
Citation: Li, J.; Chao, C.-J.; Jeong, J.J.;

Farina, J.M.; Seri, A.R.; Barry, T.;

Newman, H.; Campany, M.; Abdou,

M.; O’Shea, M.; et al. Developing an

Echocardiography-Based, Automatic

Deep Learning Framework for the

Differentiation of Increased Left

Ventricular Wall Thickness Etiologies.

J. Imaging 2023, 9, 48. https://

doi.org/10.3390/jimaging9020048

Academic Editor: William E. Higgins

Received: 2 January 2023

Revised: 1 February 2023

Accepted: 16 February 2023

Published: 18 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Developing an Echocardiography-Based, Automatic Deep
Learning Framework for the Differentiation of Increased Left
Ventricular Wall Thickness Etiologies
James Li 1,2,†, Chieh-Ju Chao 3,† , Jiwoong Jason Jeong 1,2, Juan Maria Farina 1 , Amith R. Seri 1,
Timothy Barry 1 , Hana Newman 1, Megan Campany 1, Merna Abdou 1, Michael O’Shea 1, Sean Smith 1 ,
Bishoy Abraham 1, Seyedeh Maryam Hosseini 1, Yuxiang Wang 1, Steven Lester 1, Said Alsidawi 1 ,
Susan Wilansky 1, Eric Steidley 1, Julie Rosenthal 1, Chadi Ayoub 1, Christopher P. Appleton 1, Win-Kuang Shen 1,
Martha Grogan 3, Garvan C. Kane 3, Jae K. Oh 3, Bhavik N. Patel 1, Reza Arsanjani 1 and Imon Banerjee 1,2,*

1 Mayo Clinic Arizona, Scottsdale, AZ 85054, USA
2 School of Computing and Augmented Intelligence, Arizona State University, Phoenix, AZ 85281, USA
3 Mayo Clinic Rochester, Rochester, MN 55905, USA
* Correspondence: banerjee.imon@mayo.edu
† These authors contributed equally to this work.

Abstract: Aims:Increased left ventricular (LV) wall thickness is frequently encountered in transtho-
racic echocardiography (TTE). While accurate and early diagnosis is clinically important, given the
differences in available therapeutic options and prognosis, an extensive workup is often required
to establish the diagnosis. We propose the first echo-based, automated deep learning model with a
fusion architecture to facilitate the evaluation and diagnosis of increased left ventricular (LV) wall
thickness. Methods and Results: Patients with an established diagnosis of increased LV wall thickness
(hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease
(HTN)/others) between 1/2015 and 11/2019 at Mayo Clinic Arizona were identified. The cohort was
divided into 80%/10%/10% for training, validation, and testing sets, respectively. Six baseline TTE
views were used to optimize a pre-trained InceptionResnetV2 model. Each model output was used
to train a meta-learner under a fusion architecture. Model performance was assessed by multiclass
area under the receiver operating characteristic curve (AUROC). A total of 586 patients were used
for the final analysis (194 HCM, 201 CA, and 191 HTN/others). The mean age was 55.0 years,
and 57.8% were male. Among the individual view-dependent models, the apical 4-chamber model
had the best performance (AUROC: HCM: 0.94, CA: 0.73, and HTN/other: 0.87). The final fusion
model outperformed all the view-dependent models (AUROC: HCM: 0.93, CA: 0.90, and HTN/other:
0.92). Conclusion: The echo-based InceptionResnetV2 fusion model can accurately classify the main
etiologies of increased LV wall thickness and can facilitate the process of diagnosis and workup.

Keywords: deep learning; LV wall thickness; echocardiography

1. Introduction

Increased left ventricular (LV) wall thickness is frequently encountered in transtho-
racic echocardiography (TTE) studies, and the common etiologies include hypertrophic
cardiomyopathy (HCM), cardiac amyloidosis (CA), and other conditions such as hyperten-
sive heart disease (HTN) [1,2]. In clinical practice, TTE is usually considered the first-line
screening/diagnostic tool for increased LV wall thickness, and certain echocardiographic
features have been described for the etiologies mentioned above, but some features may
overlap among different etiologies. Although trained echocardiographic experts can make
a preliminary diagnosis based on certain features, extensive workup including advanced
cardiac imaging or even myocardial biopsy is usually required to establish a diagnosis [3–5].
Concerning the substantial differences in available therapeutic options and prognosis of
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each disease, if patients were not referred for a proper diagnostic test initially, adverse
events could happen and lead to extra medical costs and a worse prognosis [3,5]. In practice,
patients with CA can be easily mislabeled as HCM, and miss the opportunity to maximize
the benefit of an earlier therapeutic intervention [5].

With the recent advance in artificial intelligence (AI) technology, image-based deep
learning algorithms have been applied in the field of cardiovascular imaging [6,7]. Specifi-
cally, echocardiography-based approaches have been applied in auto-segmentation, auto-
strain imaging, predicting in-hospital mortality, auto-view classification, as well as inter-
pretation of the study [8–12]. An echocardiography-based deep learning model for the
differential of increased LV wall thickness would greatly facilitate the evaluation process
by suggesting the most high-yield diagnosis. However, the development of such a model
within the research boundary remains at an early stage [13–15]. Zhang et al. developed an
automated, multi-function framework; however, the core model used was a relatively shal-
low convolutional neuronal network model [15]. Recently, Duffy et al. also established an
Echonet-LVH model that can differentiate HCM and CA from other etiologies of increased
LV wall thickness [13]. The classification task in the above studies mainly relied on the
AP4 view [13–15], which may have missed important features for HCM cases, such as the
systolic anterior motion of the mitral apparatus and left ventricular outflow obstruction in
the apical 3 chamber view [16].

We hypothesized that a TTE image-based deep learning algorithm with a fusion
architecture could accurately classify the important etiologies (HCM, CA, and HTN/others)
of increased LV wall thickness. Our group has proposed a fusion architecture that has the
potential to improve the overall model performance [17,18] by incorporating 6-standard
echocardiography views (apical 2–,3–,4–chamber, parasternal long axis, parasternal short
axis at the mitral valve, and the mid-ventricle levels) from TTE. We developed an automated,
AI-enabled framework for the classification task of increased LV wall thickness using frame-
by-frame analysis, which favors a faster inference time for clinical usage. This approach also
allows the training of a complex deep learning model with fewer individualized studies, as
every frame is considered a separate data point.

2. Methods
2.1. Population Selection

This retrospective study was approved by the Mayo Clinic Institutional Review
Board (IRB). Patients with established diagnoses for increased LV wall thickness (hy-
pertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart
disease (HTN)/others) between 1/2015 and 11/2019 at Mayo Clinic Arizona were iden-
tified. For HCM patients, the diagnosis was established according to the guidelines, and
cardiac magnetic resonance imaging was obtained [3]. For CA patients, the diagnosis was
confirmed by technetium Tc99m pyrophosphate scanning or endomyocardial biopsy. Cases
were not further divided into the AL- and TTR- subtypes. The HTN/other category was
defined as cases that underwent a cardiac magnetic resonance imaging (MRI) for the indi-
cation of increased LV wall thickness but were deemed not HCM or CA. The initial review
identified 305 HCM patients, 244 CA patients, and 254 HTN/other cases. After patients
were identified, six standard TTE views, including apical 2-,3-,4- chamber views (AP2,
AP3, and AP4), parasternal long-axis view (PLAX), and parasternal short-axis view (at the
mitral valve (PSAX_M) and mid-left ventricular (PSAX_V) levels) were collected. The cases
were excluded for missingness, incompleteness, or suboptimal image quality in any of the
6 views. Of those patients, 494 qualified (164 CA, 163 HCM, and 167 HTN/other) were used
for this study. Each study consisted of a combination of the six standard TTE views (AP2,
AP3, AP4, PLAX, PSAX_M, PSAX_V) with an average of 342 echocardiogram video frames
per study. These studies were split into train/validation/test sets with a 72/18/10 split
at the study level, with each set containing 358 (119 CA, 117 HCM, and 122 HTN/other),
90 (30 CA, 30 HCM, and 30 HTN/other), 48 (16 CA, 16 HCM, and 16 HTN/other) studies,
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respectively. Table 1 describes the selected cohort. Frame-wise train/validation/test splits
were 138,067/27,272/22,182 images, respectively.

Table 1. Patient characteristics—age, gender, race, ethnicity, and common comorbidities.

Characteristics Subtypes HCM
(305)

Amyloidosis
(244)

HTN/Others
(254)

Age 58.44 (+/−15.05) 69.25 (+/−11.15) 64.25 (+/−14.31)

Gender
Male 175 (57.37%) 196 (80.33%) 178 (70.08%)

Female 130 (42.62%) 48 (19.67%) 76 (29.92%)

Race

White 256 (83.93%) 214 (87.7%) 218 (85.83%)

Black or African American 17 (5.57%) 12 (4.92%) 16 (6.3%)

American Indian 4 (1.31%) 2 (0.81%) 2 (0.79%)

Asian 9 (2.95%) 2 (0.81%) 9 (3.54%)

Other/Unknown 19 (6.23%) 14 (5.73%) 9 (3.54%)

Ethnicity

Hispanic or Latino 10 (3.28%) 12 (4.91%) 17 (6.69%)

Not Hispanic or Latino 276 (90.49%) 224 (91.8%) 227 (89.37%)

Unknown 19 (6.23%) 8 (3.27%) 10 (3.94%)

Comorbidities at the
time of TTE

Hypertension 153 (38.73%) 82 (33.6%) 116 (45.67%)

Coronary Artery Disease 71 (23.27%) 70 (28.68%) 71 (27.95%)

Diabetics (Type I and Type II) 37 (9.37%) 21 (8.6%) 41 (16.14%)

Chronic Kidney Disease 45 (11.4%) 51 (20.9%) 35 (13.78%)

Congestive Heart failure 4 (1.01%) 2 (0.81%) 3 (1.18%)

2.2. Proposed Fusion Model Architecture

Figure 1 is a diagrammatic representation of the proposed fusion framework that
highlights the core processing blocks. The trained framework is designed to directly read
the TTE video clips, and produce a probabilistic diagnosis at the exam level. In addition, the
framework also allows the extraction of framewise predictions for model interpretability.
In the following subsection, we detailed each component and emphasized its role. This
study follows the Proposed Requirements for Cardiovascular Imaging Related Machine
Learning Evaluation (PRIME) of JACC: Cardiovascular Imaging [19].

2.3. Preprocessing

As a pre-processing step, echocardiogram videos that are clinically stored in the Dicom
format were first processed automatically by extracting frames from the video. Once all
the frames of various aspect ratios and image sizes were extracted, the frames were then
converted to grayscale images and thresholded at an intensity of 29 to generate contour
masks. The intensity threshold was selected empirically by analyzing intensity histogram
of the mean image (average image generated from a randomly selected image subset). As
seen in Figure 2, the largest contour was then selected and used to remove any burned-in
PHI (Protected Health Information) or device-related information that may be in the frames.
Finally, each image was resized to 456 × 456 with bicubic interpolation. Such resizing
without maintaining the aspect ratio may generate squeezed images for rectangular images;
however, extracted masks for the images included in the study are mostly square and thus
the ultimate effect of resizing is limited in our case.
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for the figure.

2.4. View Classifier

To train an end-to-end pipeline, we designed a deep learning-based view classifier
model to differentiate between the six standard echo views and an ‘unknown’ class to
capture irrelevant/noisy views for this study. The ground truth labels for the images are
obtained from the Echo imaging experts. The echocardiogram frames were separated into
256/90/92 at the study level for train/validation/test sets, respectively, so that there was no
information leakage across patients. A pre-trained ResNeXt-101 model [20] was used as the
base model and was trained with a batch size of 32, a learning rate of 0.000001, cross-entropy
loss, Adam optimizer, weight decay of 0.3, over 50 epochs with early stopping (wait for
10 epochs). An optimized decision threshold was calculated for each view based on the
optimal operating point collected from the receiver operating characteristic curve (ROC)
plots of the validation data. If the frame was within the threshold for a view, that view label
was assigned to the frame without being mutually exclusive. If a frame is classified in more
than one class or not assigned a class label, that frame was determined to be an ‘unknown’
and discarded from the study. Once all the frames of one echocardiogram view/clip were
classified, a majority vote was applied to get the final view prediction, as seen in Figure 1.
The two annotators were cardiology fellows and were blinded to each other’s labeling.
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2.5. View-Dependent Modeling Paradigm

We trained individual parallel models to handle different views (see Figure 1). Multiple
models were initially tested for their performance, ranging from shallow AlexNet to very
deep Inception-ResNetv2 [20–22]. After the initial tests, the ImageNet pre-trained ResNeXt-
101 [20] model proved to be the best performer on the validation split and was selected
as the base convolution backbone model for the classification model. ResNeXt network is
constructed by stacking multiple residual blocks to achieve grouped convolution which
finally results in a homogeneous, multi-branch architecture that has only a few hyper-
parameters to set. The primary hyperparameter is known as “cardinality”, which is the size
of the set of transformations—an essential factor in addition to the dimensions of depth and
width. In this study, we used ResNeXt-101, which is 101 layers deep. The hyperparameters
used for the frame-wise classification method were a batch size of 32, a learning rate of
0.000001, and a weight decay of 0.3 with cross-entropy loss for 50 epochs. The models were
trained on an Nvidia RTX A5000 GPU. We trained the view-dependent models on the same
train split and validated each view-dependent model on the hold-out test set. To prevent
data leakage, we generated the split at the study level so that no images from the same
study are mixed between train and test.

2.6. Fusion Model

To further improve the overall performance of the view-dependent classification
model, we generated a decision-level fusion scheme (late fusion) where we can leverage
predictions from multiple models to make the final decision at the frame level [18]. The
decision-level fusion scheme also allows missing views to be more robust for generalization.
If a view is missing, we replace the decision with -1 to encode missing data. The study-level
decision is reached via the averaging where the probability for a study is calculated by
averaging for each class the frame-level decision generated by the view-dependent model
represented as 1

n ∑ P1, 1
n ∑ P2, 1

n ∑ P3, where n = no of frames/video and Pi represents
the probability calculated for ith class. We trained a logistic regression model as a meta-
learner to create a weighted combination of the prediction probabilities from the six view-
dependent models’ averaged probability or −1 if the view is missing. We also empirically
evaluated the averaging and majority voting aggregation functions for generating fusion,
but the weighted combination outperformed the simple aggregation.

2.7. Model Performance
Model Interpretability: GRADCAM and the Ablation Study

We computed the GRADCAM (Gradient-weighted Class Activation Mapping) to
interpret the performance of the view-dependant models [23]. We directly obtained the
activation from the final convolution layers (layer before softmax classification). The 8 × 8
GRADCAM was extrapolated and resized to be mapped to the non-processed original
images for better visualization.

We performed two distinct ablation studies to understand the impact of certain data
components on the trained model in a controlled experimental setting: (1) view level:
the importance of each view in the final fusion model, and how the missing views can
be handled by the fusion model; (2) chamber level: chamber-related information in the
view-dependent AP4 model. For view importance, one view was systematically dropped
(at the study level) from the input data and replaced the corresponding model prediction
with −1. For chamber-related information, since the AP4 view-dependent model had
the best overall performance and is the view that can visualize all four chambers, it was
chosen to perform the ablation study. We segmented the heart chamber by using a simple
division of the frames in a 60:40 ratio in both the horizontal and vertical axis and obfuscated
each quadrant from the AP4 view to generate the partial images. Model performance was
assessed as indicated above.
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3. Results

We summarized the cohort in Table 1 and the following subsection describes the
performance of the models only on the hold-out test data.

3.1. Quantitative Performance

The view classifier reached an AUROC >= 0.98 in the classification of all six views
(Supplemental Figure S1). The Fleiss’ Kappa inter-annotator agreement between the view
classifier and three radiologists was 0.7837, and the Cohen Kappa between each pair is
given in Supplemental Table S1). We evaluated the individual quantitative performance
of the view-dependent models as well as the final fusion model in terms of the area
under the receiver-operating characteristic curve (AUROC) (Figure 3). After selecting the
optimal operating point, we calculated the precision, recall, and f1-score in Table 2. We
observed the highest class-wise performance on the AP4 view (CA—0.73, HCM—0.94, and
HTN/other—0.87). Among the parasternal views, PLAX outperformed (CA—0.81 HCM—
0.88 and HTN/other—0.82) the others. The class-wise AUROC for the final fusion model
outperformed all the individual views (CA—0.90, HCM—0.93, and HTN/other—0.92),
and achieved a 93.75% true positive rate for HCM and a 75% true positive rate for both
CA and HTN/other. The fusion model also achieved a high F1 score for all the classes and
outperformed all the individual views, which shows that the model is able to achieve a
good balance between sensitivity and specificity at the standard threshold (Table 2).

Table 2. Quantitate class-wise performance analysis for the single view and fusion model on the
same hold out test set. 95% confidence interval was calculated using auto-bootstrapping.

Single View Models

AP2 AP3 AP4

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

CA 0.68
[±0.0067]

0.72
[±0.0047]

0.70
[±0.0046]

0.64
[±0.0054]

0.49
[±0.0045]

0.56
[±0.0041]

0.63
[±0.0076]

0.58
[±0.0083]

0.61
[±0.0067]

HCM 0.75
[±0.0048]

0.81
[±0.0044]

0.78
[±0.0036]

0.82
[± 0.0045]

0.85
[±0.0046]

0.83
[±0.0036]

0.77
[±0.0067]

0.93
[±0.0047]

0.84
[±0.0056]

HTN/others 0.76
[±0.0015]

0.64
[±0.0016]

0.70
[±0.0013]

0.59
[± 0.0017]

0.71
[±0.0014]

0.65
[±0.0015]

0.73
[±0.0016]

0.64
[±0.0017]

0.68
[±0.0013]

PLAX PSAX_V PSAX_M

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

CA 0.70
[±0.0069]

0.70
[±0.0051]

0.72
[±0.0034]

0.57
[±0.0069]

0.62
[±0.0053]

0.59
[±0.0054]

0.57
[±0.0057]

0.58
[±0.0050]

0.57
[±0.0042]

HCM 0.85
[±0.0044]

0.66
[±0.0041]

0.74
[±0.0033]

0.76
[±0.0046]

0.78
[±0.0042]

0.77
[±0.0036]

0.87
[±0.0039]

0.78
[±0.0049]

0.82
[±0.0029]

HTN/others 0.62
[±0.0017]

0.73
[±0.0017]

0.67
[±0.0014]

0.58
[±0.0019]

0.52
[±0.0018]

0.55
[±0.0016]

0.56
[±0.0018]

0.60
[±0.0017]

0.58
[±0.0015]

Fusion Model

Precision Recall F1-Score

CA 0.80
[±0.0167]

0.75
[±0.0165]

0.77
[±0.0134]

HCM 0.83
[±0.0143]

0.94
[±0.009]

0.88
[±0.0100]

HTN/others 0.80
[±0.0151]

0.75
[±0.01473]

0.77
[±0.01394]
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3.2. Model Interpretability: GRADCAM

Figure 4 demonstrated the GRADCAM heatmap of areas with greater importance for
the model decision (red- more important, green- less important) on each echo view of a
representative case.
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3.3. Model Interpretability: Ablation Study

The view-level ablation study (Figure 5) shows that the model also obtained an
average 76.3% [68–93%] true positive rate if a single view is missing and is able to gather
the information correlating other existing views. Missing apical window (AP) views lead to
a greater drop in the model performance than short-axis views, and the primary difference
is observed in CA and HTN/other categories.
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In chamber-level ablation, obfuscating quadrant 1 (LV), which represents the left ventricle
(LV) of the heart has the most significant drop in the AP4 model performance (CA—0.57,
HCM—0.78, and HTN/other—0.65), which reflects that LV was involved most in all these
diseases. Interestingly, removing the portion of any single chamber from the input AP4 image
led to a significant drop in performance in identifying CA cases (Figure 6) which reflected the
nature of CA as a systemic disease involving all four chambers of the heart.
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partial images. ‘Others’ category is referred to as ‘HTN’.

3.4. Weights of the Individual Model Outputs Learnt by the Meta Learner

Figure 7 summarized the weight of individual model of the meta learner and overall
highest importance was achieved by the AP4 model. AP2 and short-axis view was deemed
important for amyloidosis.
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class. Apical 4-chamber view (AP4), parasternal short- (PSAX, mid LV level) and long-axis views were
more informative for the class of HCM. For cardiac amyloidosis, apical 2 chamber (AP2), parasternal
long axis and parasternal short axis (mid LV level) were more informative.

4. Discussion

We successfully established an automatic end-to-end deep learning model framework
that accurately differentiates the major etiologies of increased LV wall thickness, including
HCM and CA, from the background of HTN/other diagnoses. To the best of our knowledge,
this is the first deep learning study that applied multiple standard echocardiographic views
with a fusion architecture and achieved an overall superior performance. Additionally, a
detailed ablation study highlighting each chamber’s role along with the GradCAM analysis
allows for a better interpretation of the model.

The major contributions of this work include (1) demonstrating a superior echo-based
fusion model performance, especially for CA patients, without any segmentation of the
images, (2) providing insights into echo view selection for future study design if not all the
views are planned to be used, and (3) showing the possibility of achieving overall superior
performance with significantly fewer training cases by a frame-based approach, which will
facilitate the development of future models for rare conditions.

4.1. An Echo-Based, End-to-End Deep Learning Model with A Fusion Architecture

While the application of deep learning is rapidly growing in medical literature, there
are relatively fewer studies that have incorporated a fusion architecture [18]. A fusion
architecture has the potential to improve the overall performance of deep learning models
by associating multiple input channels [17,18]. This kind of approach is particularly feasible
when being applied to TTE studies, as the images were obtained according to standardized
views suggested by the guidelines [24,25]. Duffy et al. reported a model using the AP4
views as the input and reached an AUC of 0.83 for CA, and an AUC of 0.98 for HCM [13],
while our proposed fusion model successfully pushed the AUC of CA to > 0.90 AUROC.

Our established automatic deep-learning framework allows the input of the entire
echo study. After each view is identified by the view classifier, the probability output
generated by each individual view-dependent model is aggregated by the meta-learner
to produce the final fusion results. Compared to a video-based model [13], a frame-based
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model is more computationally efficient, can expand the size of the training dataset, and
tolerates noisy frames in the classification process as they are aggregated by majority voting.

With our approach, the human labeling component was minimized to the annotation
of echocardiographic views and the target diagnosis. We adopted the current approach
specifically to avoid segmentation of the echo images. Human annotation is known to
be time-consuming and requires a high level of expertise. However, the consistency
of segmentation can still vary between annotators and can hamper the training data
quality [26]. Additionally, using segmented data is also subject to the loss of information
from the original input. It is also reported that the model performance could depend on
the quality of segmented images and may not be better than using the original images [14].

Our work also demonstrated the possibility of reaching a similar performance with
significantly fewer training cases compared to the earlier work of Duffy et al. [13]. This
approach will allow specific models to be developed for the diagnosis of rare conditions, for
which thousands of training cases are difficult to obtain. Additionally, our model structure
has the flexibility to integrate other data resources, such as electronic health records and
electrocardiography, to further boost the performance.

4.2. Fusion: Using Information from all the Views

Zhang et al. [15] only used the PLAX and AP4 views, in which a few random frames were
selected from each video. While this approach has the advantage of efficiency for computation,
the information contained at a certain phase of the cardiac cycle (e.g., systolic anterior motion
of mitral apparatus) can be missed in the random sampling process. Furthermore, separated
models were built in their work to differentiate HCM and CA patients from their own matched
control cohort; how the model(s) can differentiate cases of HCM and CA from a mixed cohort
was not reported. Duffy et al. established an Echonet-LVH model that can differentiate HCM
and CA from other etiologies of LVH using only PLAX and AP4 views [13]. However, their
models depend on obtaining the correct segmentation of the interventricular septum, left
ventricular internal dimension, and left ventricular posterior wall. An error may propagate
between segmentation and final classification. Further, their model primarily extracts spatio-
temporal information from echo video which can be relied on the sampling rate of the frame
and thus device-dependent.

In our study, the performance of the individual view models provided some additional
insight into echo-view selection. While the PLAX view was used in all prior studies13–15, we
observed that the performance of the PLAX model was inferior to the AP3 model (Figure 3
and Table 2). We believe this is associated with losing information from the apical area in
the PLAX view. From a conventional echocardiography interpretation perspective, it is
also clinically meaningful to use multiple echocardiographic views as the input data. For
example, the PLAX and AP3 views contain important features for the diagnosis of HCM,
such as LV outflow tract obstruction and systolic anterior motion of the mitral leaflet [3].

4.3. Clinical Application of the Model

Differentiating the etiologies and establishing a diagnosis for increased LV wall thick-
ness remains a challenging task for clinicians [3–5]. CA is known to be underdiagnosed and
delayed diagnosis is associated with adverse outcomes5. While LV strain has been proposed
as a screening tool for CA [27], conducting strain analysis can be time-consuming and
highly depends on imaging quality. The results can also vary between different software
packages [28,29]. Furthermore, in practice, strain analysis is not routinely performed unless
the reading physician has concerns about this condition. An AI-enabled, auto-populated
reminder in the echo reading system can effectively address this limitation and facilitate
the early diagnosis of CA.

We foresee this model being used in daily echocardiography lab practice to improve
the initial triage of increased LV wall thickness. This model will be especially useful for labs
at institutions with limited diagnostic and or therapeutic resources for the above conditions.
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Specifically, with the high accuracy in identifying CA cases, this model will largely facilitate
the early recognition of these patients and potentially improve the prognosis [5].

5. Limitations

The core limitation of this study is that it is a single-center, retrospective study with
limited cases. The patients were identified at a tertiary referral center so may not be
representative of the general population. Similarly, the quality of echocardiographic images
could be different from images obtained in other practices or institutions. While an external
validation dataset was sought, the only open-source EchoNet dataset does not contain all
the view views for external validation. Given that the existing models only used a single
or two views, direct comparison between the studies was not feasible. The workflow of
our model did not include the automated process of detecting increased LV wall thickness
conditions. However, selecting the cases with known LVH increased the model’s specificity.
Compared to a video-based approach, our frame-based approach may have lost certain
information about spatio-temporal relationships, but our model had reached an overall
superior performance. An online calculator of this model is currently underwork, and we
plan to release models and trained weights with the MIT open-source license to benchmark
the performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
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