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Abstract: This study proposed enhanced U-Net with GridMask (EUGNet) image augmentation
techniques focused on pixel manipulation, emphasizing GridMask augmentation. This study intro-
duces EUGNet, which incorporates GridMask augmentation to address U-Net’s limitations. EUGNet
features a deep contextual encoder, residual connections, class-balancing loss, adaptive feature fu-
sion, GridMask augmentation module, efficient implementation, and multi-modal fusion. These
innovations enhance segmentation accuracy and robustness, making it well-suited for medical image
analysis. The GridMask algorithm is detailed, demonstrating its distinct approach to pixel elimination,
enhancing model adaptability to occlusions and local features. A comprehensive dataset of robotic
surgical scenarios and instruments is used for evaluation, showcasing the framework’s robustness.
Specifically, there are improvements of 1.6 percentage points in balanced accuracy for the foreground,
1.7 points in intersection over union (IoU), and 1.7 points in mean Dice similarity coefficient (DSC).
These improvements are highly significant and have a substantial impact on inference speed. The
inference speed, which is a critical factor in real-time applications, has seen a noteworthy reduction.
It decreased from 0.163 milliseconds for the U-Net without GridMask to 0.097 milliseconds for the
U-Net with GridMask.

Keywords: minimally invasive surgery; convolutional neural network; U-Net; data augmentation;
surgical tools segmentation; computer vision; image processing

1. Introduction

Minimally invasive surgery (MIS), often referred to as laparoscopic surgery or mini-
mally invasive procedures, offers several notable advantages over traditional open surgery.
These advantages include smaller incisions, resulting in less visible scarring [1], quicker
patient recovery times, and shorter hospital stays [2]. MIS is associated with reduced
postoperative pain and a decreased need for pain medication [3]. Additionally, the smaller
incisions reduce the risk of surgical site infections, as there is less exposure to external
contaminants [4]. Moreover, MIS procedures lead to reduced intraoperative and postopera-
tive blood loss, which is particularly advantageous in cases where blood conservation is
critical [5]. The minimized incision size also reduces the risk of wound complications, such
as dehiscence, hernias, and evisceration [6], and results in better cosmetic outcomes [7].
Furthermore, MIS often enables patients to return to a regular diet more quickly, promoting
early recovery, and can result in cost savings for both patients and healthcare systems [8].

MIS involves performing surgical procedures through small incisions rather than
a large open incision. The surgical process begins with the surgeon creating several
small incisions, typically ranging from 0.5 to 1.5 cm in length, near the surgical site [9].
These incisions serve as entry points for specialized surgical instruments and a camera.
Subsequently, trocars, long, slender instruments, are inserted through these small incisions,
providing access for the surgical instruments and the camera [10]. A laparoscope, a thin
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tube equipped with a camera and light source at its tip, is inserted through one of the
trocars, providing high-definition images of the surgical area displayed on an operating
room monitor. This real-time visual feedback guides the surgeon throughout the procedure.
Specialized surgical instruments, such as scissors, graspers, cautery devices, and suturing
tools, are inserted through the other trocars and are designed for various surgical tasks,
such as cutting, cauterizing, and suturing. The surgeon manipulates these instruments from
outside the body while monitoring the live video feed on the monitor, allowing for precise
control and fine movements of the instruments [11]. Depending on the specific surgical
procedure, the surgeon may manipulate tissues, remove or repair damaged structures, and
complete the necessary steps to address the medical condition. Throughout the surgery,
the surgical team continuously monitors the patient’s vital signs, such as heart rate, blood
pressure, and oxygen saturation, to ensure the patient’s safety and well-being. After
completing the surgical procedure, the surgeon removes the surgical instruments and
trocars. The small incisions may be closed using sutures, surgical glue, or adhesive strips,
or, in some cases, they may not require closure at all. The patient is then transferred to
a recovery area, where they are monitored as they wake up from anesthesia. MIS finds
applications in various medical specialties, including general surgery, gynecology, urology,
orthopedics, and more [12].

While MIS offers numerous benefits, it also presents several challenges stemming
from the intricate nature of the surgical procedure, limited field of view, complex hand-eye
coordination requirements, and the involvement of human assistants. These challenges
can lead to increased surgical time and costs. The complexity of performing intricate
procedures through small incisions, sometimes with limited tactile feedback compared
to open surgery, can be especially challenging when dealing with delicate anatomical
structures. The use of small incisions and an endoscope reduces the surgeon’s field of
view compared to open surgery, making it challenging to navigate and manipulate tissues
effectively [13]. MIS necessitates that surgeons develop and maintain complex hand-eye
coordination skills, translating external movements into precise actions within the body,
often using instruments with articulating tips [14]. In many MIS procedures, a human
assistant operates the endoscope’s camera, providing the surgeon with visual feedback,
which introduces an element of dependency on the assistant’s skills and can affect surgery
efficiency [15]. To address these challenges, there has been a noticeable surge of interest in
the research domain of computer- and robot-assisted minimally invasive surgery (RAMIS)
over the past few years. This heightened focus aims to enhance the capabilities of minimally
invasive procedures, mitigate associated difficulties, and further improve patient outcomes,
with researchers, clinicians, and healthcare institutions investing in exploring RAMIS’s
potential benefits and advancements [16,17].

Advancements in this domain revolve around providing surgeons with effective tools
to address and mitigate these challenges and open up exciting possibilities in surgical
skill assessment, workflow optimization, and training of junior surgeons. One prominent
approach involves harnessing information related to the positions and movements of
surgical instruments during a procedure, often utilizing innovative tracking methods
that enable real-time monitoring of surgical tools. These tracking methods, relying on
technologies such as electromagnetic- or infrared-based systems or the strategic attachment
of external markers to instruments, precisely capture instrument locations and movements
within the surgical field, enhancing the surgeon’s capabilities and offering insights into
surgical practice [18–21]. Presently, the primary focus in this domain is on utilizing visually
derived data from endoscopic video streams, aligning with the advancements in deep-
learning-based techniques within image processing [22,23].

The task at hand involves identifying and tracking surgical instruments within the sur-
gical field, typically accomplished using object detection methods that locate instruments
by enclosing them within bounding boxes. Once instruments are initially detected, tracking
methods follow them across multiple video frames, ensuring consistent monitoring and
recording of instrument positions and movements [24,25]. While these methods offer
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quick processing times, they may lack precision, particularly for instruments that extend
from the bottom corners toward the center of the image. A significant advancement in
surgical instrument detection and localization is achieved through segmentation methods,
which provide a finer level of detail by predicting instrument shapes pixel by pixel. Unlike
bounding box methods, segmentation offers a more accurate representation of instrument
contours and boundaries [26–29]. A range of studies have explored surgical tool segmenta-
tion on the Johns Hopkins University (JHU) and Intuitive Surgical, Inc. (Sunnyvale, CA,
USA. ISI) Gesture and Skill Assessment Working Set, JIGSAWS dataset, for autonomous
image-based skill assessment. Papp [30] achieved promising results using TernausNet-11,
while Ahmidi [31] reported high accuracy for gesture recognition techniques. Funke [32]
demonstrated the feasibility of deep-learning-based skill assessment using 3D convolu-
tional networks (ConvNets), and Lajkó [33] proposed a 2D image-based skill assessment
method. Nema [34] and Jin [35] discussed the use of instrument detection and tracking tech-
nologies, with Jin introducing a new dataset and method for tool presence detection and
spatial localization. Attia [36] achieved high accuracy in surgical tool segmentation using a
hybrid deep convolutional neural network–recurrent neural network (CNN-RNN) auto-
encoder–decoder. These studies collectively highlight the potential of various techniques
for surgical tool segmentation and skill assessment on the JIGSAWS dataset.

This paper focuses on the application of the U-Net architecture, a CNN structure
originally designed for precise pixel-wise image classification in medical image analysis
tasks [26–28,37,38]. TernausNet, a U-Net architecture with a VGG11 pre-trained encoder,
has shown superior performance in image segmentation tasks, particularly in the medical
and satellite imaging domain [39]. This approach has been further extended to Ternaus-
NetV2, which allows for instance segmentation in high-resolution satellite imagery. The
U-Net architecture, in general, has been widely adopted in medical image analysis, with
various modifications and improvements proposed. These include the double U-Net, which
combines two U-Net architectures and has shown improved performance in medical image
segmentation [40], and UNet++, a nested U-Net architecture that has achieved signifi-
cant gains in medical image segmentation tasks [41]. The U-NetPlus, a modified U-Net
architecture with a pre-trained encoder, has also demonstrated superior performance in
semantic and instance segmentation of surgical instruments from laparoscopic images [42].
The U-Net architecture’s potential is further enhanced by the integration of residual skip
connections and recurrent feedback with a pre-trained EfficientNet encoder, resulting in
improved segmentation performance [43]. However, the U-Net architecture has some com-
mon limitations, including limited receptive field, susceptibility to overfitting, challenges
with imbalanced class distributions, difficulty handling irregular shapes, computational
complexity, and issues with adapting to multiple data modalities [44–49]. To address
these limitations and increase segmentation accuracy for surgical instruments, this paper
proposes the integration of advanced augmentation techniques like MixUp, CutMix, or
GridMask, with a specific focus on the GridMask technique.

In summary, MIS offers numerous advantages but presents unique challenges, leading
to increased interest in computer RAMIS. Advancements in this field aim to enhance
surgical capabilities, optimize workflows, and train junior surgeons. Tracking and real-
time monitoring of surgical instruments play a crucial role in addressing these challenges,
with segmentation methods offering higher precision. This paper focuses on the U-Net
architecture’s application to surgical instrument segmentation, aiming to overcome its
limitations by incorporating advanced augmentation techniques like GridMask.

2. Materials and Methods

Image augmentation techniques that rely on image erasure typically involve the
removal of one or more specific portions within an image. The fundamental concept
behind this approach is to substitute the pixel values in these removed regions with
either constant or randomized values. In a study by DeVries and Taylor in 2017, they
introduced a straightforward regularization method called “cutout.” This method entails
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randomly masking square regions within input data during the training of convolutional
neural networks (CNNs). Cutout has been shown to enhance the resilience and overall
performance of CNNs [50]. Another technique, proposed by Singh and others in 2018,
is known as “Hide-and-Seek” (HaS). HaS involves randomly concealing patches within
training images, encouraging the network to seek out other relevant information when
crucial content is hidden [51]. In 2020, Zhong and his colleagues introduced the “random
erasing” method. This technique randomly selects a rectangular area within an image
and replaces its pixel values with random data. Despite its simplicity, this approach has
demonstrated significant performance improvements [52]. A more recent development,
presented by Chen et al. in 2020, delves into the necessity of information reduction and
introduces a structured method called “GridMask”. GridMask is also based on the removal
of regions within input images [53]. Unlike Cutout and HaS, GridMask does not eliminate
continuous regions or randomly select squares; instead, it removes uniformly distributed
square regions, allowing for control over their density and size. To address the trade-off
between object occlusion and information retention, FenceMask, as proposed by Li et al.
in 2020, employs a strategy simulating object occlusion. This method adds to the array of
techniques based on the deletion of specific regions within input images [54].

GridMask is a data augmentation technique designed to enhance the performance of
deep learning models, particularly in computer vision tasks [53]. The method involves
overlaying a grid on the image and masking (or dropping out) certain regions, forcing the
model to learn from a partial view of the data. The idea is akin to the way dropout works for
neurons but is applied spatially on input images. Just like dropout prevents neurons from
co-adapting and helps in regularization, GridMask ensures that the model does not overly
rely on specific local features or pixels of the input. By dropping out certain sections of the
image, the network is forced to learn more robust and generalized features. By masking
out portions of the image, the model is pushed to use the surrounding context to make
predictions about the masked regions. This is especially useful for segmentation tasks where
understanding the context can be crucial. In real-world scenarios, the objects or regions of
interest in images may be partially occluded. GridMask trains the model to handle such
occlusions, making it more robust. U-Net, with its large number of parameters, can be
prone to overfitting, especially when the dataset is limited. Data augmentation techniques
like GridMask can effectively increase the size of the training dataset by providing varied
versions of the same image, helping to reduce overfitting. GridMask forces the U-Net to
focus on both local and global features. While the local features within the unmasked
regions become more pronounced, the model also tries to infer global context from the
available parts of the image. Data augmentation techniques often help in better convergence
during training. By providing more varied data, GridMask can potentially smoothen the
loss landscape and assist in more stable training. GridMask allows for random rotations,
resizing, and shifting of the grid, leading to a wide range of augmentations from a single
image. This ensures that the network encounters varied challenges during training, pushing
it to learn a broader set of features. Incorporating GridMask into the U-Net training
pipeline can be straightforward. It is essential to ensure that the augmentations are applied
consistently to both input images and their corresponding masks/annotations during
training, especially for segmentation tasks. As with any augmentation technique, it is
advisable to monitor validation performance to ensure the augmentations lead to genuine
improvements and not just make the task harder without yielding benefits.

2.1. Enhanced U-Net with GridMask (EUGNet) Architecture

To address the inherent challenges associated with the traditional U-Net architecture
and to harness the potential benefits of the GridMask augmentation technique, we introduce
the enhanced U-Net with GridMask (EUGNet) architecture. The following subsections
detail the components and innovations of EUGNet:

1. Deep Contextual Encoder: To capture distant contextual information, which the
traditional U-Net might miss, our encoder is deepened and incorporates dilated con-
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volutions. This enhancement allows for a broader receptive field without a significant
increase in computational complexity.

2. Residual Connections: To mitigate the loss of fine-grained spatial details during the
downsampling and upsampling processes, we have integrated residual connections
between corresponding encoder and decoder layers. This integration ensures the
preservation of spatial information, aiding in more accurate segmentation output
reconstruction.

3. Class Balancing Loss: Considering the frequent challenge of imbalanced class distri-
butions in medical image analysis, our architecture employs a class-balancing loss
function. This adjustment ensures that the model remains unbiased towards the
majority class, providing equal importance to all classes during training.

4. Adaptive Feature Fusion: To better handle objects of irregular shapes, we introduce an
adaptive feature fusion mechanism within the decoder. This mechanism adaptively
weighs features from the encoder and the upsampled features from the preceding de-
coder layer, allowing the model to focus on the most pertinent features for segmentation.

5. GridMask Augmentation Module: The GridMask technique is directly integrated into
our training pipeline. Before the images are input into the encoder, they undergo
the GridMask module, ensuring the model consistently trains with augmented data,
enhancing its robustness and reducing overfitting tendencies.

6. Efficient Implementation: To address U-Net’s computational demands, our archi-
tecture employs depthwise separable convolutions where feasible. This approach
reduces the parameter count without compromising the model’s learning capacity.

7. Multi-Modal Fusion: For tasks that involve multiple data modalities, EUGNet intro-
duces a fusion layer post-encoder. This layer is designed to effectively fuse features
from different modalities before they are passed to the decoder. Figure 1 depicts a
visual representation of EUGNet.

2.2. GridMask Algorithm

GridMask is a straightforward, versatile, and effective technique. When provided
with an input image, our algorithm randomly eliminates certain pixels from it. In contrast
to other approaches, our algorithm’s removal region is distinct in that it does not consist of
continuous pixel clusters or randomly scattered pixels as in dropout. Instead, it removes a
region made up of disconnected sets of pixels. The setting can be expressed as follows [53]:

∼
X = X × M (1)

where X ∈ RH×W×C represents the input image, M ∈ {0, 1}H×W is the binary mask that

stores pixels to be removed, and
∼
X ∈ RH×W×C is the result produced by our algorithm.

RH×W×C represents a 3-dimensional space for an image where H stands for the height of
the image in pixels, W stands for the width of the image in pixels, and C stands for the
number of channels in the image. For the binary mask M, if Mi,j = 1, we keep pixel (i, j) in
the input image; otherwise, it will be removed. The algorithm is applied after the image
normalization operation.

The shape of M looks like a grid, as shown in Figure 2. Four numbers
(
r, d, δx, δy

)
are used to represent a unique M. Every mask is formed by tiling the units, as shown in
Figure 3. Here, r is the ratio of the shorter gray edge in a unit, and d is the length of one unit.
δx and δy are the distances between the first intact unit and the boundary of the image.
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2.3. Data Collection for Algorithm Evaluation

To show the robustness and generalization ability of the proposed framework for
robotic instrument segmentation, a dataset with different robotic surgical scenarios and
instruments has been used to validate the proposed architectures. This dataset consists of
training and testing data for ex vivo robotic surgery with different articulated instruments:

(1) Da Vinci robotic (DVR) dataset [55]: The training set contains four ex vivo 45 s videos.
The testing set consists of four 15 s and two 60 s videos. The test video features contain
two instruments. Articulated motions are present in all the videos. The ground truth
masks are automatically generated using joint encoder information and forward
kinematics. Hand-eye calibration errors are manually corrected. All the videos have
been recorded with the da Vinci Research Kit (dVRK) open-source platform [56]. The
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frames have a resolution of 720 × 576, and the videos run at 25 frames per second.
This means that we have a total of (60 + 15) × 25 = 1875 frames (images).

(2) We obtained the recorded videos for testing our algorithm from open sources on
the Internet, including the U.S. National Library of Medicine [57] (video links are
available upon request). The videos showed various surgical procedures, such as
midline lobectomy, right superior line lobectomy, thoracotomy, thoracoscopic lung
surgery, and prostatectomy. Each video showed splash-like bleeding. The frames
have a resolution of 720 × 576, and the videos run at 25 frames per second. The total
duration of these videos is 2 min, which means 2 × 60 × 25 = 3000 frames (images).

(3) The binary segmentation EndoVis 17 [58] dataset, comprising 600 images, was utilized
for both testing and training purposes. It consists of 10 sequences from abdominal
porcine procedures recorded with da Vinci Xi systems. The dataset was curated by
selecting active sequences that exhibited substantial instrument motion and visibility,
with 300 frames sampled at a 1 Hz rate from each procedure. Frames where the
instrument motion was absent for an extended period were manually excluded to
maintain a consistent sequence of 300 frames. For the purpose of training, the first
225 frames from 8 sequences were made available, while the remaining 75 frames
of these sequences were reserved for testing. Additionally, 2 sequences, each with a
complete set of 300 frames, were exclusively allocated for testing.
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2.4. Baseline Method and Evaluation Protocol

U-Net is a widely adopted tool in the field of medical image analysis, especially for
segmenting surgical instruments in medical images and videos. To establish a baseline
for comparison, we employ an advanced version of the U-Net architecture, known for
its precision in segmenting robotic surgical tools. This choice is natural because the fine-
grained U-Net architecture represents one of the cutting-edge convolutional models for this
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specific task. The frames are randomly chosen during training to present the networks with
varying input data, as we are mostly interested in comparing the proposed architecture
to the baseline method rather than achieving the highest scores, and GridMask data
augmentation is performed. Because transfer learning carries the risk of transferring
biases present in the source dataset to our target task, transfer learning is neglected. Since
biases are undesirable for your application, training from scratch was preferred. In our
experiments, the cyclical learning rate (CLR) bounds for the U-Net network are set to (10−4;
10−2. The quantitative metrics of choice to evaluate the predicted segmentations are mean
Intersection over union (mean IoU) and mean Dice similarity coefficient (mean DSC):

IoU(ŷ, y) =
1
K

K

∑
k=1

TPk
TPk + FPk + NFk

(2)

DSC(ŷ, y) =
1
K

K

∑
k=1

2TPk
2TPk + FPk + NFk

(3)

where K = 2 (k = 0 background, k = 1 foreground), and TPk, FPk, and NFk represent true
positives, false positives, and false negatives for class k, respectively.

All networks were trained and tested (including inference times) on a computer with a
13th generation Intel Core™ i9-13900KF processor (E-cores up to 4.30 GHz and P-cores up
to 5.40 GHz) CPU and a NVIDIA GeForce RTX™ 4080 16GB GDDR6X GPU. The inference
time was calculated, including data transfers from CPU to GPU and back, and averaged
across 1000 inferences.

3. Results

Comparing the results of our proposed augmented data employing GridMask with
the U-Net in the DVR testing set, we observed improvements of 1.6, 1.7, and 1.7 percentage
points in balanced accuracy (foreground), mean intersection over union (IoU), and mean
DSC, respectively (see Table 1). This has a significant impact on inference speed, which
is reduced from 0.163 ms for the U-Net without GridMask to 0.097 ms or the U-Net with
GridMask, becoming a viable real-time instrument–tissue segmentation method for robotic
surgery with the da Vinci platform.

Table 1. Quantitative results for segmentation of non-rigid robotic instruments in testing set videos.
IoU stands for intersection over union, and DSC for Dice similarity coefficient. The means are
performed over classes, and the results presented are averaged across testing frames.

Network Inference Time
(ms/fps)

Balanced
Accuracy (fg.) Mean IoU Mean DSC

U-Net without
GridMask 62.1/16.1 82.5% 78.2% 84.2%

U-Net with GridMask 34.2/29.2 86.3% 80.6% 89.5%

The results of the U-Net with the GridMask method for data augmentation show an
improvement over the U-Net without GridMask of 4.6, 2.9, and 6.2 percentage points in
balanced accuracy (foreground), mean IoU, and mean DSC, respectively (see Table 1). The
inference speed is also real-time, approximately 29 fps. The qualitative results in Figure 4
show how our proposed architecture respects the borders of the tooltip of left-handed
surgical tools more.
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As can be seen in Figure 5, the application of GridMask data augmentation in the
training of an enhanced U-Net model has demonstrated notable improvements across
various metrics. Specifically, the graphs provided illustrate that incorporating GridMask
results in a more stable and generally lower training loss over 40 epochs, suggesting better
generalization and less overfitting compared to training without GridMask. Accuracy
metrics also show an improvement, with the model achieving comparable or slightly
higher accuracy when trained with GridMask, implying that the model’s predictions are
more reliable. Furthermore, the Dice coefficient, which is crucial for evaluating the model’s
performance in segmentation tasks, shows a clear enhancement when GridMask is utilized.
The model with GridMask maintains a consistently higher Dice coefficient, indicating
superior overlap between the predicted and ground-truth segmentation masks. These
results collectively suggest that the use of GridMask data augmentation can significantly
bolster the performance of enhanced U-Net architectures in learning tasks.
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4. Discussion

In the forthcoming stages of our research, we aim to refine our approach to using
GridMask for data augmentation. Instead of uniformly applying GridMask to all training
images, we intend to implement a more precise strategy. This refined approach involves
overlaying masks exclusively onto the segmented regions of the images while excluding the
background. By doing so, we aim to create a more targeted and effective data augmentation
process. Furthermore, we plan to conduct an in-depth evaluation and comparison of the
effectiveness of alternative augmentation techniques such as MixUp and CutMix. This
comparative analysis will help us determine which augmentation strategy yields the most
favorable results for our specific task. In our ongoing research, we will also explore the
potential advantages of transfer learning, potentially harnessing the capabilities of deeper
neural network architectures. Transfer learning involves leveraging pre-trained models
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to expedite training and potentially improve the performance of our model in surgical
instrument segmentation.

The GridMask data augmentation technique led to performance improvement in the
segmentation of surgical tools by introducing structured occlusion in training images.
This encourages the U-Net model to learn more robust features by (a) forcing contextual
learning: by partially occluding the surgical tools, the network must learn to infer the shape
and position of tools from the visible context. (b) Improving generalization: GridMask
helps in reducing overfitting by preventing the network from relying on specific visual
cues that are only present in the training data. (c) Enhancing feature learning: it encourages
the network to learn more comprehensive feature representations by not depending on
any particular region of the tool, leading to a more versatile understanding of the tool’s
appearance. (d) Simulating real-world occlusions: in a surgical environment, tools may be
occluded by various objects, including human hands, tissues, or other tools.

By integrating these challenging scenarios during training, GridMask effectively
enhances the robustness of the U-Net model for surgical tool segmentation tasks.

It should be emphasized that in the training of U-Net, standard data augmentation
techniques are employed. These include rotation, flipping, scaling, translation, elastic
deformation, brightness adjustment, noise injection, and cropping. The intent of our study
is to evaluate the effectiveness of GridMask data augmentation in comparison to these
widely used techniques. During the data preparation phase of training, we implement the
aforementioned common augmentation strategies before proceeding to train the model
with GridMask techniques. Therefore, our comparisons are not made against models
without any data augmentation but against those that have been trained with the standard
set of augmentation methods, excluding GridMask.

Additionally, we are considering the application of adversarial training as part of
our research. This technique, which has demonstrated promising outcomes in broader
semantic labeling applications, may play a role in further enhancing the precision and accu-
racy of our robotic surgical instrument segmentation model. One particularly captivating
avenue for future investigation is the three-dimensional (3D) localization of segmented
surgical instruments. With the growing prevalence of stereo endoscopes, we have the
opportunity to segment both images produced by these devices. This dual-image seg-
mentation enables us to align instrument pixels between the stereo images. By ensuring
proper camera calibration, we can leverage these matched points for dense geometry-
based triangulation, ultimately providing precise 3D localization information for surgical
tools. This advancement could greatly enhance the spatial understanding and guidance of
surgical procedures.

5. Conclusions

We have improved the current state-of-the-art U-Net architecture by employing Grid-
Mask data augmentation techniques. When we compare the outcomes of our novel data
augmentation approach, which incorporates GridMask, with the U-Net model on the DVR
testing dataset, we observe notable enhancements. Specifically, there are improvements
of 1.6 percentage points in balanced accuracy for the foreground, 1.7 points in IoU, and
1.7 points in mean DSC. These improvements are highly significant and have a substantial
impact on inference speed. The inference speed, which is a critical factor in real-time
applications, has seen a noteworthy reduction. It decreased from 0.163 milliseconds for
the U-Net without GridMask to 0.097 milliseconds for the U-Net with GridMask. This
substantial improvement in inference speed positions our model as a viable real-time
instrument–tissue segmentation method for robotic surgery, especially when deployed on
the da Vinci platform.

Moreover, when we examine the results of the U-Net model with GridMask for data
augmentation, we witness even more impressive performance gains compared to the U-Net
with GridMask alone. There are remarkable improvements of 4.6 percentage points in
balanced accuracy for the foreground, 2.9 points in mean IoU, and 6.2 points in mean
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DSC, as highlighted in Table 1. These improvements further underscore the efficacy of
our approach.

Additionally, the inference speed remains in real time, operating at an approximate
rate of 29 frames per second (fps). This fast processing rate is essential for the dynamic and
time-sensitive nature of robotic surgical procedures.
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