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Abstract: The detection of cancer lesions of a comparable size to that of the typical system resolution
of modern scanners is a long-standing problem in Positron Emission Tomography. In this paper,
the effect of composing an image-registering convolutional neural network with the modeling of
the static data acquisition (i.e., the forward model) is investigated. Two algorithms for Positron
Emission Tomography reconstruction with motion and attenuation correction are proposed and
their performance is evaluated in the detectability of small pulmonary lesions. The evaluation is
performed on synthetic data with respect to chosen figures of merit, visual inspection, and an ideal
observer. The commonly used figures of merit—Peak Signal-to-Noise Ratio, Recovery Coefficient,
and Signal Difference-to-Noise Ration—give inconclusive responses, whereas visual inspection
and the Channelised Hotelling Observer suggest that the proposed algorithms outperform current
clinical practice.

Keywords: PET; tomographic reconstruction; motion correction; attenuation correction; deep
learning; MLAA

1. Introduction

PET (Positron Emission Tomography) is a medical imaging modality that reconstructs
the 3D distribution of metabolic activity by detecting the photons emitted during the in vivo
annihilation of free electrons with positrons from an injected radioactive tracer. In principle,
cancer lesions should be visible in the reconstructed image with high contrast compared to
the surrounding healthy tissue thanks to their particular metabolic fingerprints (e.g., higher
sugar metabolism in fluorodeoxyglucose PET). However, the long acquisition time required
to collect projection data with an acceptable noise level leads to motion artefacts that
strongly affect lesions’ contrast-to-noise-ratio and, therefore, the diagnostic power of PET
images. This is of particular relevance when trying to image lesions with sizes comparable
to the system resolution and that are continuously moving around during data acquisition.

As an example, a current challenge in the PET diagnosis of lung cancer at an early
stage is the visibility of lesions of dimensions of one centimetre or less, which will be
displaced by a few times their dimension during the respiratory cycle.

One way of avoiding motion blurring is to divide projection data into a number of dif-
ferent data subsets (gates) in which the patient (and, therefore, the activity distribution) can
be considered stationary. Gating can be achieved by means of an external gate-triggering
device or by analysing the data itself. Once gated data is available, one can choose to recon-
struct each gate separately or simply one of the gates (usually the one with more counts)
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avoiding, in this way, motion artefacts. The drawback with this approach is the higher
noise level of the reconstructed images that can, especially for smaller lesions, result in
scarce visibility and, consequently, uncertain diagnosis. For this reason, attempts have been
made to jointly estimate the image and motion in order to reconstruct a single stationary
image with the full statistics of the entire projection data set. On passing, please note that,
in this work, only changes in the radiotracers distribution due to patient movement are
considered and the kinetics of the radiotracer distribution during the acquisition is not
taken into consideration. However, the two problems have many features in common
and can be tackled using similar methods [1]. Similar ideas of minimising an objective
function that depends on the parameters of both the image and of a prior motion model
can be applied also to cardiac or respiratory gated data, as reported by the authors of
reference [2]. Instead of assuming a parameterised motion model, one can try to jointly
estimate image and motion by minimising a cost function depending on the likelihood of
the image and motion and a regularisation part depending on the smoothness and size of
the deformation. This kind of approach has been attempted by many authors [3–5] and has
its main drawback in the computational cost of the minimisation.

We apply, here, a method that uses reconstructed gates for estimating the deformation
fields among them and then reconstructs the entire data set in a chosen reference gate by
incorporating the deformation fields in the reconstruction algorithm. A similar approach
was already proposed in 2006 by Qiao and co-authors [6] using CT-gated images for gate
registration. Pouchol et al., in reference [7], instead, proposed to use PET gate registration
by means of a deep-learning-based algorithm [7]. This approach has the advantages of not
requiring an extra dose to the patient and to be computationally inexpensive enough to
be adopted in clinical practice. We improve the results obtained in reference [7], by using
SynthMorph [8] for the estimation of the registration fields. SynthMorph has the advan-
tage of being able to estimate the deformation field at low computational cost compared
to traditional methods and, most importantly, to be contrast and modality agnostic [9].
In other words, SynthMorph is capable of registering gates with substantially different
numbers of events and can also register PET images to X-ray CT images (or Magnetic
Resonance images).

There is a further complication in the reconstruction of the entire data set in a chosen
reference gate that is due to the photon attenuation by the patient. PET scanners can
only detect photons that exit the patient; in fact, a substantial amount of photons will be
absorbed by the patient tissues and will depose a dose. In order to estimate the radiotracer
distribution, projections, therefore, have to be corrected for this attenuation, which is
strongly dependent on the specific tissues encountered by the emitted photons along
the path of the different projection lines. For this reason, it is, at present, customary to
perform an X-ray Computed Tomography (CT) in concomitance with a PET scan. The CT
reconstruction is then used to estimate an attenuation map for attenuation correction.
The challenge in the case of respiratory or cardiac gating resides in the fact that, in general,
none of the emission gates will exactly correspond to the position in which the X-ray CT
scan has been taken and the misalignment between the attenuation map and the various
gates will introduce serious artefacts in the reconstruction.

In this paper, two algorithms for performing the appropriate attenuation correction of
the data are proposed. In one of the proposed algorithms (referred to as M-MLEM with
CT-based attenuation correction or, in short M-MLEM+CT in the following) a CT-image
is scaled to PET photon energies (that is 511 keV) and registered to each of the gates via
Synthmorph, whereas, in the second proposed approach (referred to as M-MLAA in the
remainder of this paper), Synthmorph is composed with the forward projector in a morphed
version of the Maximum Likelihood Activity and Attenuation (MLAA) [10] algorithm. Both
of these proposed methods will be described in more detail in the next section.
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2. Materials and Methods

In this paper, the algorithm proposed in reference [7] and reported for convenience in
Algorithm 1, is extended to 3D and the attenuation correction of the projections is included
in the reconstruction in two different ways.

Algorithm 1 M-MLEM algorithm

Require: n ≥ 0
Require: m ≥ 0
Require: N ≥ 1

A← A . Radon transform
A∗ ← A∗ . adjoint operator of Radon transform
θ ← θ . learned parameters of Synthmorph network
n← MLEMiter . nb of MLEM iterations
m← MMLEMiter . nb of M-MLEM iterations
N ← nbgates + 1 . nb total of gates
f0, . . . , fN ← 1 . . . 1 . init of the distribution estimation
g0, . . . , gN . data for every gates
W0, . . . , WN ← Id, . . . , Id . Init registration fields
for i← 0, N do

for k← 1, n do
fi ← fi

A∗gi
A f k

i A∗1
. MLEM iteration

end for
if i > 0 then

Wi,i−1 ← H( fi−1, fi, θ) . vector field between two close gates
Wi−1,i ← −Wi,i−1 . approximate estimation of inverse
Wi ←Wi,i−1 ◦ . . . ◦W1,0

W−1
i ←W0,1 ◦ . . . ◦Wi−1,i

end if
end for
for k← 1, m do

f0 ←
∑N

j=1 A∗j−1

[
gj

Aj( f k
0 )

]
∑N

j=1 A∗j−11

f0

∑N
j=0 |det Dϕj |

(
AT gj

A( f0◦ϕ−1
j )

)
◦ϕj

∑N
j=0 |det Dϕj |(AT1)◦ϕj

. M-MLEM iteration

end for

2.1. Proposed Algorithms: M-MLEM with CT-Based Attenuation Correction and M-MLAA

Let us consider the case of gated sinogram data with N + 1 gates g0, . . . , gN , in each of
which the patient is assumed to be stationary. The corresponding images of the activity
distribution are going to be denoted by f0, . . . , fN and the relative attenuation maps by
µ0, . . . , µN , whereas the attenuation map obtained from an X-ray CT scan will be indicated
by µCT .

Data acquisition is modelled by a forward operator, A, such that:

A f je
−Aµj = gj. (1)

It is here worth noting that Equation (1) refers to the expectation values of f j and gj,
which are both, in fact, Poisson-distributed random variables.

Finally, let Wj be the registration action between gates f j and f j+1:

f j = Wj f j+1
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and let us define Aj as the composition of the forward operator with the registration action:
Aj ≡ A ◦Wj, so that gj = Aj f j+1e−Aµj+1 .

Disregarding the effect of attenuation, the reconstruction of all data in the reference
gate, f0, can be performed using the Morphed-Maximum Likelihood Expectation Maximi-
sation, M-MLEM, introduced in reference [7] and reported in Algorithm 1.

2.1.1. M-MLEM with CT-Based Attenuation Correction

The first algorithm proposed in this paper performs the attenuation correction by
deforming the CT-based attenuation map, µCT , to the reference gate and will be called
the Morphed-Maximum Likelihood Expectation Maximisation with CT-based attenuation
map (MLEM + CT) in the remainder of this work. The activity distribution is updated as
reported in Algorithm 2, where µCT−0 denotes the CT-based attenuation map after it has
been morphed to the reference gate.

Algorithm 2 M-MLEM + CT algorithm

Require: n ≥ 0
Require: m ≥ 0
Require: p ≥ 0
Require: N ≥ 1

A← A . Radon transform
A∗ ← A∗ . adjoint operator of Radon transform
θ ← θ . learned parameters of Synthmorph network
m← MLAAiter . nb of MLAA iterations
p← MMLEMiter . nb of M-MLEM iterations
N ← nbgates + 1 . nb total of gates
f0, . . . , fN ← 1 . . . 1 . init of the distribution estimation
g0, . . . , gN . data for every gates
W0, . . . , WN ← Id, . . . , Id . init registration fields
for k← 0, m do

f k+1
0 ← f k

0

A∗

e−A(µk
0) g0

[e−A(µk
0)A( f k

0 )]


A∗ [1·e−A(µk

0) ]
. MLAA iteration - MLEM step

µk+1
0 ← µk

0 +
A∗ [e−A(µk

0)A( f k
0 )]

A∗ [e−A(µk
0) ·A(1)]

. MLAA iteration - MLTR step

WCT,0 ← H(µ0, µCT , θ) . vector field between CT attenuation map and µ0
W0,CT ← −WCT,0 . approximate estimation of inverse
µCT−0 ←WCT,0(µ0) . attenuation map deformed in gate0
for i← 0, N do

for k← 1, n do

f k+1
i ← f k

i

A∗

e−A(µk
i )

gi

[e
−A(µk

i )A( f k
i )]


A∗ [1·e−A(µk

i ) ]
. MLAA iteration: MLEM step

µk+1
i ← µk

i +
A∗ [e−A(µk

i )A( f k
i )]

A∗ [e−A(µk
i ) ·A(1)]

. MLAA iteration: MLTR step

end for
if i > 0 then

Wi,i−1 ← H( fi−1, fi, θ) . vector field between two close gates
Wi,i−1 ← H(µi−1, µi, θ) . vector field between two close gates
Wi−1,i ← −Wi,i−1 . approximate estimation of inverse
Wi ←Wi,i−1 ◦ . . . ◦W1,0

W−1
i ←W0,1 ◦ . . . ◦Wi−1,i

end if
end for
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Algorithm 2 Cont.

for k← 1, p do

f0 ← f k
0

∑N
j=1 A∗j−1

e−Aj(µCT−0)
gj

e
−Aj(µCT−0)Aj( f k

0 )


∑N

j=1 A∗j−1[1·e
−Aj(µCT−0) ]

f0

∑N
j=0 |det Dϕj |

(
AT gj

A( f0◦ϕ−1
j )

)
◦ϕj

∑N
j=0 |det Dϕj |(AT1)◦ϕj

. M-MLEM iteration

end for

2.1.2. M-MLAA

The second proposed algorithm will be called the Morphed-Maximum Likelihood
Activity and Attenuation (M-MLAA). It follows the interleaved updates of activity distri-
bution and attenuation map as in its original version [10], but the forward and backward
operators are composed with the registration fields evaluated by Synthmorph, as described
in Section 2.1. The two update steps will be, consequently, called M-MLEM and M-MLTR,
and are reported in Algorithm 3.

Algorithm 3 M-MLAA

Require: n ≥ 0
Require: m ≥ 0
Require: N ≥ 1

A← A . Radon transform
A∗ ← A∗ . adjoint operator of Radon transform
θ ← θ . learned parameters of Synthmorph network
m← MLAAiter . nb of MLAA iterations
p← MMLEMiter . nb of M-MLAA iterations
N ← nbgates + 1 . nb total of gates
f0, . . . , fN ← 1 . . . 1 . init of the distribution estimation
g0, . . . , gN . data for every gates
W0, . . . , WN ← Id, . . . , Id . init registration fields
for i← 0, N do

for k← 1, n do

f k+1
i ← f k

i

A∗

e−A(µk
i )

gi

[e
−A(µk

i )A( f k
i )]


A∗ [1·e−A(µk

i ) ]
. MLAA iteration: MLEM step

µk+1
i ← µk

i +
A∗ [e−A(µk

i )A( f k
i )]

A∗ [e−A(µk
i ) ·A(1)]

. MLAA iteration: MLTR step

end for
if i > 0 then

Wi,i−1 ← H( fi−1, fi, θ) . vector field between two close gates
Wi,i−1 ← H(µi−1, µi, θ) . vector field between two close gates
Wi−1,i ← −Wi,i−1 . approximate estimation of inverse
Wi ←Wi,i−1 ◦ . . . ◦W1,0

W−1
i ←W0,1 ◦ . . . ◦Wi−1,i

end if
end for
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Algorithm 3 Cont.

for k← 1, m do

f0 ← f k
0

∑N
j=1 A∗j−1

e−Aj(µCT−0)
gj

e
−Aj(µCT−0)Aj( f k

0 )


∑N

j=1 A∗j−1[1·e
−Aj(µCT−0) ]

f0

∑N
j=0 |det Dϕj |

(
AT gj

A( f0◦ϕ−1
j )

)
◦ϕj

∑N
j=0 |det Dϕj |(AT1)◦ϕj

. MMLAA iteration: MMLEM step

µk+1
0 ← µk

0 +
∑N

j=1 A∗j−1[e
−Aj(µ

k
0)Aj( f k

0 )]

∑N
j=1 A∗j−1[e

−Aj(µ
k
0) ·Aj(1)]

. MMLAA iteration: MMLTR step

end for

2.2. Implementation of the Algorithms

Forward and backward operators are implemented from the Time of Flight (TOF)
branch of the Synergistic Image Reconstruction Framework (SIRF) library [11], and are
wrapped in the Operator Discretization Library (ODL) [12] in which all the algorithms
are implemented. The operators are defined according to the geometry of the Siemens
mCT scanner.

Registration fields are computed using the pre-trained convolutional neural network
Synthmorph [8]. Synthmorph is trained on synthetic, semantic segmented images and
provides modality-agnostic and contrast-invariant registration. Registration fields, Wj, reg-
istering f j, and f j+1 are computed from images obtained with two initial MLAA iterations.
Inverse diffeomorphisms, W−1

j , are computed by the first-order approximation of Wj, as:
−Wj(·). For both approaches, two sets of diffeomorphisms for the activity distributions
and the attenuation map are evaluated. In order to enhance the Synthmorph registration
performances, the attenuation map reconstructions are segmented to remove the artifacts
in the region of the field of view not covered by the object. These artifacts are commonly
seen whenever applying an MLTR-MLAA update [13]. For M-MLEM + CT, Synthmorph is
further deployed as a first step in the registration of the CT-based attenuation map, µCT ,
to the reconstruction of the reference gate, f0, obtained after the same number of initial
MLAA iterations.

2.3. Synthetic Data Generation

In order to assess the performance of the proposed algorithms, synthetic projection
data have been generated from the digital 4D extended cardiac-torso XCAT phantom [14]
in which five lesions have been added.

The voxel size of the generated XCAT phantom is 0.316 × 0.316 × 0.16 cm3 and four
respiratory and cardiac gates have been used in this study. Please note that the proximity
to the real respiratory and cardiac motion of the XCAT phantoms is ensured by the fact
that they were obtained from X-ray CT and Magnetic Resonance measurements of healthy
male volunteers. In particular, 4D-tagged Magnetic Resonance Imaging data and 4D
high-resolution respiratory-gated CT data are used [14].

The size, relative uptake, and positioning of the lesions have been carefully chosen.
The size is almost the same for all of the lesions and comparable to the system resolution.

Their position is shown in Figure 1; two lesions are localized in slice 55, two lesions in
slice 65, and one lesion in slice 80. The rationale for their positioning is described in the
following. One of the lesions is placed in the upper part of the lungs, this should be the
easiest one to detect as respiratory motion is lower in that region. Two of them are placed in
proximity to the heart, which has an high uptake through the blood pool, and are therefore
expected to have a lower contrast compared to their surroundings. The remaining two
lesions are placed around the middle of the lungs, one on each side.
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Figure 1. Position of the five lung lesions in the XCAT phantoms.

Uptake is chosen to be either 4:1 or 6:1 compared to the blood pool, reflecting the
typical standard uptake values in fluorodeoxyglucose PET.

From the labels in the XCAT phantom, a radiotracer distribution and an attenuation
map have been estimated in the way described in the following:

Radiotracer distribution: Uptake for healthy tissues has been taken from reference [15]
with an educated guess for tissues not present in the reference. The activity in reference [15]
has been scaled to a level consistent to the dose injected at Karolinska Hospital in Huddinge
(3 MBq/kg up to a max of 400 MBq total). The scaling has been done considering a mass
of 70 kg for the full-body XCAT-phantom and by setting the average uptake per voxel to
be equal to the total injected dose divided by the number of voxels in the XCAT-phantom.
Lungs uptake is considered to be 0.75 of the average uptake and the scaling factors for
remaining organs are derived from Table 2 in reference [15] by dividing the median activity
concentration in the organ (column 2) by the median activity of lungs divided by 0.75.
The five lesions were given an activity corresponding to 4 or 6 times that of the blood pool.
One of the lesions in slice 55 has a dimension of 6 × 5 voxels, whereas the other is 6 × 4
and the lesions in slice 80 and 65 are all 6 × 5 voxels in dimension.

Attenuation map: The attenuation map has been estimated from the labels of the XCAT
using the values from the National Institute of Standards and Technology tables [16]. Since,
at the energy of interest, most human tissues, apart from bone and lung tissues, have
similar attenuation, we only used the x different value for the linear attenuation coefficients
reported in Table 1.

Once the activity distribution and the attenuation map have been created, attenuated
sinograms are generated with forward projection and Poisson noise is added.
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Table 1. Linear attenuation coefficients used for obtaining an attenuation map at 511 keV from the
XCAT phantom labels.

Tissue/Material Linear Attenuation Coefficient (cm−1)

air 0
lung tissue 0.01

bladder 0.05
liver 0.08

cartiladge 0.15
bone 0.17

remaining tissues 0.1

2.4. Hardware and Software

The hardware used is an Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60 GHz with one
GPU from the ASPEED Graphics Family, with 500 Gigabyte memory and 8 Terabyte hard
disk. All computations are run in Python 3.7.4, using TOF capabilities of the Synergistic
Image Reconstruction Framework (SIRF 3.4) library and the Operator Discretization Library
(ODL 0.7.0). Voxelmorph 0.2 and Tensorflow 2.11.0 are used for Synthmorph registration.

2.5. Evaluation of M-MLAA and M-MLEM + CT Reconstructions

M-MLAA and M-MLEM + CT reconstructions have been compared against:

• MLAA reconstruction of reference gate, f0; this corresponds to the situation in which
a large amount of projection data are thrown away in order to avoid motion blurring
(called, in the remainder of this study, Single-gate MLAA);

• MLAA reconstruction from the sum of the data in all of the four gates; this corresponds
to disregarding the motion correction (called, in the remainder of this study, Total-
gate MLAA);

• MLAA single-gate reconstructions summed after registration in the reference gate
with Synthmorph (called, in the remainder of this study, Sum + Synthmorph);

• MLEM reconstruction of the reference gate, f0, with attenuation correction performed
through a CT-derived attenuation map. This corresponds to the most common clinical
practice and disregards motion correction (called, in the remainder of this study,
Clinical Standard MLEM).

The comparison of the algorithm performances is carried out through the evaluation
of chosen Figures of Merit (FOMs) and a Channelised Hotelling Observer (CHO).

2.5.1. Figures of Merit (FOMs)

The FOMs that have been evaluated are: Peak Signal-to-Noise Ratio (PSNR), Recovery
Coefficient (RC), and Signal Difference-to-Noise Ratio (SDNR). PSNR has been evaluated,
on the whole, using reconstructed images with a data range equal to 500; RC and SDNR
have been evaluated within Regions of Interest (i.e., ROIs) around the five lesions in
the phantom.

With I1 indicating the phantom, I2 the reconstructed image from noisy and attenuated
sinograms, Ωl the ROI around the lesion, and Ωb the ROI within the background, the chosen
FOMs have been evaluated as follows:

• PSNR:

PSNR = 10log10(
d2

MSE
) (2)

Here, d is the maximum fluctuation in the input image data type and MSE is the Mean
Squared Error, computed as follows:

MSE = ∑
M,N

[I1(m, n)− I2(m, n)]2

M · N (3)
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• RC:

RC =
∑Ωl

I2

∑Ωl
I1

(4)

• SDNR:

SDNR =

1
Npixell

∑Ωl
I2 − 1

Npixelb
∑Ωb

I1√
σ(I1(Ωl)) + σ(I1(Ωb))

(5)

2.5.2. Channelised Hotelling Observer

Model observers are used to assess the quality of medical images with respect to a
clinical task of interest, which, in our case, is a lesion detection task. They function as a
powerful surrogate of human performance [17,18]. The Channelised Hotelling Observer,
CHO, belongs to the class of linear model observers, which act by applying a linear
template w to the image data vector f to compute a scalar test statistic t as a decision
variable, according to the following:

t = wTf (6)

The decision variable is, then, compared against a threshold to determine if the lesion
is present (t > threshold) or absent (t < threshold). By varying the threshold, it is possible
to compute the Receiver Operating Characteristic (ROC) Curve and the Area Under the
Curve (AUC) and use those to compare the performances of the tested algorithms [18,19].
The CHO operates through a set of channels, which allow for extracting specific features
from the images, such as the ones that can be extracted by the human visual system. The
outputs of the channels are then linearly combined using the Fisher–Hotelling rule in order
to achieve the optimal CHO template. The Fisher–Hotelling rule states that the vector
a, containing the best linear combination of the channel weights, is to be computed as
follows [20]:

a = Kv
−1[< fV/s > − < fV/b >] (7)

Here, Kv
−1 is the covariance matrix of the output of the channels to the images,

< fV/s > is the mean signal plus background, as seen by each channel, and < fV/b > is the
mean background only, as seen by each channel. The optimal template is, finally, used to
compute the test statistic and evaluate the ROC and AUC for each of the algorithms tested.

In this paper, the CHO is implemented through 4 Gabor filters. Gabor filters have
been chosen since they are a validated model to mimic the response of the cells in the visual
cortex [19,20]. The parameters of the Gabor filters have been set to a spatial frequency that
varies between 0.01 and 0.02 pixels, an orientation that varies between 0.01 and 0.05 radians,
a bandwidth of 0.9 octaves, and with standard deviation set to 3. Twenty-five ROIs have
been considered, each with a dimension of 10× 10 pixels. Five ROIs are evaluated around
the lesions of interest and twenty in the background only; they are taken within the slices
55, 65, and 80. Before feeding in the CHO and extracting features through the channels,
a Gaussian filter with σ = 0.8 is used to reduce the noise within the reconstructed images.

3. Results
3.1. Visual Inspection

For the purpose of visual inspection, the reconstruction of the entire slices (i.e., 55, 65,
and 80) containing the lesions, and the reconstructions of a region of interest around the
lesions (with a dimension of 25 × 25 pixels) are reported, for each of the algorithms tested,
in Figure 2 and Figure 3, respectively.

The number of iterations has been fixed to 50 for all the algorithms, except for Clini-
cal Standard MLEM, which is instead visualised after 20 iterations and at the same dynamic
range as the other algorithms. This choice is dictated by the fact that Clinical Standard
MLEM is commonly regularised by early stopping, since it is known that the MLEM re-
constructions tend to become noisier after a certain number of iterations [21]. Thus, we
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have shown the reconstructions from Clinical Standard MLEM at the best of the algorithm
performance, according to the qualitative assessment of the visibility of the small lesions.

Figure 2. Slices 55, 65, and 80 of the XCAT phantom (uttermost left column) and their reconstructions
with the different algorithms compared in this work.

In Figure 3, a blow-up of the area around the lesions in the different reconstructions is
shown. A Gaussian filter with σ = 0.8 has been applied to reduce the noise of the recon-
structions. A visual estimate of the contrast and spatial resolution of the reconstructions,
obtained using the different tested algorithms in the area surrounding the lesions, suggests
that Single gate MLAA, M-MLAA, and M-MLEM + CT are the best-performing algorithms.

Please note that the Clinical Standard MLEM reconstruction of the activity obtained
after 20 iterations has a much higher value than the actual value, as well as than any of
the other reconstructions. We have chosen to present the reconstruction with the same
dynamic range as the others in order to make the comparison somewhat fair.

By a visual inspection of Figures 2 and 3, we can make different observations regard-
ing the reconstruction of the five lesions. The two lesions in slice 55 are better visually
reconstructed in M-MLEM + CT and M-MLAA, with single-gate MLAA being highly noisy
and easily leading to the misinterpretation of the artefacts. Blurring from motion can be
clearly observed in Clinical Standard MLEM and total gates MLAA.

In slice 65, the lesion that is very close to the heart is not captured by any of the tested
algorithms, probably due to the combination of the high uptake in the heart and the cardiac
movement. The second lesion in slice 65 seems to be reconstructed better by M-MLAA and
M-MLEM + CT, which both provide better contrast and spatial resolution.

The lesion in slice 80 seems, similarly, to be captured better by the M-MLEM + CT algorithm.
In the following sections, instead, we show reconstructions at the iteration number

that maximize the chosen figure of merit (see Figures 4–6).
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Figure 3. Blow-up of a region of interest around the five lung lesions in the XCAT phantom (utter-
most left column) and of the same region of interests in the image reconstructed with the different
algorithms compared in this work.

Figure 4. PSNR as a function of iteration number (left pane) and reconstruction of chosen slices at the
optimal number of iterations for each of the tested algorithms.
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Figure 5. RC as a function of iteration number (top row) and reconstruction of the lesions at the
optimal number of iterations for each of the tested algorithms.
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Figure 6. SDNR as a function of iteration number (top row) and reconstruction of the lesions at the
optimal number of iterations for each of the tested algorithms.

3.2. FOMs and CHO Results

In Figures 4–6, the trends of the FOMs with respect to the number of iterations for each
of the tested algorithms are plotted. This allows for determining the optimal number of
iterations at which the FOM reaches the maximum value for each of the algorithms under
investigation. Entire slices or only the lesions are, afterwards, reconstructed at each of the
identified optimal numbers of iterations and reported correspondingly.

Finally, to further assess the quality of the reconstructed images, a CHO is implemented
as described in Section 2. In order to compare the performances of the algorithms, ROC
and AUC are plotted for each one of them and reported in Figure 7.
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Figure 7. CHO implementation: ROC and AUC evaluation.

4. Discussion

Looking at Figures 4–6, it is evident that the response from the chosen FOMs does
not correlate with the visual assessment of the lesion visibility and fidelity to the phantom.
In Figure 4, it is possible to observe that the maximum PSNR values are obtained by the
single-gate MLAA after only a few iterations. However, the corresponding image seems to
be of inferior quality compared to both M-MLEM + CT and M-MLAA at their best PSNR
value, which is obtained for a larger number of iterations.

Similarly, in Figure 5, the RC value for each of the algorithms as a function of the
number of iterations is shown together with the corresponding reconstructions of an ROI
around the lesions at the optimal number of iterations. For all lesions, RC favours single-
gate MLAA and total-gate MLAA. However, this does not seems to be the case when
looking at the corresponding reconstructions.

Finally, SDNR shows rather inconsistent behaviour over the different lesions, making
it difficult to establish which algorithm offers the best performance in reconstructing
the lesions.

The results obtained with the CHO are, instead, more compatible with what the visual
inspection suggests (see Figure 7), with M-MLEM + CT and M-MLAA outperforming the
other algorithms and having similar performances (AUC of 0.78 and of 0.77, respectively).

According to the CHO, single-gate MLAA and sum + Synthmorph give the worst
reconstructions, with sum + Synthmorph exhibiting a worse performance than simple
random guessing. On passing, let us here point out that we are aware of the fact that,
in cases like the one here presented, it is always possible to improve the performance of
an observer that is performing under the 0.5 AUC threshold (corresponding to random
guessing), by simply reversing the observer predictions. This is, however, not relevant in
the present case as the above inversion would still yield an AUC value of 0.54, which is
still close to random guessing.

As a last note, it is worth noting that scatter and random corrections have not being
considered in this study and need to be included before applying the two proposed algo-
rithms to clinical data. This does not constitute a substantial challenge, since the algorithms
can be easily extended to account for those two corrections, just as is routinely done with
MLEM. Also, the hyperparameters of both M-MLEM + CT and M-MLAA can be further
optimised, in particular regarding the optimal number of initial MLAA iterations before
feeding reconstructed images in Synthmorph for the evaluation of the registration fields.
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5. Conclusions and Future Perspectives

The M-MLEM algorithm presented in reference [7] has been further developed to
enable the reconstruction of the entire 3D volume from a realistic PET scan at once, and at-
tenuation correction has been added to the algorithm. Our results on synthetic data suggest
that the proposed M-MLEM + CT and M-MLAA algorithms have the potential to improve
PET imaging diagnostic power for small pulmonary lesions at a low extra computational
cost compared to standard MLEM or MLAA. Considering that SynthMorph does not need
any training on clinical data, there is a good potential for this method to be clinically viable.
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