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Abstract: Omnidirectional images have drawn great research attention recently thanks to their
great potential and performance in various computer vision tasks. However, processing such a
type of image requires an adaptation to take into account spherical distortions. Therefore, it is
not trivial to directly extend the conventional convolutional neural networks on omnidirectional
images because CNNs were initially developed for perspective images. In this paper, we present a
general method to adapt perspective convolutional networks to equirectangular images, forming
a novel distortion-aware convolution. Our proposed solution can be regarded as a replacement
for the existing convolutional network without requiring any additional training cost. To verify
the generalization of our method, we conduct an analysis on three basic vision tasks, i.e., semantic
segmentation, optical flow, and monocular depth. The experiments on both virtual and real outdoor
scenarios show our adapted spherical models consistently outperform their counterparts.

Keywords: equirectangular images; distortion-aware convolution; computer vision

1. Introduction

Omnidirectional optical cameras can effectively capture their environment in a single
shot thanks to their ultra-wide field of view (FoV). As a result, many robotic applications
are interested in using such a type of image that can provide rich information about the
scene, especially helpful for obstacle avoidance. Various recent works have shown the great
potential of omnidirectional images, such as [1,2] for simultaneous visual localization and
mapping (SLAM) and, more recently, ref. [3] on deep reinforcement learning (DRL). These
solutions have shown better performances than their counterparts based on conventional
images with a limited FoV.

Recent learning-based methods have greatly advanced the research for various vision
and robotic tasks. This can be mainly contributed to the fast development of a GPU but more
importantly to a large number of labeled datasets. Nevertheless, most existing datasets are
with perspective images, with few datasets collected by omnidirectional sensors. Indeed,
building an accurate and complete dataset is labor intensive and time consuming. In
addition, omnidirectional sensors capable of extracting the ground truth are rare, complex
to calibrate, and often subject to reconstruction errors. There are several recent attempts
to build benchmark spherical datasets, such as Matterport3D [4] and Standford-2D3D [5].
However, these works were built virtually and with indoor scenes. Even though we can
train networks on these datasets, extending the application to real cases or outdoor scenes
is not trivial. Hence, developing a novel method to adapt from the networks pretrained on
perspective images is highly demanded for omnidirectional applications.

As suggested in [6], all spherical projections come with distortions. In particular,
equirectangular images, commonly used for their easy readability and classical rectangular
format, suffer from significant distortions in the polar regions. Because of this non-linearity,
objects appear differently at different latitudes. To tackle this issue, several approaches
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propose to take into account spherical distortions by modifying traditional image processing
methods. Nevertheless, these works suffer from the following drawbacks:

• Learning-based methods. Several works [7–9] propose to train the network on om-
nidirectional datasets. However, as discussed in previous paragraphs, the existing
spherical datasets are limited to indoor scenes with few images compared to the
perspective benchmarks.

• Adaptation-based methods. Several works add distortion awareness over the features
from the latent space by using a specific mathematical formulation, such as the fast
Fourier transform [10,11] or polyhedra [12]. Despite the elegance of these solutions,
the adapted network needs to be trained from scratch with specific training datasets.
In addition, the adaptation methods are very demanding in terms of the computational
cost. Therefore, it is difficult to implement such methods on edge devices for real-time
robotic applications.

To address the abovementioned dilemmas, in this paper, we propose to directly replace
standard convolution operations with distortion-aware convolutions. Therefore, we can
benefit from all the development on perspective images to boost the performance on
various tasks with omnidirectional images. Technically, we modify the shape of each
convolution kernel according to its latitude in the image. It is worth noting that the
adapted convolution has demonstrated its effectiveness in perspective networks [8,13–18].
Different from previous works [15–17] that dynamically learn the new kernel shape, we
propose a distortion-aware convolution with our statically computed receptive field. One
major advantage is that our method does not require additional training and can be
directly implemented in any existing convolutional network pretrained with perspective
images. The effect of spherical adaptation on optical flow estimation was proven in a
previous publication [14]. Here, we extend this previous work using a state-of-the-art
optical flow estimation network and generalize the demonstration to two commonly used
visual modalities: semantic segmentation and monocular depth.

We compare our adapted network with its baseline version on complex and unstruc-
tured outdoor datasets. We also present a new equirectangular photorealistic forest dataset
with ground-truth semantic segmentation and depth. Finally, we test our solution on real
outdoor images taken with an omnidirectional camera. In all cases, the adapted networks
outperform their non-spherical counterparts.

The structure of this paper is as follows. First, Section 2 presents the proposed spherical
adaptation using distortion-aware convolutions. Then, a brief overview of the three visual
modalities is proposed in Section 3, along with the presentation of the selected networks
for the spherical adaptation. Finally, Section 4 provides the comparison results between the
adapted models and their baselines on virtual and real outdoor equirectangular images.

2. Distortion-Aware Convolutions

The proposed spherical adaptation is based on distortion-aware convolutions. First,
we present the mathematical model using a local perspective projection of the kernels
on the sphere. Then, we describe the implementation and use of this adaptation on
perspective networks.

2.1. Local Perspective Projection on the Sphere

The original adaptive convolution was initially presented by [16], where the authors
proposed to learn the offsets in an end-to-end manner. More recent works exploit this idea
by using fixed offsets. In [13], the authors show that the depth prior can be used to compute
the adaptive kernel statically, leading to better awareness of the geometry. An adaptive
convolution was also exploited in omnidirectional images [8]. The standard perspective
kernel is modified to fit the equirectangular distortions. To build a kernel of resolution r
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and angular size α centered in a location p00 = (u00, v00) in the equirectangular image, the
center coordinates are first transformed to spherical system ps,00 = (φ00, θ00) using

φ00 =

(
u00 −

W
2

)
2π

W
; θ00 = −

(
v00 −

H
2

)
π

H
, (1)

where W and H are, respectively, the width and the height of the equirectangular image in
pixels. Each point of the kernel is defined by
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ŷij
ẑij
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[
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2

]
and d is the distance from the center

of the sphere to the kernel grid. In order to cover the field of view α, the distance is set to
d = r

2 tan( α
2 )

. The coordinates of these points are computed by normalizing and rotating

them to align the kernel center on the sphere. Therefore,
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 xij
yij
zij

 = Ry(φ00)Rx(θ00)
p̂spher,ij∣∣∣ p̂spher,ij

∣∣∣ , (3)

where Ra(β) stands for the rotation matrix of an angle β around the a axis. These coordinates
are transformed to latitude and longitude in the spherical domain using

φij = arctan

(
xij

zij

)
; θij = arcsin

(
yij
)
; (4)

and finally back-projected to the original 2D equirectangular image

uij =
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φij

2π
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)
W ; vij =

(
−

θij

π
+

1
2

)
H. (5)

In Figure 1, some example of kernels at different latitude and longitude are presented.
The blue point defines the center of the kernel p00 = (u00, v00). The red points are the
positions of the elements pij = (uij, vij) in the adapted kernel, defined as previously. The
green points are the positions of elements in a standard perspective kernel given by:

upersp,ij = u00 + ir ; vpersp,ij = v00 + jr. (6)

Figure 1. The equirectangular image presents significant distortions in the polar regions. Convolution
kernel shapes are modified according to their latitude. Blue: kernel center; Green: perspective kernel;
Red: adapted equirectangular kernel.
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2.2. Implementation in a Perspective Network

The distortion-aware convolution strategy does not require additional parameter
learning. As a result, it avoids using large and complex spherical datasets for training.
Figure 2 presents a schema of the general implementation process.

Figure 2. General adaptation process: 1. The architecture and weights come directly from pretraining
on perspective datasets. 2. The convolution layers are modified using a precomputed shift table that
takes into account equirectangular distortions. 3. Finally, we directly use spherical images as input in
the adapted model to predict the modalities for which the network was pretrained.

The overall architecture and weights of the network are derived from a model trained
in a supervised manner using perspective images and ground-truth modalities. We directly
reuse the code and pretrained weights provided by the models’ authors. This highlights
the simplicity of our solution integration into previously published work and ensures good
performance fidelity to the original publication.

We replace the standard convolution layers with new layers handling the equirectan-
gular distortions. In practice, the convolution operations are modified to add fixed offsets
to each coordinate of the kernel points. These offsets are calculated using Equation (5),
presented in Section 2.1. It only requires the input sizes and the convolution parameters.
These offsets tables can be computed offline. As a result, there is no slowdown in the
execution of the adapted network.

The proposed solution is compatible with every kernel, stride, or padding size. There-
fore, this plugin can be implemented in any convolutional neural network architecture.

3. Tested Visual Modalities

Most of the latest computer vision methods are based on convolutional neural net-
works. To demonstrate the simplicity and versatility of our adaptation solution, we propose
to implement it on several networks used for very different vision tasks. We have selected
three commonly used vision tasks: semantic segmentation, depth, and optical flow. Each
modality has very distinct requirements, which challenges the robustness of our solu-
tion. This section presents the three different visual modalities studied and the associated
selected networks.

To highlight the generalization of our demonstration, we selected three models of
very different sizes and accuracies: from the state-of-the-art heavyweight network to the
ultra-lightweight architecture for resource-constrained devices.
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Moreover, to demonstrate the efficiency and simplicity of our solution, we selected
networks with pretrained weights provided by the models’ authors on perspective datasets.
This also guarantees good performance fidelity with respect to the initial publication.

3.1. Semantic Segmentation

Semantic segmentation is an essential task in robotic vision. It provides a dense
understanding of the different locations and object categories present in the image with
pixel-level accuracy. This offers abundant cues for upper-level navigation operations.
Furthermore, thanks to omnidirectional cameras, a moving agent can obtain a holistic and
precise understanding of its surroundings.

To estimate the semantic segmentation in outdoor images, we choose the solution
published by the MIT Scene Parsing team [19]. They propose a classical encoder–decoder
architecture trained on the ADE20K dataset. This dataset contains 20,000 mixed indoor and
outdoor scenes with 150 semantic classes.

The chosen architecture uses the ResNet50 dilated version as the encoder and PPM-
deepsup as the decoder.

The ADE20K dataset contains 150 different classes that are sometimes semantically
close. Therefore, the semantic segmentation network identifies some objects in our test
dataset from the same ground-truth class as two different categories. To regroup these
predictions, we combine some closely related classes. The final tree class regroups trees,
plants, and canopy classes. The ground class regroups ground, earth, path, dirt, mountain,
and hill classes.

3.2. Optical Flow

Optical flow estimation methods aim to compute the apparent motion of pixels be-
tween two frames. It enables autonomous vehicles and robots to acquire temporal cues of
the surrounding scenes. In a previous publication [14], we presented a method in omnidi-
rectional images improved by spherical adaptation. In this paper, we generalize and update
that earlier work. At that time, we implemented our solution on LiteFlowNet2 [20], one
of the leading algorithms in 2020. Since then, optical flow methods have been improved,
mainly thanks to Transformers networks for the pixel correlation operation. However, these
networks do not use convolutional layers in their core but still rely on CNNs to extract
low-level features from RGB inputs before processing them. This encoding is crucial for
further image processing, and we propose to adapt it to take into account distortions in
equirectangular images.

We select the solution GMFlow proposed by [21], which is currently one of the leading
optical flow estimation algorithms.

3.3. Monocular Depth

Monocular depth estimation is an important computer vision task that aims to predict
dense depth maps based on a single image. Thanks to its robustness to scene changes, this
is the most commonly used visual modality for obstacle avoidance in navigation.

We select the MIDAS [22] network to test our solution. This supervised model
presents a classical encoder–decoder architecture, mainly built to be embedded in resource-
constrained devices such as drones, resulting in one of the lightest depth estimation net-
works. In addition, this network is highly versatile thanks to its training on multiple indoor
and outdoor perspective datasets. We specifically choose the midas_v21_small pretrained
version of the network.

4. Results

This section compares the spherically adapted network and the baseline version. First,
we provide a quantitative comparison of the virtual outdoor datasets. Then, we further
investigate the differences using samples from the previously studied virtual datasets or
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real equirectangular images. For the latter part, we capture images of various outdoor
scenes with an omnidirectional camera and analyze the differences.

4.1. Testing Datasets

Outdoor scenes are generally more challenging for networks than indoor scenes,
mainly due to the diversity of lighting and the limited amount of outdoor images in the
training datasets. However, the available outdoor omnidirectional datasets are very limited
and do not include multiple visual modalities ground truths. In addition, forest images
are often not used in perspective training datasets which further tests the robustness of the
tested models. Therefore, forest scenes are an ideal environment to challenge the networks
presented above.

For semantic segmentation and monocular depth estimation, we build a photorealistic
forest environment RWFOREST. Unfortunately, the ground-truth extraction of the spherical
optical flow is not yet available in this environment. As a result, we use two other datasets
to test this visual modality: OmniFlowNet [14] and Flow360 [23]. Table 1 summarizes
the different equirectangular datasets used to test the various adapted networks. A more
detailed presentation of the different environments is provided in the sections below.

Table 1. Equirectangular datasets used to test the different adapted networks. The visual ground-truth
modalities present in the dataset are pinpointed, always associated with equirectangular RGB images.

Visual Modality
Dataset RWFOREST 256×256 OmniFlowNet [14] Flow360 [23]

Semantic Segmentation

Monocular depth

Optical flow

Number of images 1000 1200 1400

Resolution 256× 256 768× 384 1024× 512

4.1.1. RWFOREST Dataset

Using the best rendering capabilities of Unreal Engine [24] and the forest textures from
its marketplace, we create a photorealistic forest environment with complex lighting and
dense foliage. We propose, in this paper, RWFOREST: a dataset of 1000 equirectangular
RGB images with associated ground-truth depth and semantic segmentation provided
by the AIRSIM [25] plugin. Three semantic classes are distinguished: trees, ground, and
sky. The image resolution is 256× 256 for all. Additional results on higher resolutions are
provided in Appendix A. Figure 3 presents a sample of the RWFOREST dataset.

RGB Depth Segmentation

Figure 3. RWFOREST 256 × 256 dataset.
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4.1.2. OmniFlowNet and Flow360 Datasets

The OmniFlowNet dataset, published in [14], features three different scenes called
CartoonTree, Forest, and LowPolyModel. These sets are generated using Blender [26],
with free 3D models available online. This dataset gathers 1200 equirectangular RGB
images with an associated ground-truth optical flow. The Flow360 dataset, published by
[23], proposes several urban driving scenes during different times of the day or weather.
This dataset provides the ground-truth omnidirectional optical flow associated with RGB
image sequences.

Figure 4 shows a brief overview of the OmniFlowNet and Flow360 datasets.

Fl
ow

36
0

O
m

ni
Fl

ow
N

et

RGB Optical Flow

Figure 4. OmniFlowNet [14] and Flow360 [23] datasets. Equirectangular ground-truth optical flow is
associated to the RGB images sequence.

4.2. Quantitative Comparison on Virtual Outdoor Datasets

To facilitate the reading of the results, we have grouped in Table 2 the comparison
of the different visual modalities. To do so, we selected an error metric specific to each
modality: we use the complement of the Mean Intersection Over Union (1−MIoU) for the
semantic segmentation, the End-Point Error for the optical flow, and the Relative Absolute
Error for the monocular depth. We also offer additional comparison metrics in Appendix A.
In addition, the definitions of all the metrics used are provided in Appendix B.

Table 2. Comparison of adapted and baseline networks on three different visual modalities. The
error metric used for semantic segmentation is the complement of the Mean Average of Intersection
Over Union, for optical flow is the End-Point Error, and for depth is the Absolute Relative Error.

Error Metric (↓)

Semantic segmentation baseline 1 0.323

Semantic segmentation adapted 1 0.312 (−3.4%)

Monocular depth baseline 1 1.198

Monocular depth adapted 1 1.154 (−3.673%)

Optical flow baseline 2 5.16

Optical flow adapted 2 4.96 (−3.93%)

Optical flow baseline 3 16.15

Optical flow adapted 3 15.95 (−1.27%)

For each comparison, the best results are in bold. 1 Evaluated on RWFOREST 256 × 256. 2 Evaluated on
OmniFlowNet. 3 Evaluated on Flow360.
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The metric comparison reveals that adapted networks with distortion-aware convo-
lutions always perform better than their counterparts from the baseline perspective. By
observing this persistent improvement for all the modalities considered, we conclude
that our proposed adaptation approach has excellent generalization capabilities. The im-
provement is consistent despite very different modality needs, network architectures, and
training datasets. Moreover, the convolution operation modification appears robust. The
gain in the error metric exceeds 3% on each modality except on the Flow360 dataset.

The lack of periodicity in the estimated optical flow can explain this Flow360 smaller
gain. The spherical optical flow is periodic, but the network did not learn this information
when learning the perspective. Thus, the estimation of the road pixel flow is still inaccurate.
This lack of periodicity remains one of the limitations of this adaptation method for optical
flow networks. However, modified convolutions still improve the predictions, especially in
the case of single-object flow prediction, as shown in the following qualitative study.

We provide below a qualitative analysis to further explore the differences in the
prediction between all the models considered.

4.3. Qualitative Comparison on Real and Virtual Outdoor Datasets

This qualitative comparison presents sample predictions of the three modalities stud-
ied on the proposed virtual outdoor datasets. We also compare real outdoor images taken
with a RICOH THETA Z1. We looked for specific activations in the polar regions of the
equirectangular images during the scene creation.

4.3.1. Semantic Segmentation

This section compares the semantic segmentation estimation differences between the
adapted and baseline networks. Looking at the set of predictions made on the RWFOREST
dataset, we notice two main improvements: better detection of the shapes in the polar
regions and a less erroneous class estimation. Figure 5 shows the two prediction samples
used to illustrate these results.

First, the spherical adaptation helps the network to take into account equirectangular
distortions. The detection of shapes and objects is improved in highly distorted regions
thanks to a better local coherence of the pixels. This effect is visible in sample 1, where the
adapted network better identifies the tree canopy (upper polar region of the image).

In addition, the adaptation also reduces the number of noisy predictions. Some objects
in the equirectangular images are highly distorted, resulting in false class predictions by
the network. In sample 2, the upper polar region of the adapted version is less noisy and
contains almost no false predictions.

We observe the same findings when estimating the semantic segmentation in real
urban driving scenes. In our proposed example, Figure 6, we captured images when the
car was passing under trees in order to focus on the tree canopy detection. The semantic
segmentation predicted by the adapted network is more accurate than the baseline estimate,
with better tree canopy identification and less noisy class predictions. This confirms that
distortion-aware convolutions improve the semantic segmentation in virtual and real
outdoor images.

A mask is added to the image’s lower part to hide the car’s semantic segmentation
estimate. Indeed, the car’s shape is strongly distorted due to its proximity to the omnidi-
rectional camera. The absence of such images and nearby objects in the training dataset
makes the network unable to make a correct prediction. Spherical adaptation improves the
quality of semantic segmentation in spherical images but remains limited by the training
dataset, as in all supervised methods.
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SAMPLE 1 SAMPLE 2

Baseline Adapted Baseline Adapted

Figure 5. Prediction examples in the RWFOREST dataset. The spherical adaptation improves shape
detection (tree canopy is better identified) and reduces erroneous class estimation. (Top left): RGB
input, (top right): ground-truth segmentation, (bottom left): prediction from the baseline network,
(bottom right): prediction from the adapted network.

MASK MASK

Baseline Adapted

Figure 6. Urban driving example. The adapted network better identifies the tree canopy. A red circle
at the top left of the image highlights the area with the most visible differences: the baseline network
estimates the earth (in brown) class instead of trees (in green).

4.3.2. Monocular Depth

Monocular depth prediction is more difficult to comment on than semantic segmenta-
tion because depth differences are less visible to the human eye. The visual results seem
ambiguous, and it is challenging to decide which estimate is better than the other. Therefore,
a more detailed quantitative comparison is provided in Table 3. Additional metrics are
provided, all of which show that the depth prediction from the spherical adapted network
is more accurate than the baseline version.
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Table 3. Comparison of adapted and baseline depth estimation networks on RWFOREST dataset.
The definition of every metric is provided in Appendix B.

RWFOREST 256× 256 δ < 1.25 (↑) δ < 1.252 (↑) δ < 1.253 (↑) AbsRel (↓) SqRel (↓) RMSE (↓)

Monocular depth baseline 0.251 0.440 0.619 1.198 0.451 0.277

Monocular depth adapted 0.26 (+3.586%) 0.454 (+3.182%) 0.630 (+1.777%) 1.154 (−3.673%) 0.443 (−1.774%) 0.275 (−0.722%)

For each comparison, the best results are in bold.

In the appendix, Figure A1 shows the monocular depth estimation from the same RGB
images used in the semantic segmentation prediction example.

For real image examples, we focus on predicting the distance of objects in the upper
polar region during urban driving scenes. Figures 7 and 8 show two image acquisitions, the
first as the car passes under a bridge and the second as it drives by a large tree. Similarly
to the results on the virtual images and semantic segmentation examples, the detection
of shapes is improved in the polar regions and there is less erroneous depth estimation.
Sample 1 shows that the spherical adaptation improves the depth prediction in the polar
regions of the equirectangular images. In the upper left of the image, the bridge depth
estimation is more accurate and smoother due to better local pixel coherence. In addition,
sample 2 shows that the adapted prediction is less sensitive to illumination noise. The image
contrast in the top polar region shows significant differences due to the sun configuration.
The baseline network interprets these changes as depth differences, while the adapted
model is more robust and remains accurate.

SAMPLE 1

Baseline Adapted

Figure 7. Urban driving examples. The adapted network better estimated depth in the polar regions
of the equirectangular images. A red circle at the top left of the image highlights the area with the
most visible differences.

4.3.3. Optical Flow

The optical flow enhancements are clearly visible as objects move into the polar regions
of the equirectangular image. Figure 9 shows two optical flow estimates in the dataset
Flow360. In both examples, the car passes under a streetlight. Due to the improved local
pixel coherence provided by the distortion-aware convolutions, the adapted network is able
to track the path of the streetlight in the upper polar region of the image. As a result, the
estimated optical flow is close to the ground truth. In parallel, the non-adapted network has
difficulty detecting this same streetlight. Consequently, the flow prediction is inaccurate in
sample 1 or even empty in sample 2.
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SAMPLE 2

Baseline Adapted

Figure 8. Less erroneous depth estimation from the adapted network. A red circle at the top of the
image highlights the area with the most visible differences.

SAMPLE 1 SAMPLE 2

Baseline Adapted Baseline Adapted

Figure 9. Prediction examples in the Flow360 dataset. Spherical adaptation allows better tracking
of objects moving in polar regions. As a result, the estimation of the optical flow of the observed
lamp post is significantly improved (area highlighted by the red circle). (Top left): RGB input,
(top right): ground-truth optical flow, (bottom left): prediction from the baseline network, (bottom
right): prediction from the adapted network.

For optical flow estimation in real images, we focus on the motion of a ball during
a throw. Figure 10 shows two different image sequences with associated optical flow
predictions. Due to better local pixel coherence, the adapted model keeps track of the ball
and provides an accurate motion estimate. In contrast, the baseline network loses track of
the ball, resulting in a noisy optical flow prediction without an apparent precise motion.
This result confirms the improvement in the optical flow estimation in virtual and real
images provided by distortion-aware convolutions.
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SEQUENCE 1

Baseline OMNI adapted
SEQUENCE 2

Baseline Adapted

Figure 10. Ball throw example. The adapted network provides correct optical flow estimation,
whereas the baseline version loses track of the ball. Top left: RGB input frame at t, top right: RGB
input frame at t + 1, bottom left: prediction from the baseline network, bottom right: prediction from
the adapted network.

5. Conclusions

This paper presents a generalization of the spherical adaptation of perspective meth-
ods to equirectangular images using distortion-aware convolutions. We have tested and
proved the adaptation of three fundamental visual modalities in computer vision: semantic
segmentation, optical flow, and monocular depth.

A state-of-the-art network was modified for each modality to take into account the
spherical distortions with a simple and fast adaptation without architecture modification or
additional training. When tested on virtual equirectangular outdoor images, the adapted
version outperformed its baseline in all cases. Furthermore, regardless of the visual modal-
ity, the network estimations were improved in highly distorted regions. The predictions
were smoother thanks to better local pixel coherence. Furthermore, there were less erro-
neous estimations. We observed the same results when applying these methods to real
outdoor equirectangular images.

Therefore, although this solution does not compete with networks specializing in
spherical images, it allows the simple and fast adaptation of any architecture. Further-
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more, this can easily overcome the lack of outdoor omnidirectional datasets. Finally, it
allows us to keep up with the new architectures proposed regularly in deep learning for
perspective images.

Author Contributions: Conceptualization, C.-O.A., G.A. and C.D.; methodology, C.-O.A., G.A. and
C.D.; software, C.-O.A.; validation, C.-O.A., G.A. and C.D.; formal analysis, C.-O.A., G.A. and C.D.;
investigation, C.-O.A., G.A. and C.D.; resources, C.-O.A., G.A. and C.D.; data curation, C.-O.A., G.A.
and C.D.; writing—original draft preparation, C.-O.A., G.A. and C.D.; writing—review and editing,
C.-O.A., G.A. and C.D.; visualization, C.-O.A.; supervision, G.A. and C.D.; project administration,
G.A. and C.D.; funding acquisition, G.A. and C.D.; All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the ANR CLARA project, grant ANR-18-CE33-0004 of the French
Agence Nationale de la Recherche.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Our code implementation will be available on GitHub at https://
github.com/COATZ/OMNI-CONV.

Acknowledgments: This work was supported by the ANR CLARA project, grant ANR-18-CE33-0004
of the French Agence Nationale de la Recherche. This work was granted access to the HPC resources
of IDRIS under the allocation AD011013128 made by GENCI.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A. Additional Evaluation Metrics

To compare the adapted and baseline version of each model, we used comparison
metrics specific to each visual modality estimated. The additional results are presented in
this section. The definition of every metric is provided in Appendix B.

Appendix A.1. Semantic Segmentation Evaluation

Table A1. Comparison of adapted and baseline semantic segmentation networks on RWFOREST
256 × 256, RWFOREST 512 × 256, and RWFOREST 1024 × 512.

RWFOREST 256× 256 MIoU (↑) Accuracy (↑) AECE (↓)
Semantic segmentation baseline 0.677 0.810 2.045

Semantic segmentation adapted 0.688 (+1.525%) 0.828 (+2.282%) 0.337

RWFOREST 512× 256 MIoU (↑) Accuracy (↑) AECE (↓)
Semantic segmentation baseline 0.504 0.631 3.692

Semantic segmentation adapted 0.564 (+11.980%) 0.639 (+1.332%) 1.577

RWFOREST 1024× 512 MIoU (↑) Accuracy (↑) AECE (↓)
Semantic segmentation baseline 0.443 0.621 5.845

Semantic segmentation adapted 0.528 (+19.174%) 0.627 (+0.852%) 3.034
For each comparison, the best results are in bold.

https://github.com/COATZ/OMNI-CONV
https://github.com/COATZ/OMNI-CONV
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Appendix A.2. Monocular Depth Evaluation

Table A2. Comparison of adapted and baseline depth estimation networks on RWFOREST 256 × 256,
RWFOREST 512 × 256, and RWFOREST 1024 × 512.

RWFOREST 256× 256 δ < 1.25 (↑) δ < 1.252 (↑) δ < 1.253 (↑) AbsRel (↓) SqRel (↓) RMSE (↓)

Monocular depth baseline 0.251 0.440 0.619 1.198 0.451 0.277

Monocular depth adapted 0.26 (+3.586%) 0.454 (+3.182%) 0.630 (+1.777%) 1.154 (−3.673%) 0.443 (−1.774%) 0.275 (−0.722%)

RWFOREST 512× 256 δ < 1.25 (↑) δ < 1.252 (↑) δ < 1.253 (↑) AbsRel (↓) SqRel (↓) RMSE (↓)

Monocular depth baseline 0.254 0.421 0.554 1.664 0.739 0.305

Monocular depth adapted 0.264 (+3.937%) 0.437 (+3.8%) 0.574 (+3.610%) 1.567 (−5.829%) 0.695 (−5.954%) 0.298 (−2.295%)

RWFOREST 1024× 512 δ < 1.25 (↑) δ < 1.252 (↑) δ < 1.253 (↑) AbsRel (↓) SqRel (↓) RMSE (↓)

Monocular depth baseline 0.248 0.413 0.545 1.836 0.856 0.316

Monocular depth adapted 0.257 (+3.629%) 0.431 (+4.358%) 0.57 (+4.587%) 1.707 (−7.026%) 0.79 (−7.70%) 0.307 (−2.848%)

For each comparison, the best results are in bold.

SAMPLE 1

Baseline Adapted

Figure A1. Prediction examples in the RWFOREST dataset. The predicted depth images are visually
challenging to compare. However, quantitative measurements have shown that the adapted version
is numerically better than the baseline. Top left: RGB input, top right: ground-truth monocular depth,
bottom left: prediction from the baseline network, bottom right: prediction from the adapted network.

Appendix A.3. Optical Flow Evaluation

Table A3. Comparison of adapted and baseline optical flow networks on OmniFlowNet, Flow360,
CityScene, and EquirectFlyingThings datasets.

OmniFlowNet Dataset [14] Flow360 Dataset [23]

EPE (↓) EPE (↓)
Optical flow baseline 5.16 16.15

Optical flow adapted 4.96 (−3.93%) 15.95 (−1.27%)

CityScene [9] EquirectFlyingThings [9]

EPE (↓) EPE (↓)
Optical flow baseline 32.16 42.44

Optical flow adapted 31.36 (−2.08%) 41.83 (−1.43%)
For each comparison, the best results are in bold.
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Appendix B. Estimation Metrics

Appendix B.1. Semantic Segmentation Metrics

In order to compare the performances of the spherical adapted network version and
its baseline, we use two common semantic segmentation metrics [27]:

• The Mean Intersection Over Union (MIoU), which indicates the intersection over
union between predicted and ground-truth pixels, averaged over all the classes;

• The Mean Accuracy, which indicates the proportion of correctly classified pixels
averaged over all the classes;

• The Averaged Erroneous Class Estimate (AECE), which indicates the number of classes
detected by the network but not present in the ground-truth image averaged over
all runs.

Appendix B.2. Monocular Depth Metrics

To compare the baseline and modified networks, we use three commonly used metrics
in depth prediction [28]:

• Accuracy under a threshold th:

δ = max(
d̂p

dp
,

dp

d̂p
) < th; (A1)

• Absolute Relative Error:

AbsRel =
1
T ∑

p

|dp − d̂p|
dp

; (A2)

• Linear Root Mean Square Error:

RMSE =

√
1
T ∑

p
(dp − d̂p)2; (A3)

with d̂p the estimated depth for a pixel p, dp the ground-truth depth, and T the total
number of pixels.

Appendix B.3. Optical Flow Metric

In order to compare the performances of the spherical adapted network version and
its baseline, we use the End-Point Error EPE [29]. If the flow vector estimated is (u f , v f )
and the ground-truth flow (u f gt, v f gt), then the resulting metric is:

EE =
1
N ∑

N

√
(u f gt − u f )2 + (v f gt − v f )2. (A4)
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