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Abstract: With the widespread use of deep learning in leading systems, it has become the mainstream
in the table detection field. Some tables are difficult to detect because of the likely figure layout or the
small size. As a solution to the underlined problem, we propose a novel method, called DCTable, to
improve Faster R-CNN for table detection. DCTable came up to extract more discriminative features
using a backbone with dilated convolutions in order to improve the quality of region proposals.
Another main contribution of this paper is the anchors optimization using the Intersection over Union
(IoU)-balanced loss to train the RPN and reduce the false positive rate. This is followed by a RoI Align
layer, instead of the ROI pooling, to improve the accuracy during mapping table proposal candidates
by eliminating the coarse misalignment and introducing the bilinear interpolation in mapping
region proposal candidates. Training and testing on a public dataset showed the effectiveness of
the algorithm and a considerable improvement of the F1-score on ICDAR 2017-Pod, ICDAR-2019,
Marmot and RVL CDIP datasets.

Keywords: dilated convolutions; anchors; bilinear interpolation; table detection; Faster R-CNN

1. Introduction

The wide use of paper documents in several domains such as finance, business and
sciences has pushed researchers to develop digitization solutions and invest in its related
technologies, from scanning to data extraction. In this context, Document Image Analysis
and Recognition (DIAR) systems were designed to reduce human efforts and errors in
information extraction from scanned documents [1]. Therefore, various processes, including
invoice processing in manufacturing, have become automatic. Actually, in an invoice with
a sophisticated template, the data are not narrative but organized in tables. Therefore,
there is a need for the accurate extraction of data presented in tables. Table detection was
always considered as a part of the document image analysis process [2] performed in a
prepossessing step for OCR (Optical Character Recognition). For this purpose, a great
deal of table detection techniques were proposed for several formats of documents (PDF
or raster images [3]). While PDF is a vectorized representation that facilitates document
reproduction to devices, such as a printer, the raster image is produced by a scanner or
camera-capture and represented by pixels [4]. The table detection is a well-studied topic
in the area of the document analysis community. Regardless of its layout, it is quite easy
for humans to find and read a table in a document. However, for an algorithm, it is more
difficult for two reasons. The first one is the high intra-class variance of tables where the
system has to cope with different layouts and sizes as it could be missing ruling lines,
nested rows and columns, etc., especially when it comes to small tabular regions. The
second reason is the low inter-class variance between tables where other data containers,
such as figures and charts, risk being mistakenly localized/classified as tables due to the
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similarity among them. This risk could affect successful data extraction workflow and yet
increases false positives.

Driven by the enthusiasm on region-based CNN (R-CNN) [5] and its further improve-
ments, many researchers took advantage of the novel blend of R-CNN in various tasks.
Fast R-CNN [6] generates region proposals from extracted feature maps and reshapes
them into a fixed size using a ROI pooling layer. Fast R-CNN is comparatively fast to
R-CNN in both training and tests. Faster R-CNN [7] came up with an object detection
algorithm that eliminates the selective search algorithm and allows the region proposal
network (RPN) to learn the region proposals. A RPN is a fully convolutional network
that predicts positions and probability scores for each region proposal [7]. RPN and Fast
R-CNN are merged into a single network so that the RPN component tells the Fast R-CNN
where to look. By introducing the valuable region proposal networks (RPN) [6], Faster
R-CNN [7] gained a large amount of interest from the table detection community [3]. In
2017, the very first deep learning table detection approach was proposed in [8], where
authors used the Faster R-CNN [7]. Faster R-CNN was extended by the Mask R-CNN [9]
with a branch for predicting an object mask in parallel with the segmentation masks on
each RoI (Region of Interest) for bounding box recognition. Then, many works adopted
the Mask R-CNN [9] for more accurate table detection tasks. Since then, researchers in
the table detection community have started to use a number of efficient developed deep
learning frameworks, such as in [10,11].

Despite the impressive results of Faster R-CNN in table detection, this task still
remains a serious challenge. The confusion problem between tables and charts produces a
considerable number of false positives and consequently, affects the performance. Moreover,
small tabular regions also represent a serious problem in the table detection since they
risk being classified as background. When analyzing the Faster R-CNN, we noticed the
following problems: (i) It is true that the region proposal network (RPN) is designed to
generate region proposals with different scales based on anchor boxes. However, the
authors in [7] have shown that anchor boxes are not sufficient to obtain accurate detection,
and this could be caused by the down-sampling operation in the convolutions layer. A
typical convolutional layer has a fixed scale and uses a fixed receptive field in the whole
document. Thus, small tables risk being missed, which consequently increases the recall
rate of object proposals; and (ii) at each location in the feature map, the RPN predicts
the objectness score, which indicates whether the anchor is positive or negative: anchors
with a high IoU overlap with the ground truth are classified as positives, otherwise they
are considered as negatives. It was reported in [12] that filtering the majority of positive
anchors alleviates the foreground–background class imbalance and drives the R-CNN to
outperform other frameworks such as SSD [13] and YOLO [14]. However, the confusion
problem remains with Faster R-CNN and stems from an important rate of false positives.
This is simply because the objectness score do not precisely reflect the correct location in
the region proposal. In other words, an anchor box may contain an object different from
the interest object, but the later is classified as a positive anchor even though it is a negative
anchor and its localization is not an object of interest. Consequently, this kind of anchor
could degenerate the RPN with false positives and lead to the confusion problem. (iii) The
RoI pooling layer suffers from the lack of accuracy caused during mapping region proposal
coordinates on the feature map and using max pooling to aggregate features.

In order to remedy the underlined problems, we use a newly introduced detection
method based on Faster-RCNN, called "DCTable", to detect and localize tables. The key
contributions of this paper are the following:

• We use a dilated VGG-16 network for the feature extraction where we remove the
downsampling (in max-pooling and strided convolution). This leads to the expansion
of the receptive fields of the conv_4 and conv_5, thus obtaining more discriminative
features and preventing both confused and missed detections.
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• We leverage the great potential of weighted IoU in the correlated IoU balanced-loss
functions [15] to improve the localization accuracy of the RPN and alleviate the
confusion problem.

• We introduce the bilinear interpolation in the Faster R-CNN in order to ensure a
mapping based on exact spatial locations and correctly align the extracted features
with the input by replacing the typical RoI pooling with the RoIAlign layer.

• We evaluate the enhanced approach on four datasets using not only a Precision-Recall
space, but also the ROC space to show how much our approach improves localization.

The remainder of this paper is organized as follows. Section 2 presents related works.
Section 3 describes the details of our proposed methodology for table detection in scanned
documents. Materials in terms of the used datasets and metrics are defined, respectively,
in Sections 4 and 5. The obtained results are discussed in Section 6. Finally, Section 7
concludes the paper.

2. Related Works

Research on table detection started in the 2000s, before the emergence of deep learning-
based methods. This task was performed in a hand-crafted way using rules and heuris-
tics [16,17]. Later, many machine learning techniques were used for table detection tasks,
which led to a significant improvement of the table detection accuracy, as in [18–20]. When
reviewing table detection related papers, we found that since 2017, a considerable amount
of research effort was made using the groundbreaking object detector framework Faster
R-CNN [7]. While some researchers proposed two- or multistage table detection processes
where they were used to prepossess document images, others explored Faster R-CNN [7]
with different backbones to perform table detection tasks.

2.1. Heuristics-Based Table Detection

Kienninger et al. [16] proposed the known T-recs system, which relies on word group-
ing into columns to identify table cells. These methods are outperformed by machine
learning techniques. The authors in [17] introduced the first learning-based approach
where they represented a document by a MXY tree from which they identified blocks with
horizontal and vertical lines. By 2015, a new wave of introduced works defined table detec-
tion tasks in the form of object-detection problems and proved that this paradigm works
efficiently for such tasks. In this context, table regions were located and extracted using
local thresholds for word space and line height from scanned document images in [20].
An alternative approach was proposed in [21] and presented a regions of interest-based
method and the spatial arrangement of extracted text blocks.

2.2. Learning-Based Table Detection

A table detection task was performed in [18] with the Hidden-Markov-Models and
in [19] where the SVMs were applied to hand-crafted features. In 2017, the most first
work [8] used Faster R-CNN [7] to pre-process data with the Euclidean distance transform,
the linear distance transform and the max distance transform. Then, Faster R-CNN was
fine-tuned to detect tabular regions. Another method based on pre-processing is proposed
in [22], where authors assume that colors would boost the ability of Faster R-CNN in
distinguishing table regions. For such, they use to feed a colored document image to Faster
R-CNN. The proposed method applied a distance transform to the blue channel only and
reached a good result with the fine-tuned Faster R-CNN based on a ResNet backbone [23].
NLPR-PAL, owner of the best method on ICDAR 2017 table detection tasks [24], is a
multistage approach where authors start by classifying the connected component into text,
figures and tables with SVM. Then, they merge the obtained figures and tables and apply
Faster R-CNN to distinguish the connected component of tables from those of figures.
Another research work [25] uses Faster R-CNN and combines it with the table corner
locating method to remedy the problem of missed table boundaries. Furthermore, the
authors in [10] adopted YOLOv3 [26] by including an anchor optimization strategy and
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two post processing methods to solve the problem of inaccurate edges detection, which
directly affects the system performance.

We also notice that there are some works [27,28] that simply fine-tune Faster R-CNN
to the table detection task. In the same context, Casado-Garcìa et al. [29] conduct a compre-
hensive study on the benefits of close domain fine tuning by comparing Mask R-CNN [9],
Retina [12], SSD [13] and YOLO [14]. They show that in addition to solving the problem
of data scarcity and avoiding overfitting, fine tuning from a close domain considerably
improves the accuracy of the produced model.

Instead of typical convolutions, the deformable convolutions are used in many works
in order to leverage the power of adapting the receptive field of the network to the size of
the input table. The authors in [30] equip Faster R-CNN with a deformable ResNet-101
backbone. The deformable receptive field is also introduced to the RoI pooling in order to
adapt its receptive fields to random scales and transformations of the input. The authors
in [31] presented the first multistage deep neural network for table detection where the
main structure of this network is based on the Cascade Mask R-CNN [32] with a composite
backbone [33] having a deformable convolution for detecting tables in different scales. A
novel backbone, the HybridTabNet (HTC) [34], was recently used in [35] for table detection
task. The authors take advantage from this deformable backbone as a unified network
for joint object detection and segmentation. In addition, CasTabDetectoRS [36] is another
a novel table detection method that is based on Cascade Mask R-CNN [32] combined
with Recursive Feature Pyramid Network [37] and Switchable Atrous Convolution [38] as
backbones. An alternative approach to convolutional networks is proposed in [11]. The
authors use Graph Neural Networks (GNN) for table table detection in invoices.

Most of the mentioned works in the field of table detection achieved significant results
on a variety of datasets. However, and to the best of our knowledge, there are two important
aspects of the table as an object that need to be studied more, which are the figure-like
layout and the small size of the table.

3. Method

In this section, we illustrate the main contribution of this paper, which presents our
proposed method, DCTable (as shown in Figure 1). An input document image is fed to the
VGG-16 with dilated convolution layers in order to extract features. On top of these feature
extractors, an RPN (Region Proposal Network) is constructed to simultaneously predict
table region coordinates and objectness scores. This RPN is trained using high correlated
IoU-balanced losses. Then, the obtained candidates are fed to the RoIAlign layer, which
performs the bilinear interpolation on the mapping table region coordinates on the feature
maps and pooling features.

3.1. Feature Extractor with Dilated Convolutions

Since the first implementation of Faster R-CNN [7], where the authors used VGG-
16 [39] as the most deepest CNN, it becomes the default baseline backbone architecture.
Moreover, the authors in [40] are the only ones who used dilated convolutions to build a
VGG-16 [39] for tables and charts classification. Motivated by their results, we implement
DCTable based on dilated VGG-16 along with the replacement of conventional convolutions
with dilated ones. A dilated convolution is defined in [41] as a d-dilation convolution where
d is the dilation factor:

(F ∗d k) = ∑
s+dt=p

F(s)k(t) (1)

where k : Rr → R is a discrete filter of size (2d + 1)2. If d = 1, then the convolution
is a 1−dilated convolution and it refers to the typical convolution. A convolution with
a dilation factor d = 1 exponentially expands the receptive field and drops the down-
sampling operation to avoid loss of resolution.
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Figure 1. The DCTable architecture. In the first stage, the feature extractor is composed of strided
convolutional layers in the three first blocks and where each one is followed by a pooling layer. The
two other blocks are equipped with dilated convolutions where the used dilation rates are d = 2 and
d = 3, respectively. Then, the RPN is trained with IoU-balanced loss. The final stage is composed of
ROIALign layer and dense layers.

As illustrated by Figure 1, the backbone is composed of strided convolutional layers
in the three first blocks with d = 1 and where each one is followed by a pooling layer.
Thus, the size of the feature map decreases from 600× 600 to 75× 75. Then, we replace
the typical convolutional layers in the con_4 and conv_5 with dilated ones where the used
dilation rates are d = 2 and d = 3, respectively. We remove the pooling layers so the
size of the feature map remains unchanged. It was shown in [42] that stacking dilated
convolution kernels with a fixed dilation rate causes the gridding issue, which refers to
losing important features in the feature map. In a dilated convolution, the receptive field
covers only locations with non-zero padding. This problem was alleviated in [43], by
removing the max-pooling in the model to reduce the high-amplitude and high-frequency.
However, the problem is exacerbated on the top-most layers. That is why the HDC [42]
came up to further reduce the gridding by using arbitrary dilation rates without using a
common factor through the network as in [40], which could generate a sparse sample from
the input and lead to missing relevant information. This is important not only for small
tables, but also for big ones without adding extra blocks as in [43]. For this reason, we
used three different dilation rates the backbone. In Figure 2, we represent transformations
produced on a filter by applying dilated convolutions with increased dilation rates on
this filter.

(a) (b) (c)

Figure 2. Impact of stacking dilated convolutions with different dilation rates on a 3 × 3 filter [42]:
(a) F1 is produced from F0 by a 1-dilated convolution, (b) F2 is produced from F1 by a 2-dilated
convolution, and (c) F3 is produced from F2 by a 3-dilated convolution.
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3.2. IoU-Balanced Loss for Optimizing Anchors

A RPN is a fully convolutional network that simultaneously predicts object bounds
and objectness scores at each position [7]. The famous cross-entropy loss and smooth L1
are adopted, respectively, for its two branches and are defined in Equation (2).

L(pi, ti) =
1

Ncls
∑

i
Lcls(pi, p̃i) + λ

1
Nreg

∑
i

p̃iLreg(ti, t̃i) (2)

The classification loss Lcls is a logarithmic function over two classes, object and not
object. The index of an anchor in a mini-batch is represented with i, and pi is the predicted
probability of anchor i being an object. In the case where the anchor is positive, p̃i as the
ground-truth label will be equal to 1, otherwise it will be 0.

For the regression loss, it is based on the robust loss function (smooth L1) where ti is
a vector representing the four parameterized coordinates of the predicted bounding box,
and t̃i is the vector of the ground-truth box associated with a positive anchor. However,
the classification loss drives all the positive anchors to learn their high classification scores
without considering their location quality. The regression loss Lreg is also activated only
for positive anchors [7]. Thus, this weak correlation between classification and regression
loss functions affects localization accuracy and increases the number of false positives.
To strengthen this correlation and enhance the localization accuracy in a one-stage object
detection framework, IoU-balanced loss functions [15] use weighted positives examples
based on their localization accuracy. The IoU-classification loss is defined as follows:

Losscls =
N

∑
i∈Pos

ωi(IoUi) ∗ CE(pi, p̂i) +
M

∑
i∈Neg

CE(pi, p̂i) (3)

This function (Equation (3)) is used to up-weight examples with high IoU and down-
weight examples with low IoU as follows: Pos and Neg represent the sets of positive
training examples and negative training examples, respectively. pi and p̂i represent the
predicted classification score and the corresponding ground truth label, respectively, with
CE the cross-entropy loss. IoUi represents the regressed IoU for each regressed positive
samples. wi(IoUi) represents the assigned weights to positive samples and is defined in
Equation (4).

ωi(IoUi) = IoUη
i

∑N
i=1 CE(pi, p̂i)

∑N
i=1 IoUn

i CE(pi, p̂i)
(4)

In Equation (2), the loss function is driven by a positive sample because the weight
of all the samples is restricted to be binary 1, 0. Therefore, all the negative samples are
suppressed since their weights are equal to 0. However, the IoU-loss classification function
uses two properties of input anchors: the weight and the IoU, where the weight is assigned
based on the IoU. Thus, different weights are assigned to all the input samples. In the
mentioned equation, η controls to what extent the IoU-balanced classification loss focuses
on examples with high IoU and suppresses examples with low IoU. For implementation,
we fix η at 1.5 since, in the paper of [15], the detector achieves the best performance.

It is true that the Smooth L1 loss was used in [6] as robust against outliers compared to
the Smooth L2 loss used in R-CNN [5]. According to the results of [44], the localization loss
is driven by samples with low IoU, which represent outliers and dominate the gradients.
Hence, there would be a significant degradation of the RPN performance. Motivated by
this fact, IoU-balanced localization loss put more focus on inliers by assigning great weights
to examples with high IoU and reducing weights of examples with low IoU as defined in
Equation (5).

Lossreg =
N

∑
i∈Pos

∑
m∈x,y,w,h

ωi(IoUi) ∗ smoothL1(lm
i − gm

i ) (5)
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where,

ωi(IoUi) = ωloc ∗ IoUλ
i (6)

In the defined equation, while (lx
i , ly

i , lw
i , lh

i ) represents the parameterized coordinates
of the predicted box, (gx

i , gy
i , gw

i , gh
i ) represents the parameterized coordinates of the corre-

sponding ground truth box. λ is defined to control to what extent IoU-balanced regression
focuses on inliers and suppresses outliers. As mentioned in [15], the best performance is
obtained when λ = 1.5, so we use this value in all our experiments.

3.3. RoIAlign in DCTable

Faster R-CNN was designed to perform an object detection task and return the posi-
tions of the predefined classes. The output of the first stage is a set of region candidates
described by a bounding box (r, c, h, w) into a feature map, where (r, c) represent its top-left
corner and (h, w) represent the height and width, respectively. In the second stage, the
predicted coordinates are used by the RoI pooling layer. This layer was defined in [6] as
a downsampling operation that pools over local features extracted from different image
feature maps and generates small features of the size (H ×W). The input of a RoI layer
is, indeed, a set of feature maps containing object proposals where each one is described
by the predicted coordinates, from the first stage, forming a bounding box (bbox). Let
this bounding box be a tuple of float coordinates (x, y, h, w) where (x, y) represents its
top-left corner and (h, w) the height and the width, respectively. In order to identify regions
covered by RoI features meant to be pooled, the aforementioned coordinates are quantized
into the discrete granularity of the feature map as shown in Figure 3. In other words, the
RoI pooling rounds up every float coordinate to map the region proposal to the feature map
and obtains a RoI with a size of h× w. The quantization is also performed on this RoI by
dividing it into a k× k grid where k = h/H and k = w/W and the features of each subgrid
are aggregated by a max pooling operation [9]. Figure 3a shows the evident misalignment
caused by not only the quantizing-based mapping of the RoI to the feature map, but also
dividing the RoIs into bins, so that the new position of the spatial coordinates impacts the
bounding box accuracy.

Figure 3. From Fast R-CNN to Mask R-CNN: (a) RoI-pooling layer and (b) RoIAlign layer.

Faster R-CNN was extended by the Mask R-CNN [9] with a branch to perform a
pixel-level object instance segmentation by predicting an object mask in parallel with the
segmentation masks on each RoI (Region of Interest) for bounding box recognition. To avoid
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the coarse misalignment produced by the RoI pooling, the authors of [9] also introduced
the RoIAlign as a quantization-free layer that uses bilinear interpolation [45] to ensure a
mapping based on exact spatial locations and correctly aligns the extracted features with
the input. The RoIAlign cancels every quantization performed on any coordinates and
the bins of the RoI. In Figure 3b, we represent a feature map by a dashed grid while the
mapped RoI is represented by a green rectangle with solid lines. This RoI is divided into
2× 2 bins where each bin contains four sampling points represented by dark dots. Using
the bilinear interpolation, the value of each sampling point is computed using the bilinear
interpolation from the nearby grid points on the feature map. Figure 4 shows that bilinear
interpolation is performed through linear interpolation in two directions. The values of
points A1, A2, A3, and A4 are known, and let P be the unknown point that will be computed
as follows. Firstly, R1 is obtained by a linear interpolation of A1 and A2 applied in the x
direction, also R2 is obtained by interpolating A4 and A3:

f (R1) ' x2 − x
x2 − x1

(A1) +
x− x1

x2 − x1
f (A2) (7)

f (R2) ' x2 − x
x2 − x1

(A4) +
x− x1

x2 − x1
f (A3) (8)

Then, P is obtained by a linear interpolation of R1 and R2 in the y direction:

f (P) ' y2 − y
y2 − y1

f (R1) +
y− y1

y2 − y1
f (R2) (9)

Figure 4. The bilinear interpolation.

4. Datasets

In order to show the effectiveness of the proposed methodology, we evaluate our
new model on publicly available datasets: ICDAR-POD2017, ICDAR-2019, Marmot, and
RVL-CDIP.

4.1. ICDAR-POD2017

This dataset has been released for a competition (ICDAR-2017 POD) [24] focusing
on specific page objects comprising the detection of tables from images. According to the
competition paper, the dataset exhibits a good variety in object styles including formulae,
tables, graphics and figures. There are 817 images containing 317 tables. In this paper,
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we used about 900 images where the table region is used as a positive example while the
background (paragraphs, figures and equations) is considered a negative example.

4.2. ICDAR-2019

The cTDaR competition aims at investigating and comparing general methods that
can reliably and robustly identify the table regions within a document image on the
one hand, and the table structure on the other hand [46]. In the paper of the cTDAR
competition [46], two datasets were introduced. While the first one was presented for
table detection (TRACK A), the second one was for table recognition (TRACK B). Those
datasets consist of modern printed documents and archival documents. In this paper, we
use TRACK A to train and test our proposed approach.

4.3. Marmot

The Marmot Dataset contains 2000 pages in PDF format, where most of the examples
are from research papers, and contains 958 table labels [47]. The dataset is composed of
Chinese and English pages. The Chinese pages were selected from over 120 e-Books with
diverse subject areas provided by Founder Apabi library, and no more than 15 pages were
selected from each book, while the English pages were crawled from Citeseer website. The
e-Book pages are mostly in a one-column layout, while the English pages are mixed with
both one-column and two-column layouts. When reviewing table detection related papers,
we found that all existing works, such as [30,35], trained their frameworks using ICDAR
2017-POD and took Marmot as a testing dataset for evaluation. Therefore, we follow in
our experiments the same protocol and we used the cleaned version of this set published
by [27] to evaluate our model fine-tuned on ICDAR 2017-POD.

4.4. RVL-CDIP

RVL-CDIP [48] contains 400,000 grayscale images, which are categorized into 16 classes
with 25,000 images per class. We annotate the region tables and backgrounds (logo, text,
etc) of only 600 invoices. We used the prepared set to train and evaluate the performance of
our models on scanned documents with noise. So, we randomly split the prepared set into
a training and test set. While 80% are used to train the model, the remaining 20% are used
to evaluate the performance of our model on noisy data such as RVL CDIP.

5. Evaluation Metrics

Many performance metrics have been mentioned in the literature and have been used
by researchers in the evaluation of table detection algorithms.

5.1. Precision-Recall Space

As with any learning method, the efficiency of any model is determined using mea-
sures such as true positive (TP), false positive (FP), true negative (TR) and false negative
(FN). It is worth mentioning that the performance evaluations are always based on a trade-
off between the true positive and true negative rate, and between recall and precision.
Consequently, the F1-score is the harmonic mean of both recall and precision and is widely
used in this domain.

Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(12)
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In our experiments, we assess our models using the intersection over union (IoU) of
the predicted bounding box against the ground truth ones, which is defined as:

IoU =
P ∩ T
P ∪ T

(13)

where P and T are the predicted bounding boxes and the ground truth regions, respectively.

5.2. ROC Space

We use Receiver Operator Characteristic (ROC) [49] curves that show how the number
of correctly classified positive examples varies with the number of incorrectly classified
negative examples. In ROC space, the False Positive Rate (FPR) and the True Positive Rate
(TPR) are plotted on the x-axis and the y-axis, respectively. While the FPR indicates negative
examples that are miss-classified as positive, the TPR measures the positive examples that
are correctly classified.

TPR =
TP

TP + FN
(14)

FPR =
FP

FP + TN
(15)

6. Results and Discussion

This section provides details on the different experiments performed to train and
evaluate our approach, DCTable.

In the experiment, we evaluate the effectiveness of our approach, DCTable, including
the dilated convolutions, the IoU balanced loss and the RoIAlign. We implement four
different models as follows:

• DCTable-A: a Faster R-CNN based on a simple VGG-16. We use the default implemen-
tation as in [6]. The output regions proposals are fed into the RoI Pooling layer. The
RPN is trained using the typical loss function as defined in the original paper [7].

• DCTable-B: a Faster R-CNN based on a dilated VGG-16. We replaced conventional
convolutions of the conv_4 and conv_5 with dilated ones where the used dilation
rates are d = 2 and d = 3, respectively. The output region proposals are fed into the
RoIALign layer. The RPN is trained using the typical loss function as defined in the
original paper [7].

• DCTable-C: we replaced the typical loss function in the RPN in DCTable-A with the
IoU-balanced loss function.

• DCTable: we replace the loss functions of the RPN in DCTable-B with the IoU-balanced
loss function.

We used the pretrained weights of VGG-16 from ImageNet as the backbone of the
Faster R-CNN. The training images are resized to 600 × 600 and we use for all models three
different anchor ratios: 0.5, 1 and 2, and three different anchor scales: 128 × 128, 256 × 256
and 512 × 512. Our models are optimized for 2500 epochs (with 32 as batch size) using
Adam as an optimizer starting from a learning rate as 0.00001. In order to avoid overfitting,
we use random horizontal flips for data augmentation.

In all our experiments, training and testing were performed with Tensorflow on the
Google Colab Pro platform, using a Tesla T4 GPU.

Effectiveness of IoU-Balanced Loss

As shown above, we set-up the loss functions of the RPN. So, we compare two different
trained RPNs: RPN with the typical cross-entropy, which is regarded as the classification
loss function, and the IoU-balanced classification loss, which is regarded as the regression
loss. The changes of the different loss functions on classification and regression are shown,
respectively, in Figure 5a,b during the training of the RPN. As the training progresses, the
value of the loss function continuously decreases. The loss function stabilizes and reaches a
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minimum after the first 20 epochs. For the regression function, it is obvious in Figure 5b that
it reaches a minimum quickly. Thus, it can be seen that IoU-balanced losses-based RPN has
a higher convergence speed than the typical RPN in terms of all the performance indexes.

(a)

Figure 5. Cont.

(b)

Figure 5. Loss function curves: (a) loss function classification: the typical loss function and the
IoU-balanced loss, (b) loss function localization: the typical loss function and the IoU-balanced loss
for localization.
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6.1. Test Performance on ICDAR2017

Table 1 reports the obtained results on ICDAR 2017 where we use two different IoU
thresholds of 0.6 and 0.8. Thanks to the potential of the dilated convolutions and the
RoIAlign, our method produced a tightly bounding box. It is obvious in the mentioned
table that the DCTable-B is more accurate and enhances the F1-score by 4% at 0.8 IoU
compared to DCTable-A. By introducing the IoU-balanced loss functions, and compared
to DCTable-B, DCTable improved the F1-score by 0.8% at 0.8 IoU. The detected table in
Figure 6 is the only under segmented region in the whole test set. At the same time, in
ROC curve Figure 7, the DCTable achieves the best TPR since the AUC is of 95%. The
AUC of DCTable-A is of 52%, which is caused by the confusion problem while, the AUC of
DCTable-C is about 74%. This leads us to conclude the effectiveness of IoU-balanced loss in
decreasing the FPR rate. At 0.6 IoU, our proposed DCTable reaches the best performance
(an F1-score of 97.5%) compared to DeCNT and FastDetectors, which achieved an F1-score
of 96.8% and 92.1%, respectively. Even at 0.8, we improve the F1-score by 3% (compared
to [25]) and detect all the table corners without any extra post-processing.

Table 1. Evaluation on ICDAR 2017-POD.

Models IoU P R F1-score

DCTable-A 0.6 0.891 0.937 0.913

0.8 0.946 0.909 0.927

DCTable-B 0.6 0.919 1 0.958

0.8 0.937 1 0.967

DCTable-C 0.6 0.911 0.911 0.911

0.8 0.953 0.911 0.932

DCTable 0.6 0.952 1 0.976

0.8 0.975 0.975 0.975

HustVision [24] 0.6 0.071 0.959 0.132

FastDetectors [24] 0.903 0.940 0.921

NLPR-PA L [24] 0.968 0.953 0.960

DeCNT [30] 0.965 0.971 0.968

CDeC-Net [31] 0.977 0.931 0.954

HybridTabNet [35] 0.882 0.997 0.936

CasTabDetectoRS [36] 0.972 0.941 0.956

HustVision [24] 0.8 0.062 0.836 0.115

FastDetectors [24] 0.879 0.915 0.896

NLPR-PAL [24] 0.958 0.943 0.951

DeCNT [30] 0.946 0.952 0.949

CDeC-Net [31] 0.970 0.924 0.947

HybridTabNet [35] 0.887 0.994 0.933

CasTabDetectoRS [36] 0.962 0.932 0.947

(Sun et al., 2019) [25] 0.832 0.943 0.956 0.949
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(a) (b)

Figure 6. Some sample images from ICDAR 2017-POD showing: (a) True Positive, (b) false positive.
The green region represents the ground truth bounding boxes while red region represents bounding
boxes of detected regions.

Figure 7. ROC curve for ICDAR 2017-POD dataset.

6.2. Test Performance on ICDAR 2019

The detection results on ICDAR 2019 are reported in Table 2. Without dilated convolu-
tions, IoU-balanced loss and RoIAlign, the DCTable-A only achieves a 87.8% F1-score at 0.9
IoU. However, DCTable-B improved the F1-score by 2% since the recall has been increased.
Basically, this improvement stems from the dilated convolutions and RoIAlign. Moreover,
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we found that the DCTable moves towards the disappearance of missed detections, but also
represents the best achievable configuration of the Faster R-CNN in terms of recall-precision
and the tightness of the boxes at 0.9 IoU. Even at 0.8 IoU, the DCTable achieves the best
state of the art performances compared to NLPR-PAL [24] and Lenovo Ocean [46]. At 0.6
IoU, the DCTable has been able to successfully detect all the table regions and achieved a
98.5% F1-score. It is obvious in the ROC curve in Figure 8 that the DCTable has the best
AUC, which is 92%. We observed that the recall decreases while increasing the IoU, thus
it causes some missing detections. Compared to the recall, the low precision is caused by
some under-segmented and over-segmented bounding boxes as represented in Figure 9b,c.
The dilated convolutions with RoIAlign in DCTable-B improve the quality of detections
from 81% to 86% in terms of accurate localization, but still suffer from the high FPR, which
depends on the FP produced from the confusion problem.

Table 2. Evaluation on ICDAR 2019.

Models IoU P R F1-score

DCTable-A

0.6 0.834 0.899 0.865

0.8 0.866 0.887 0.876

0.9 0.890 0.866 0.878

DCTable-B

0.6 0.828 0.929 0.875

0.8 0.855 0.929 0.890

0.9 0.869 0.926 0.896

DCTable-C

0.6 0.866 0.869 0.868

0.8 0.896 0.851 0.873

0.9 0.908 0.827 0.866

DCTable

0.6 0.971 1 0.985

0.8 0.983 0.996 0.989

0.9 0.983 0.991 0.987

TableRadar [46]

0.8

0.950 0.940 0.945

NLPR-PAL [24] 0.930 0.930 0.930

Lenovo Ocean [46] 0.880 0.860 0.870

CDeC-Net [31] 0.953 0.934 0.944

HybridTabNet [35] 0.920 0.933 0.928

CasTabDetectoRS [36] 0.964 0.988 0.976

TableRadar [46]

0.9

0.900 0.890 0.895

NLPR-PAL [24] 0.860 0.860 0.860

Lenovo Ocean [46] 0.820 0.810 0.815

CDeC-Net [31] 0.922 0.904 0.913

HybridTabNet [35] 0.895 0.905 0.902

CasTabDetectoRS [36] 0.928 0.951 0.939
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Figure 8. ROC curve for ICDAR 2019 dataset.

(a) (b)

Figure 9. Some sample images from modern ICDAR 2019 showing: (a) true positive and (b) false
positive. The green region represents the ground truth bounding boxes while the red region represents
bounding boxes of detected regions.

6.3. Test Performance on Marmot

The results in Table 3 show that DCTable-A fails to be accurate in table detection on
the Marmot dataset. When comparing models DCTable-A and DCTable-C, we found that
the precision has been increased by using IoU-balanced loss functions. So, this conduct
proves that the weakness of localization and classification loss functions of the RPN is
the harmful factor affecting the feature discrimination of DCTable-A. Consequently, and
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with the large variety in page layouts of the Marmot set, the model confuses between
tabular regions and other objects such as figures and charts. The RoC curve also shows that
DCTable-A suffers from high FPR compared to DCTable-C. Even DCTable-B was not able
to handle the confusion problem (the precision is about 70.5%) while achieving an AUC
of 80% and improved the recall, which is of 1 at 0.5 IoU. However, the DCTable came up
with the dilated convolutions, high correlated IoU-balanced loss and RoIAlign to produce
correct detections and achieve the best AUC in Figure 10, which is of 87%. Compared to
the state-of-the-art, our DCTable achieves the best F1-score at both 0.5 and 0.9 IoU with,
respectively, 96.6% and 96.9%. Figure 11 shows some of the errors that occurred during
table detection such as false positive, but also correct detections.

Table 3. Evaluation on Marmot.

Models IoU P R F1-score

DCTable-A 0.5 0.708 0.966 0.817

0.9 0.776 0.941 0.850

DCTable-B 0.5 0.705 1 0.827

0.9 0.778 0.901 0.891

DCTable-C 0.5 0.898 0.946 0.922

0.9 0.945 0.929 0.937

DCTable 0.5 0.933 1 0.966

0.9 0.969 0.971 0.969

DeCNT [30]

0.5

0.946 0.849 0.895

CDeC-Net [31] 0.975 0.930 0.952

HybridTabNet [35] 0.962 0.961 0.956

CasTabDetectoRS [36] 0.952 0.965 0.958

CDeC-Net [31]

0.9

0.774 0.765 0.769

HybridTabNet [35] 0.900 0.903 0.901

CasTabDetectoRS [36] 0.906 0.901 0.904

Figure 10. ROC curve for Marmot dataset.
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(a) (b)

Figure 11. Some sample images from Marmot showing: (a) true positive and (b) false positive. The
green region represents the ground truth bounding boxes while red region represents bounding boxes
of detected regions.

6.4. Test Performance on RVL-CDIP

Despite the noise in the RVL-CDIP set, our models performed well on this dataset, as
shown in Table 4. DCTable-B outperforms DCTable-A. This result is due to the increased
number of overlapped detections. Furthermore, DCTable-A fails to detect tables in a
document image with a high level of noise and achieve good results at 0.5 IoU. Additionally,
it is obvious in Figure 12 that DCTable achieves the better TPR with an AUC of 99%.
Figure 13 shows some of the errors that occurred during table detection.

Table 4. Evaluation on RVL-CDIP.

Models IoU P R F1-score

DCTable-A 0.5 0.607 0.774 0.680

0.8 0.635 0.734 0.681

DCTable-B 0.5 0.905 1 0.950

0.8 0.948 1 0.974

DCTable-C 0.5 0.926 0.984 0.955

0.8 0.955 0.984 0.969

DCTable 0.5 0.948 1 0.973

0.8 0.964 1 0.982
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Figure 12. ROC curve for RVL-CDIP dataset.

(a) (b)

Figure 13. Some sample images from RVL-CDIP showing: (a) true positve and (b) false positive. The
green region represents the ground truth bounding boxes while the red region represents bounding
boxes of detected regions.

6.5. Test Performance with Leave-One-Out Scheme of DCTable

In this section and inspired by [30,35], we present the cross-dataset performance
of DCTable following a leave-one-out scheme. In order to evaluate the generalization
capabilities of DCTable, we defined four schemes as follows:
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• Scheme 1: DCTable is trained on a combining set composed of ICDAR 2019, Marmot
and RVL CDIP and tested on ICDAR 2017.

• Scheme 2: DCTable is trained on a combining set composed of ICDAR 2017, Marmot
and RVL CDIP and tested on ICDAR 2019.

• Scheme 3: DCTable is trained on a combining set composed of ICDAR 2017, ICDAR
2019 and RVL CDIP and tested on Marmot.

• Scheme 4: DCTable is trained on a combining set composed of ICDAR 2017, ICDAR
2019 and Marmot and tested on RVL CDIP.

We report the evaluation in Table 5, where we used the same IoU thresholds values
0.6, 0.8 and 0.9 to identify true positives. For scheme 1, the achieved F1-score decreased
at 0.6 IoU by 1% compared to Table 1, but increased at 0.8 IoU by 1.2% to be the state-of
the art result on ICDAR 2017. We found that the F1-score slightly decreased for scheme 2
and 3 compared to Tables 2 and 3. For the forth scheme and compared to the results in
Table 4, the F1-score dropped out because RVL CDIP is quite different from 97.3% to 75%,
the combined training set of ICDAR 2017, ICDAR 2019 and Marmot in terms of the quality
of scanned documents and also type (a set of noisy invoices). By analyzing the failure cases
in all the test sets for the other schemes (1, 2 and 3), we found some detections drawn very
far from the table border. In other cases, the empty regions of the tables are not inside the
returned bounding boxes.

Table 5. Evaluation with leave-one-out scheme of DCTable on ICDAR2017, ICDAR 2019, Marmot
and RVL CDIP.

Scheme Test Datasets IoU P R F1-score

Scheme 1 ICDAR 2017
0.6 0.978 0.953 0.965

0.8 0.981 0.995 0.987

Scheme 2 ICDAR 2019

0.6 0.961 0.959 0.959

0.8 0.953 0.937 0.944

0.9 0.921 0.950 0.935

Scheme 3 Marmot
0.5 0.854 0.884 0.868

0.9 0.913 0.9 0.906

Scheme 4 RVL-CDIP
0.5 0.72 0.79 0.75

0.8 0.68 0.73 0.70

7. Conclusions and Future Work

In this paper, we propose a new detection method, called "DCTable", for table detection
where we combine the dilated convolution layers with RoIAlign. The RPN is trained using
the IoU-balanced loss functions in order to improve localization accuracy. Experiments on
public datasets show that our model, DCTable, generalized well on a variety of documents.
By increasing the dilation rate in the backbone, we found a significant improvement in the
recall. Additionally, using the bilinear interpolation based RoIAlign, a suitable bounding
box is obtained for most of the detected tables. Moreover, training the RPN using IoU-
balanced loss contributes to enhancing the accuracy of the localization by decreasing the
false positive rates.

In this paper, our work yields interesting results by improving the F1-score on ICDAR-
2017, ICDAR 2019 and Marmot. However, it still suffers from some localization errors
on those datasets that may be caused by the lack of some visual cues or missed global
information during feature extraction. As future work, we will pursue the search with
attention mechanism [50] in order to improve the CNN performance during training and
predictions on large scale datasets.
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