 5.2198 5.3013 5.1339 5.1087 5.1476 5.0607

6 4.4624 4.5006 4.5033 4.6072 5.1735 4.4920 4.5557 4.7943 4.5236 4.355

8 3.9634 4.0487 4.0924 4.2768 4.6220 4.1960 4.4160 4.4206 4.0406 4.3397

10 3.6484 3.7003 3.7474 4.1043 3.7382 4.4316 3.9850 4.8480 3.7688 4.0055

Image 4

4 4.9652 5.0588 5.0588 5.0588 5.0924 5.1088 5.1571 5.0646 5.0620 4.81154

6 4.4858 4.5102 4.4942 4.5252 4.7312 4.7436 4.7174 4.5790 4.5166 4.2371

8 4.0900 4.1363 4.1466 4.2513 4.4295 4.3004 4.6372 4.2766 4.1893 4.1069

10 3.7692 3.8670 3.8496 4.1080 4.8438 3.9824 4.0803 3.9572 3.7997 3.6062
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Table 14. Cont.

Image N VOI

SAMFO-TH MVO WOA FPA SCA ACO PSO ABC MFO Proposed

Image 5

4 5.1647 5.2732 5.2170 5.3375 5.6024 5.2917 5.2291 5.5993 5.2183 5.1761

6 4.6169 4.6627 4.6878 4.7562 5.3031 4.9591 4.8554 4.6863 4.7021 4.4915

8 4.2945 4.3123 4.2890 4.5386 4.7541 4.5276 4.4113 4.3794 4.3081 4.2279

10 3.9536 3.9790 4.0680 4.2660 4.6134 4.2640 4.2168 4.2744 4.0125 3.8988

Image 6

4 4.9121 5.0424 4.9890 4.9838 5.6897 5.4570 5.0618 5.5668 5.0672 5.1982

6 4.4774 4.5102 4.5846 4.5189 5.3167 4.7687 4.8922 4.8758 4.4973 5.0782

8 4.1121 4.1467 4.1851 4.3303 5.6751 4.7612 4.5974 4.7867 4.1232 4.8123

10 3.8581 3.8961 3.8785 4.4241 5.0560 4.4288 4.3883 5.4037 3.8777 4.0184

Image 7

4 4.0540 4.0541 4.0750 4.3182 4.9103 4.5774 4.6546 4.6716 4.0858 4.0738

6 3.5037 4.2038 4.1898 3.9669 4.2314 4.3535 4.3375 4.8260 3.5100 3.3603

8 3.0216 3.9017 3.0608 4.0790 4.0959 3.9632 4.0252 4.5635 3.0545 3.3305

10 2.7955 4.6133 2.8173 4.2430 4.1140 3.9518 4.0747 4.0944 3.7790 3.1255

Image 8

4 5.2231 5.1586 5.2130 5.3258 5.7569 5.1468 5.3772 5.4878 5.2255 4.6588

6 4.6964 4.7371 4.7190 4.7938 5.1083 5.2071 4.9315 5.1915 4.7365 4.1033

8 4.3131 5.2724 4.3166 4.5875 5.0823 4.8286 4.5802 4.6438 4.3328 4.2363

10 3.9643 5.0740 4.0037 4.4949 4.6658 4.8881 4.4133 4.4484 4.0414 4.0374

Image 9

4 5.2450 5.3662 5.3044 5.3442 5.3740 5.4614 5.3595 5.3094 5.2614 5.1524

6 4.7590 4.8303 4.7883 4.8910 5.0262 5.0121 4.9621 4.8656 4.7724 4.632

8 4.3492 4.4895 4.3699 4.5726 5.4184 4.6716 4.7405 4.5477 4.4298 4.3059

10 4.1460 4.1786 4.1995 4.3524 4.8398 4.5492 4.3874 4.3532 4.2530 4.0671

Average 4.32705 4.51730 4.3046 4.608 4.9523 4.7308 4.6813 4.8162 4.3983 4.3516
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Table 15. Comparison of MEAN computed by SAMFO-TH, MVO, and WOA using Otsu’s method with N = 4, 6, 8, and 10 for red, green, and blue components.

N SAMFO-TH MVO WOA

R G B R G B R G B

Image 1

4 1.6087 × 103 994.5160 845.7528 1.6087 × 103 994.5160 845.7528 1.6087 × 103 994.5160 845.7528

6 1.6950 × 103 1.0597 × 103 902.2855 1.6955 × 103 1.0599 × 103 902.4505 1.6955 × 103 1.0599 × 103 901.7954

8 1.7279 × 103 1.0839 × 103 922.7777 1.7283 × 103 1.0844 × 103 922.2913 1.7284 × 103 1.0838 × 103 921.2086

10 1.7435 × 103 1.0954 × 103 932.5896 1.7443 × 103 1.0961 × 103 933.4105 1.7436 × 103 1.0956 × 103 932.3066

Image 2

4 1.6719 × 103 1.5099 × 103 1.5454 × 103 1.6719 × 103 1.5099 × 103 1.5454 × 103 1.6719 × 103 1.5099 × 103 1.5454 × 103

6 1.7701 × 103 1.5920 × 103 1.6191 × 103 1.7702 × 103 1.5921 × 103 1.6192 × 103 1.7702 × 103 1.592 l × 103 1.6192 × 103

8 1.8055 × 103 1.6233 × 103 1.6442× 103 1.8062 × 103 1.6237 × 103 1.6444 × 103 1.8063 × 103 1.6229 × 103 1.6440 × 103

10 1.8209 × 103 1.6365 × 103 1.6558× 103 1.8216 × 103 1.6374 × 103 1.6566 × 103 1.8218 × 103 1.6374 × 103 1.6556 × 103

Image 3

4 4.2892 × 103 3.0362 × 103 2.5487 × 103 4.2892 × 103 3.0362 × 103 2.5487 × 103 4.2892 × 103 3.0362 × 103 2.5487 × 103

6 4.4047 × 103 3.1388 × 103 2.6482 × 103 4.4049 × 103 3.1390 × 103 2.6483 × 103 4.4049 × 103 3.1390 × 103 2.6483 × 103

8 4.4408 × 103 3.1738 × 103 2.6767 × 103 4.441 l × 103 3.1743 × 103 2.6774 × 103 4.441 l × 103 3.1743 × 103 2.6775 × 103

10 4.4564 × 103 3.1876 × 103 2.6898 × 103 4.4569 × 103 3.1882 × 103 2.6903 × 103 4.4570 × 103 3.1883 × 103 2.6903 × 103

Image 4

4 1.4749 × 103 1.8297 × 103 1.5474 × 103 1.4749 × 103 1.8297 × 103 1.5474 × 103 1.4749 × 103 1.8297 × 103 1.5474 × 103

6 1.5234 × 103 1.8925 × 103 1.5981 × 103 1.5223 × 103 1.8927 × 103 1.5982 × 103 1.5235 × 103 1.8927 × 103 1.5982 × 103

8 1.5453 × 103 1.9177 × 103 1.6163 × 103 1.5458 × 103 1.9188 × 103 1.6167 × 103 1.5444 × 103 1.9186 × 103 1.6164 × 103

10 1.5542 × 103 1.9285 × 103 1.6255 × 103 1.5546 × 103 1.9293 × 103 1.6257 × 103 1.5552 × 103 1.9300 × 103 1.6259 × 103

Image 5

4 3.7536 × 103 3.0007 × 103 3.7919 × 103 3.7536 × 103 3.0007 × 103 3.7919 × 103 3.7536 × 103 3.0007 × 103 3.7919 × 103

6 3.9152 × 103 3.1253 × 103 3.9104× 103 3.9155 × 103 3.1256 × 103 3.9110 × 103 3.9155 × 103 3.1256 × 103 3.9110 × 103

8 3.9619 × 103 3.1642 × 103 3.9501 × 103 3.9627 × 103 3.1655 × 103 3.9518 × 103 3.9623 × 103 3.1656 × 103 3.9502 × 103

10 3.9846 × 103 3.1814 × 103 3.9680 × 103 3.9866 × 103 3.1836 × 103 3.970l × 103 3.986l × 103 3.1836 × 103 3.9678 × 103

Image 6

4 1.8662 × 103 860.0400 601.3654 1.8662 × 103 860.0424 601.3678 1.8662 × 103 860.0424 601.3678

6 1.9412 × 103 913.4510 634.9386 1.9415 × 103 914.0838 635.1728 1.9415 × 103 914.1091 632.7640

8 1.9734 × 103 932.0683 648.1786 1.974 l × 103 933.0491 649.1121 1.974l × 103 933.2065 648.1710

10 1.9874 × 103 941.6650 654.5853 1.9892 × 103 943.0225 655.7298 1.9899 × 103 943.2505 654.2640
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Table 15. Cont.

N SAMFO-TH MVO WOA

R G B R G B R G B

Image 7

4 1.3407 × 103 243.8439 40.0194 1.3407 × 103 243.8439 39.9051 1.3407 × 103 243.8395 39.9050

6 1.3917 × 103 262.7468 43.7509 1.3918 × 103 263.0009 43.7351 1.3918 × 103 262.5177 43.7559

8 1.4132 × 103 270.2212 45.0938 1.4139 × 103 270.5621 −Inf 1.4136 × 103 270.3070 −Inf

10 1.4235 × 103 273.0833 48.2657 1.4242 × 103 274.2223 −Inf 1.4244 × 103 274.3484 45.8379

Image 8

4 3.1017 × 103 2.2453 × 103 683.3868 3.1017 × 103 2.2453 × 103 683.3868 3.1017 × 103 2.2453 × 103 683.3868

6 3.2166 × 103 2.3568 × 103 717.0620 3.2170 × 103 2.3571 × 103 717.3555 3.2170 × 103 2.357 l × 103 717.3477

8 3.2556 × 103 2.3951 × 103 730.8762 3.2566 × 103 2.3958 × 103 729.9960 3.2567 × 103 2.3959 × 103 730.0061

10 3.2742 × 103 2.4123 × 103 735.7058 3.276l × 103 2.4129 × 103 −Inf 3.2760 × 103 2.4136 × 103 −Inf

Image 9

4 1.3756 × 103 1.9760 × 103 1.7498 × 103 1.3756 × 103 1.9760 × 103 1.7498 × 103 1.3732 × 103 1.9760 × 103 1.7498 × 103

6 1.4472 × 103 2.0578 × 103 1.8340 × 103 1.4473 × 103 2.0566 × 103 1.8344 × 103 1.4468 × 103 2.0532 × 103 1.8314 × 103

8 1.4808 × 103 2.0862 × 103 1.8657 × 103 1.4813 × 103 2.0870 × 103 1.8652 × 103 1.4799 × 103 2.0874 × 103 1.8642 × 103

10 1.4947 × 103 2.1044 × 103 1.8806 × 103 1.4954 × 103 2.1055 × 103 1.8806 × 103 1.496 l × 103 2.1060 × 103 1.8791 × 103

Average 1.71 × 103 1.44 × 103 6.15 × 102 1.58 × 103 1.66 × 103 1.06 × 103 1.73 × 103 1.47 × 103 1.06 × 103
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Table 16. Comparison of MEAN computed by SAMFO-TH, MVO, and WOA using Kapur’s method
with N = 4, 6, 8, and 10 for red, green, and blue components.

Image N SAMFO-TH MVO WOA

R G B R G B R G B

Image 1

4 18.6011 18.3224 18.1192 18.6013 18.3228 18.1249 18.6013 18.3228 18.1259

6 23.7425 23.4112 23.3245 23.7519 23.4374 23.3455 23.7535 23.4374 23.3129

8 28.4075 27.9424 27.9925 28.3981 27.9889 28.009 28.3251 27.9161 28.0052

10 32.5752 31.9895 32.2486 32.5213 32.0989 32.3002 32.4842 32.0061 32.3188

Image 2

4 17.5802 17.5424 18.5899 17.5805 17.5505 18.5933 17.5805 17.5505 18.5933

6 22.5676 22.5665 23.8485 22.5912 22.5931 23.8607 22.5974 22.5936 23.858

8 27.1253 27.0319 28.7393 27.0672 27.0603 28.7825 27.1326 27.0716 28.8099

10 31.2837 31.1974 33.0202 31.2257 31.3003 33.0647 31.2572 31.3245 33.1572

Image 3

4 17.6776 17.5996 17.3878 17.6777 17.6 17.3886 17.6777 17.6003 17.3885

6 22.9482 22.6386 22.5821 22.9479 22.6474 22.6717 22.9421 22.6488 22.6716

8 27.7786 27.2642 27.4267 27.7695 27.3503 27.4994 27.7393 27.3631 27.5042

10 32.2057 31.542 31.7474 32.1717 31.6993 31.883 32.0405 31.6441 31.9212

Image 4

4 17.5082 17.9799 17.4413 17.5028 17.9983 17.4419 17.5079 17.9982 17.4415

6 22.4998 23.0284 22.2581 22.5099 23.035 22.282 22.4832 23.0501 22.282

8 26.9272 27.5976 26.7533 26.9801 27.6366 26.8219 26.8891 27.6498 26.7813

10 30.8946 31.7548 30.7424 30.8572 31.9019 30.6887 30.8505 31.8949 30.8114

Image 5

4 18.053 17.5873 17.6037 18.0534 17.5877 17.6043 18.0534 17.5878 17.6043

6 23.0011 22.3708 22.7447 23.0067 22.3848 22.7505 23.0076 22.3856 22.7519

8 27.5962 26.6633 27.3121 27.5879 26.726 27.3687 27.5815 26.7322 27.3685

10 31.8751 30.5385 31.4943 31.8596 30.5861 31.5435 31.8028 30.5624 31.5951

Image 6

4 18.372 17.6817 16.5909 18.3723 17.6815 16.591 18.3724 17.6718 16.5849

6 23.7047 22.9559 21.4418 23.707 22.9787 21.4523 23.6896 22.9848 21.4489

8 28.4616 27.5295 25.6948 28.4571 27.6226 25.5179 28.4069 27.6628 25.6499

10 32.5313 31.6233 29.2761 32.6353 31.6326 28.9661 32.4703 31.6589 29.3176

Image 7

4 17.9999 16.0346 12.1942 17.9919 16.0339 12.0486 17.9972 16.0369 11.7758

6 23.235 20.7147 15.5653 23.2065 20.7138 14.0047 23.1991 20.487 14.4237

8 27.9628 24.821 17.944 27.9217 24.5978 16.2308 27.9 24.6795 16.8152

10 32.0804 28.3688 19.5 31.9972 27.5907 17.9641 32.0429 27.9357 18.1042

Image 8

4 18.5996 18.6285 15.9913 18.5996 18.6286 15.9914 18.5996 18.6287 15.9912

6 23.9028 23.8893 20.3696 23.9016 23.8302 20.3211 23.8386 23.8394 20.1171

8 28.623 28.5837 24.2063 28.6191 28.4635 23.7059 28.5621 28.576 23.7238

10 32.9212 32.8709 27.55 32.8936 32.727 26.2619 32.785 32.9277 26.9726

Image 9

4 17.8777 17.8204 18.2427 17.8772 17.821 18.2429 17.8778 17.8209 18.2428

6 22.7729 22.6426 23.5334 22.6822 22.657 23.5311 22.685 22.6579 23.5242

8 27.1134 26.9126 28.2759 27.0729 26.803 28.2644 27.1241 26.6663 28.1919

10 31.3765 30.6957 32.4466 31.3039 30.5338 32.4963 31.3781 30.5634 32.4157

Average 24.89989 24.12585 22.79991 24.86062 23.99844 22.47571 24.82708 24.03807 22.54371
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Table 17. Average MEAN of fitness with Kapur’s and Otsu’s methods on optimization techniques for
MVO, WOA, PFA, SCA, ACO, PSO, ABC, MFO, and SAMFO-TH and on the proposed approach for
nine images considered with N = 4, 6, 8, and 10.

MEAN with KAPUR’s Method MEAN with OTSU’s Method

Methods R G B R G B

Proposed 42.7288 41.8091 41.9909 1.83 × 1011 2.59 × 1011 2.71 × 1011

MVO 24.8606 23.9984 22.4757 1.58 × 103 1.66 × 103 1.06 × 103

WOA 24.8270 24.0380 22.5437 1.73 × 103 1.47 × 103 1.06 × 103

PFA 24.6788 24.1296 22.8015 7.10 × 102 5.69 × 102 4.04 × 102

SCA 22.6041 21.2926 19.9449 9.95 × 102 2.09 × 103 1.89 × 103

ACO 28.8877 27.5038 25.4009 1.02 × 103 1.38 × 103 2.31 × 103

PSO 23.5873 22.5467 20.8294 8.92 × 102 1.12 × 103 1.25 × 103

ABC 24.2798 23.3019 21.5508 1.47 × 103 2.04 × 103 1.86 × 103

MFO 23.7660 22.7604 21.2234 1.47 × 103 2.04 × 103 1.86 × 103

SAMFO-TH 24.8998 24.1258 22.7999 1.71 × 103 1.44 × 103 6.15 × 102

3. Energy Curve

To find effective optimized threshold levels, the energy curve [3] will be used instead
of the histogram of an image for various applications.

3.1. Equation of Energy Curve

Consider an image indicated as I = x(i, j) where i and j are spatial coordinates,
i = 1, 2, . . . N and j = 1, 2, ...M and the size of the image are X = M × N. For an
image, spatial correlation among neighboring pixels can be devised by defining the
neighborhood system with N of order d, for an image with spatial coordinates (i, j) as
Nd

ij =
{
(i + u, j + v), (u, v) ∈ Nd

}
; various configurations of the neighborhood are de-

scribed in [30]. Neighborhood systems with second-order are measured for the generation
of energy curve, i.e.,(u, v) ∈ {(±1, 0), (0,±1), (1,±1), (−1,±1)}.

The foremost step is to find the energy of each pixel value of the entire grayscale range
of an image considered; generate a binary matrix Bx =

{
bij, 1 ≤ i ≤ M, 1 ≤ j ≤ N

}
; bij = 1

if xij > x, else bij = −1. Let C =
{

cij, 1 ≤ i ≤ M, 1 ≤ j ≤ N
}

be another matrix, where
cij = 1,∀(i, j). At each pixel value x, the energy value Ex of the image, I can be computed
with the below expression.

Ex = −
M

∑
i=1

N

∑
j=1

∑
pq∈N2

ij

bijbpq +
M

∑
i=1

N

∑
j=1

∑
pq∈N2

ij

cijcpq (22)

From Equation (22), its second term should be a constant; consequently, the energy
associated with each pixel is Ex ≥ 0. From the above equation, we can see that the energy
for a particular gray level is zero if each element of Bx, either 1 or − 1 can be put forward
in another way as all the pixels of an image I(i, j) with gray level either greater than x or
less than x, otherwise, the energy level at a particular gray value x is positive as given
in Figure 1.
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Figure 1. (A) Images considered for experimentation along with histogram and energy curves of
images. Red, green, and blue color plots indicate histograms and energy curves of red, green, and
blue components of input images. (B) Images considered for experimentation along with histogram
and energy curves of images. Red, green, and blue color plots indicate the histograms and energy
curves of red, green, and blue components of input images.
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3.2. Characteristics of Energy Plot

The energy plot generated as per Equation (22) is associated with some exciting
characteristics. Each object in an image is represented by a gray level range, for instance,
the pixel range [t1, t2] represents an object in a given image, at x = t1; the elements in Bx
are 1 for pixels corresponding to the object in the same image. As x increases few elements
in the matrix Bx will become −1, at x = t2; all the matrix elements in Bx corresponding
to pixels in the object becomes −1. The energy curve produced for the gray-level range
[t1, t2] is a bell shape. Figure 1 depicts the image histogram and energy curve related to
eight images. The valley and peak points on the energy curve are useful to identify objects
in an image.

4. Proposed Method

The variety of multilevel thresholding techniques for image segmentation is given
in the introduction section and the limitations of the histogram-based techniques are also
presented. The proposed method uses an energy curve instead of the histogram, and EMO
was used to find optimized threshold levels on the energy curve by maximizing the inter-
class variance and entropy for Otsu’s method and Kapur’s method, respectively, as given
in Equation (11) for Otsu’s method; the flow chart of a new approach is given in Figure 2.
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From the flow chart, take an image for experimentation x(i, j) for multilevel thresholding-
based segmentation and plot the energy curve of the considered color image by using
Equation (1), then assign the design parameters of EMO and the solution matrix values are
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filled with arbitrary numbers, initially denoted as xi (set of threshold levels) as per Equation
(18), then divide all the pixels in the image as per selected threshold levels into different
classes or regions as per Otsu’s technique and Kapur’s method, then find the inter-class
variance and entropy of the segmented image, as given in Equation (11). Afterward, find
the new set of threshold levels with Equation (17) again, find the fitness and compare it
with the previous fitness function, and run this procedure until there is no improvement
in the objective function or the specified number of iterations is reached, and lastly find
the optimized threshold valued (xnew) and classify the gray levels as Equation (3) for final
segmentation for R, G, and B components separately for color images. The results of this
method are compared with histogram-based techniques for evolution.

Steps in the implementation of the proposed method for color image segmentation are
given in Table 18 below.

Table 18. Steps for implementation of the Proposed method on a color image.

Step Operation

1: Read a color image I and separate it into IR, IG, and IB. For RGB image c = 1,2,3 and
for gray image c = 1.

2: Obtain energy curves for RGB images ER, EG, and EB.
3: Calculate the probability distribution using Equation (3) and the histograms.
4: Initialize the parameters: Itermax, Iterlocal, δ, and N
5: Initialize a population Sc

t of N random particles with k dimensions.

6: Find wc
i and µc

i ; evaluate Sc
t in the objective function fotsu or fKapur depends on the

thresholding method to find threshold values for segmentation.

7: Compute the charge of each particle using Equation (18), and with Equations (19)
and (20) compute the total force vector.

8: Move the entire population Sc
t along the total force vector using Equation (21).

9: Apply the local search to the moved population and select the best elements of this
search depending on their values of the objective function.

10:
The t index is increased in 1. If t ≥ Itermax or if the stop criteria are satisfied the
algorithm finishes the iteration process and jumps to step 11. Otherwise, jump to
step 7.

11: Select the particle that has the best xB
i objective function value using fotsu or fKapur

from Equation (9)or Equation(14).

12: Apply the best thresholds values contained in xB
i to the input image I as per

Equation (2).

The Algorithm for EMO initialization is given below as Algorithm 2.

Algorithm 2: EMO initialization
1. For i = 1 to m do
2. for k = 1 to d do
3. λ← rand(0, 1)
4. xi

k ← lk + λ(uk − lk)
5. end for
6. Compute f

(
Xi
)

7. End for

The Algorithm to find optimized or best threshold values is given below as Algorithm 3.
From the above algorithms, pseudo-code, LSITER is the number of local search itera-

tions. The steps given in Algorithms 2 and 3 can be treated as pseudo-code also.
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Algorithm 3: Find optimized threshold values

1. count← 1
2. Length← δ(max(uk − lk))
3. For i = 1 to m do
4. for k = 1 to d do
5. λ1 ← rand(0, 1)
6. while count < LSITER do
7. y← xi

8. λ2 ← rand(0, 1)
9. if λ1 > 0.5 then
10. yd = yd + λ2·(Length)
11. else
12. yd = yd − λ2·(Length)
13. end if
14. iff(y) < f

(
Xi
)

then

15. xp ← y
16. count← LSITER− 1
17. end if
18. count← count + 1
19. End while
20. end for
21. end for
22. Xbest ← argmin

(
f
(
xi
)
), xi ∈ X

The proposed “multilevel thresholding based on EMO and energy curve (MTE-
MOE)” has many advantages over other methods for natural color images as illustrated
in Tables 2–17 and Figures 3–12. Despite its merits, the MTEMOE method also has some
limitations such as being based on an energy curve, which takes more time compared to
the time needed to compute the histogram of an image. Direct keywords for computing
the histogram of an image are available in Matlab and other scientific languages but the
code required to generate the energy curve needs to be developed by researchers based
on Equation (22). In the case of color image segmentation, the time taken to compute is
much greater than the energy curve that needs to be computed for three color components
of the image. While EMO has been successfully applied to a wide range of optimization
problems, it also has some limitations. Multilevel thresholding of images often involves
optimizing over high-dimensional search spaces, which can make it difficult for EMO to
converge to an optimal solution in a reasonable amount of time. Images may contain noise
that can affect the performance of EMO. EMO may not be able to handle the noise and may
converge to suboptimal solutions. EMO may not be adaptable to different types of images,
such as images with varying contrast or illumination.

The advantage of context-sensitive multilevel thresholding with an energy curve can
be used with different upcoming new optimization techniques to further improve the
effectiveness of segmentation. This method proposed with electromagnetic optimization
can be extended for color images with different sorts of artifacts and can be tested for its
efficiency. EMO with an Energy Curve can be applied to other image-processing tasks,
such as image denoising, image compression, and image restoration. Hybrid optimization
algorithms can be developed that combine EMO with other optimization techniques to
further improve the performance of multilevel thresholding. The robustness of EMO can
be studied for multilevel thresholding by testing it on a variety of images with different
characteristics, such as size, complexity, and noise levels. Future research work in this area
has the potential to contribute to the development of more efficient and effective algorithms
for image-processing tasks.
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5. Results and Discussions

This section describes the experimental results of the proposed method and compares
it with existing state-of-the-art techniques, and also explains the source of images under
test and metrics used for the evolution of the segmentation techniques.
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The proposed algorithm and existing techniques are experienced with color images
fetched from USC-SIPI and Berkeley segmentation data set (BSDS500); a total of nine
images are considered for the test, six natural images and three satellite images as shown in
Figure 1; in the same image the histograms and energy curves are also illustrated, indicated
as Images 1–9; all of the images considered for experimentation have distinct features. In
this study mainly objective analysis is adapted and depends on numerical values instead
of quality measures based on visual perception [40].

The comparative analysis between the proposed algorithm and other different opti-
mization algorithms such as SAMFO -TH [9], MVO [29], WOA [24], FPA [28], SCA [25],
ACO [16], PSO [13], ABC [19], and MFO [21] is necessary. The results and experimental
setups are taken from published articles [8] to compare with the proposed method, all the
algorithms executed until there is no change in the fitness function, and the MEAN value
fitness function of all the algorithms [8] is illustrated in Table 17. All the images are tested
with the number of threshold levels N = 4, 6, 8, 10, 16, 20, and 24.

The selection of comparative metrics [8] is an important task; it should be done in
such a way as to test all the aspects of segmentation. The parameters used in this study [4]
are described in this section. (i) The mean value of fitness (MEAN) with Kapur’s and
Otsu’s method, is considered a significant metric to test the performance of optimization
schemes. This index is computed using Equation (9) in Otsu’s method or Equation (3)
in Kapur’s entropy. It demonstrates the robustness of the optimization algorithm in
the course of selecting the optimized threshold vector. (ii) Peak signal-to-noise ratio
(PSNR), this parameter estimates the deviation of a segmented image from its original
image, which indicates the quality of a reconstructed image. A high PSNR value refers to
better segmentation. (iii) Mean square error (MSE), a lower MSE value illustrates better
segmentation; it computes the average of the square of the error. (iv) Structural similarity
(SSIM), this parameter gives the level of similarity between the segmented and input
image under test; a greater value of SSIM [39] indicates a better segmentation effect; it is
in the range from −1 to +1. (v) Feature similarity (FSIM), this is similar to SSIM, which
indicates degradation of image quality; it ranges [−1, 1]; a high value of FSIM means better
segmentation of the color image. (vi) probability Rand index (PRI) or simply Rand index
(RI), this computes the connection between the ground truth and segmented image; better
performance [9,42,43] is indicated by a higher PRI value. (vii) Variation of information
(VOI), this gives the randomness of a segmented image; a low VOI value indicates better
segmentation performance. All comparative parameters are described along with the
required equations in Table 1. The segmented images with various optimization techniques
are obtained from published articles and this study proves that the proposed approach
provides better performance [44,45] than the techniques considered in this research work.
Figures 2 and 3 illustrate the segmented results using the proposed (MTEMOE) approach
to color image segmentation based on Otsu’s and Kapur’s methods [43,46,47]. In the
end, a statistical analysis is firmly used to demonstrate the dominance of the proposed
approach. The segmented images are depicted in Figures 2–7 for threshold levels = 4,
6, 8, 10, 16, 20, and 24 using Otsu’s variance and Kapur’s entropy. Figure 2 illustrates
the segmented resultant images with the proposed image with Kapur’s methods; at the
same time, segmented results of the proposed technique are given in Figures 3–5 with
a focus on results with SAMFO-TH, MVO, WOA, ABC, MFO, ACO, and ABC based on
Kapur’s entropy as the fitness function. Figures 6 and 7 demonstrate results with Otsu’s
methods with the above-mentioned optimization techniques. The comparative metrics of
segmentation performance are presented in Tables 2–17; the performance parameters used
are MEAN, PSNR, MSE, SSIM, FSIM, PRI, andVoI.

The required expressions of comparative parameters are given in Table 1. From
Tables 2–17, the values of comparative metrics are presented for the proposed method and
another existing method. In Table 17, the average MEAN values of fitness with Kapur’s
and Otsu’s methods on optimization techniques MVO, WOA, PFA, SCA, ACO, PSO, ABC,
MFO, and SAMFO-TH, and for the proposed approach on nine images considered with
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threshold levels N = 4, 6, 8, and 10 are given. It shows clearly that the proposed methods
result in higher values of average MEAN with both Kapur’s and Otsu’s techniques. The
average MEAN values of fitness are computed separately for three color components (R,
G, and B) for each image. In particular, the values with the proposed method with Otsu’s
techniques are much higher compared with other optimization techniques. In Table 2 PSNR
values are presented for SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO,
and the proposed model using Kapur’s method with threshold levels N = 4, 6, 8, and 10;
the results clearly show that the PSNR values with the proposed method are much better
than other techniques, especially with N= 10. In Table 9, PSNR values with Otsu’s method
are given and with all the images the PSNR values for the proposed method are superior
to any other method considered; the average PSNR with the proposed method is 26.2278
which is higher than other techniques; after the proposed method, the SAMFO-TH method
gives the best PSNR values. In Tables 3 and 10, the mean square error (MSE) values with
Kapur’s and Otsu’s techniques are given for the proposed method and other techniques.
The required expression to compute MSE is mentioned in Table 1. MSE value should be less
for better segmentation; the MSE values are much less for the proposed method compared
to other techniques, especially for higher thresholding levels (8 and 10). From Table 10, the
average MSE for all nine images is 229.5213 with the proposed methods, whereas its value
is 1449.4559 with SCA-based segmentation. After the proposed method, the SAMFO-TH
provides the best MSE values with both Kapur’s and Otsu’s techniques. In Tables 4 and 11,
the structural similarity index (SSIM) is given for Kapur’s and Otsu’s techniques; its value
should be higher for better segmentation. The value of SSIM with the proposed method is
slightly higher than the SAMFO-TH method but much higher than multilevel thresholding
techniques with other optimization methods considered for comparison.

In Tables 5 and 12, the featured similarity index (SSIM) is given for Kapur’s and Otsu’s
techniques; its value should be higher for better segmentation. The value of FSIM with
the proposed technique is higher than all other techniques. The average FSIM computed
for nine images with the proposed technique with Otsu’s method is 0.8818; its value with
SCA is only 0.8011. From Tables 6 and 13, the PRI should be a higher value for better image
segmentation. The PRI values are slightly better for SAMFO-TH compared to the proposed
method, whereas its values are much better than other techniques.

In Tables 15 and 16, there is a comparison of MEAN computed by SAMFO-TH, MVO,
and WOA using Otsu’s and Kapur’s methods with N = 4, 6, 8, and 10 for red, green,
and blue components separately; its values are much higher with Otsu’s method than
Kapur’s method. After analyzing the information from Table 17 it can be concluded that
the proposed method gives a much better average MEAN of fitness with both Kapur’s and
Otsu’s methods than all other techniques considered.

In this discussion of results, the proposed approach is compared with other algorithms
using the mean of fitness function (MEAN); in Table 8, the MEAN values computed by
the proposed method are given for both Kapur’s and Otsu’s methods. Higher MEAN
values indicate higher accuracy. These values are significantly higher than those values
obtained with other methods, including SAMFO-TH; as the level of threshold increases
the MEAN values increase in both Kapur and Otsu methods. The MEAN values are much
greater with Otsu’s method than with Kapur’s method. Table 15 depicts the MEAN values
with SAMFO_TH, MVO, and WOA with Otsu’s methods; these values are much lower
than with the proposed approach and MEAN values with other optimization techniques
can be fetched from published [8] articles for comparison. In Table 16, a comparison of
MEAN computed by SAMFO-TH, MVO, and WOA using Kapur’s method with N = 4, 6,
8, and 10 for the red, green, and blue components is given. Very importantly, in Table 17,
the average of MEAN values with various optimization techniques with both Otsu’s and
Kapur’s methods are presented; the results show that the results with the proposed method
are highly superior to all the techniques considered in this research, for color components
red, green, and blue. From Table 17, we can conclude that the mean of MEAN value for all
the images is higher with the proposed approach with both Otsu’s and Kapur’s methods;
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at the same time the performance of SCA, PSO, and MFO is not up to the mark; after the
proposed approach SAMFO-TH is the best one. From this discussion, we can conclude that
the proposed approach for segmentation performs with better stability.

In Table 1 PSNR values with Kapur’s method are presented for all the optimization
techniques which are under test and, in Table 9, PSNR values with Otsu’s method are given.
From the two tables mentioned above, we can deduce the conclusion that the proposed
approach produces better PSNR compared to other methods; PSNR performance is much
higher with Kapur’s than with Otsu’s method, as the level thresholding increases PSNR
also increases tremendously. The mean PSNR for nine images with the proposed method
is 25.2768 (from Table 2) and 24.6188 with SAMFO-TH; the lowest value is with FPA at
21.678. At the same time, the mean of PSNR with Otsu’s criteria is 26.222 for the proposed
method, 21.2768 with SAMFO-TH, and the lowest value is 19.5712 with FPA. PSNR values
are higher for satellite images (Images 7, 8) compared to the rest of the images; for Image
3 PSNR performance is very low; from the above discussion, the proposed method can
provide better PSNR compared to the other methods considered. Lower MSE implies better
segmentation performance; from Tables 3 and 10, MSE with the proposed approach is much
lower than with other methods for Kapur’s and Otsu’s techniques. The average MSE value
with the proposed method is 294.4714, whereas it is 707.477 with FPA for Kapur’s method.

Other most significant quality metrics for color image segmentation are SSIM and
FSIM, and higher values of FSIM and SSIM indicate accurate image segmentation. In
Table 4, SSIM values are presented and computed by SAMFO-TH, MVO, WOA, FPA, SCA,
ACO, PSO, ABC, and MFO, and with the proposed model using Kapur’s method with
N = 4, 6, 8, and 10. In Table 11, a comparison of SSIM with Otsu’s method is described; mean
values of SSIM for the technique are given which indicate the overall SSIM performance
of nine images. For instance, from Table 4, SSIM is 0.9867 with the proposed method and
0.98539 with SAMFO-TH, with only slight variation with other methods. In Tables 5 and 12,
FSIMs with Kapur’s and Otsu’s methods are presented, respectively. From Table 5, they are
0.8923 for the proposed method, 0.7898 with SAMFO-TH, and finally, the lowest value is
0.8377 with PSO. Both the SSIM and FSIM values are enhanced along with threshold levels
from 4 to 10.

The VOI and PRI are important and distinguishing comparative metrics in the field
of segmentation. High-quality segmentation is referred to by higher PRI and low value
of VOI. The PRI values with various techniques including the proposed one (MTEMOE)
are illustrated in Tables 6 and 13 with Kapur’s and Otsu’s methods, respectively. From
Table 6, the PRI value with the proposed method is better than WOA, FPA, SCA, and
ACO, but lower than other methods with Kapur’s method. With Otsu’s criteria, MTEMOE
performs well in terms of PRI compared to all the techniques other than SAMFO-TH and
WOA, as illustrated in Table 13; finally, we point out that higher PRI values are generated
with Otsu’s method compared to Kapur’s method. However, with higher threshold levels
(N = 16, 20, and 24) the proposed method gives higher PRI values compared to all other
methods considered in this study. From Tables 7 and 14, the VOIfor the proposed method
gives better results than other techniques for both Kapur’s and Otsu’s methods; only WOA
and SAMFO-TH give a minute improvement in the case of Otsu’s methods; at a higher
level of thresholding, the proposed method gives much lower(or better) values compared
with the methods in this study including SAMFO-TH. The overall impression is that the
MTEMOE is a better approach to color image segmentation than other state-of-the-art
techniques and the proposed technique uses an energy curve instead of a histogram.

6. Conclusions

In this article, many schemes for color image segmentation are discussed. From that
pool of methods, multilevel thresholding (MT) is a powerful technique, generally based
on the histogram of an image. To nullify the shortfalls of the histogram, another curve
that is similar to the histogram called the energy curve is used instead of the histogram
to efficiently compute optimized thresholds. The proposed model for segmentation is
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based on Otsu’s and Kapur’s methods for MT on an energy curve with EMO for finding
optimized threshold levels by maximizing the inter-class variances and entropy. The results
for a group of color benchmark images clearly show that MT on the energy curve is more
efficient than the histogram-based techniques. The energy curve can consider spatial
contextual information to find energy levels at each pixel. Consequently, the same veiled
information is used to compute optimized levels. The efficiency of the proposed approach
is evaluated with mean of fitness (MEAN), PSNR, MSE, PRI, VOI, SSIM, and FSIM. The
proposed approach (MTEMOE) is tested on nine color images using both Otsu’s and
Kapur’s methods at different threshold levels (N = 4, 6, 8, 10, 16, 20, and 24); the proposed
method is compared with other state-of-the-art methods for color image segmentation:
SAMFO-TH, MVO, WOA, FPA, SCA, ACO, PSO, ABC, and MFO. From the results, we can
conclude that the value of PSNR is greater with the energy curve than with methods based
on the histogram; for the proposed method, the MEAN of the objective function is very
high compared with a histogram-based method with optimization techniques. The higher
PRI and lower VOI values mean better inter-class variance with the proposed method.
Based on the values of comparative metrics such as PSNR, MSE, VOI, PRI, and the average
MEAN value of fitness function and other parameters, the methods for segmentation of a
color image are arranged from best to worst as the proposed method, SAMFO-TH, ACO,
SCA, PSO, WOA, MFO, ABC, FPA, SCA, and MVO. Finally, we can conclude that the
proposed approach gives an overall better performance for color image segmentation than
the methods considered for various applications. The energy curve can be used with the
latest upcoming optimization algorithms for still better results.
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