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Abstract: Our study explores the feasibility of quantum computing in emission tomography recon-
struction, addressing a noisy ill-conditioned inverse problem. In current clinical practice, this is
typically solved by iterative methods minimizing a L2 norm. After reviewing quantum computing
principles, we propose the use of a commercially available quantum annealer and employ correspond-
ing hybrid solvers, which combine quantum and classical computing to handle more significant
problems. We demonstrate how to frame image reconstruction as a combinatorial optimization
problem suited for these quantum annealers and hybrid systems. Using a toy problem, we analyze
reconstructions of binary and integer-valued images with respect to their image size and compare
them to conventional methods. Additionally, we test our method’s performance under noise and
data underdetermination. In summary, our method demonstrates competitive performance with
traditional algorithms for binary images up to an image size of 32× 32 on the toy problem, even
under noisy and underdetermined conditions. However, scalability challenges emerge as image size
and pixel bit range increase, restricting hybrid quantum computing as a practical tool for emission
tomography reconstruction until significant advancements are made to address this issue.

Keywords: image reconstruction; quantum computing; quantum annealing; tomographic imaging;
emission tomography

1. Introduction

Quantum computing (QC) has become a popular topic in recent years due to its
ability to handle complex computations faster than traditional methods [1]. Despite the
limited practical applications of QC, it holds great promise for computation. The concept
of “quantum supremacy” has been demonstrated twice in recent years, first in 2019 [2] and
again in 2021 [3].

Quantum computers can be implemented with different physical principles despite
utilizing the same underlying quantum mechanics. One widely recognized model is the
gate-based model, as described in [1]. Other approaches include measurement-based,
adiabatic quantum computing, as outlined in [4], and topological quantum computing.

We are making use of a D-Wave-produced adiabatic quantum computer, although
it currently falls short of adhering to the adiabatic principles. As a result, the current
implementation of the quantum computer is not universal. To overcome the limitations of
the current quantum computer, we employ the use of hybrid solvers provided by D-Wave,
which integrate both classical and quantum computing capabilities, as discussed in [5].

In this study, we explore the application of quantum computing in tomographic image
reconstruction; see the graphical abstract in Figure 1. Tomography, which refers to the
imaging of cross-sectional views of an object, is a crucial tool in various fields, such as
radiology, materials science, and astrophysics. In particular, we developed the method with
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an application in emission tomography (ET) [6] in mind. However, our tomographic model
in this manuscript is in principle extendable to any tomographic imaging technique with a
matrix-based system model. For simplicity, we may use the term tomography throughout
this work.

The central challenge in tomographic imaging is to reconstruct the inner sections
of an object. This constitutes an inverse problem, which is ill-posed. More to the point,
loss of information or an increase in noise makes the problem hard to solve, as outlined
in [6]. In the past, significant advancements in classical computing hardware were required
to achieve the current level of image resolution of 512× 512 in ET. With the continued
development of quantum computing hardware, we anticipate that it will play a significant
role in enhancing the performance of tomographic image reconstruction.

In the subsequent sections, we will provide an overview of quantum computing, with
a specific focus on the D-Wave quantum computer used in our study. We will also delve into
the basics of ET imaging and explain the inverse problem in tomographic reconstruction
and current state-of-the-art methods for solving it. Then, we will elaborate on our approach
to discrete tomographic reconstruction using hybrid quantum annealing (QA). Finally, we
present results from our experiments, including small-scale reconstructed images with
binary and integer values, test them in a variety of settings, and discuss the results.

Figure 1. Graphical Abstract: Simulation and reconstruction of a two-view binary tomographic
problem using hybrid quantum annealing.

2. Quantum Computing

QC is a new and innovative computing paradigm. Instead of using classical electronic
bits, quantum computers utilize quantum bits (qubits) to exploit the quantum mechanical
principles of superposition, entanglement, and interference. Using these paradigms, a
quantum computer with N qubits can be in 2N states simultaneously, compared to one state
for a classical computer [7]. This advantage ultimately leads to a benefit in terms of runtime
speed-up while enabling computations that are impossible on a classical computer. The
concept of universal QC is accomplishable by several models. The total number of qubits is
currently limited to 5640 qubits on the QA-based D-Wave Advantage2 system. For gate-
based systems, the current record is set by the IBM Eagle system with 127 superconducting
qubits [8].

2.1. Gate-Based Quantum Computing

Gate-based quantum computing utilizes a sequence or circuit of single-qubit and
multiple-qubit gates to operate on the initial state of several qubits, similar to how classical
gates operate on classical bits. Due to the exponential increase in Hilbert space, our Hilbert
space doubles with every qubit that we add; we can achieve exponential speed-ups in
particular algorithms [1].

2.2. Adiabatic Quantum Computing

The fundamental assumption of adiabatic quantum computing (AQC) is that a physical
system constantly evolves to its lowest energy over time [2,9]—associated with the global
minimum of an optimization landscape. In contrast to gate-based QC, AQC does not
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perform unitary operations through gates on single or multiple qubits [10]. Instead, we
map the problem to the quantum computer with a problem-specific Hamiltonian [11]. The
Hamiltonian describes the energy spectrum of the system and the set of viable solutions. In
theory, AQC is equivalent to gate-based QC and, therefore, universal [4].

The adiabatic theorem states that if we initialize a quantum system with a ground
state Ĥ0 and let it evolve with time t for a fixed duration T, we will end up in the ground
state Ĥ1, which is associated with the lowest energy solution [12]:

Ĥ(t) = (1− t
T
)Ĥ0 +

t
T

Ĥ1. (1)

The main limitation of AQC is the ∆ gap. The ∆-gap refers to the minimum spectral
gap of the problem’s Hamiltonian, which is the difference between the lowest and second-
lowest energy levels. The ∆-gap inherently bounds the runtime of the adiabatic evolution.
For further information, we guide the reader to [13]. The speed limit T is calculated as:

T =
1

min(∆(t))2 . (2)

2.3. Quantum Annealing

QA is the current realization of AQC. The QA system is initialized in a superposition
state. Subsequently, the problem formulation is embedded in the hardware such that the
system’s ground state is the solution to the problem [14]. However, how does QA overcome
the ∆ gap?

In short, it does not. Physical realizations of AQC usually let the system evolve multi-
ple times for a specified time [15]. After initialization, the system repeatedly anneals for a
specified annealing time ta. This way, a sample set is formed containing the samples, the
associated energy level (lowest is best), and the number of times the solution occurred [16].

QA builds upon the Hamiltonian of the Ising model:

EIsing(s) =
n

∑
i=1

hisi +
n

∑
i=1

n

∑
i 6=j

Ji,jsisj. (3)

The variables si of the Ising model, of n variables, are either spin-up or spin-down
{−1, 1} [1]. Two variables si and sj can have quadratic interactions Ji,j, known as the
coupling strength. Furthermore, one variable can have a linear bias hi. Every Ising model
is translatable to a Quadratic Unconstrained Binary Optimization (QUBO) problem, with
variables xi being binary 0, 1, and vice-versa. QUBO problems can be NP-hard and are
hard to solve using classical computers [17]. We can describe a QUBO using an n × n
upper-triangular matrix with the bias term on its diagonal and the quadratic interaction as
the upper-triangular values:

f (x) = ∑
i

Qi,jxi + ∑
i<j

Qi,jxixj. (4)

The goal is to minimize QUBO’s objective. In matrix notation, this results in
the following:

min
x∈{0,1}n

xTQx. (5)

The connectivity of the qubits on the annealer’s topology limits the interaction between
qubits; see Figure 2. D-Wave has proposed different topologies over recent years, such
as the Chimaera [18,19] or Pegasus graph. Using D-Wave’s Ocean interface [20], we can
embed and run the problem on the quantum annealer using the Leap cloud service [21].
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Figure 2. Graphs and physical embeddings on the QPU for binary reconstruction problems. (a,c)
depict the directed graph for binary tomographic problems with image sizes of 4× 4 and 8× 8,
respectively. (b,d) show the corresponding embedding of the directed graph on the QPU topology
for (a,c), respectively.

3. Emission Tomography

ET is a subset of tomographic imaging that encompasses two main modalities: Single
Photon Emission Computed Tomography and Positron Emission Tomography [6]. In
contrast to transmission tomography (TT), where the radiation source is external, and the
radiation passes through the object, in ET, the object of interest emits radiation from within.
In a medical scenario, this typically refers to the injection of a radioactive tracer into the
patient’s body, which accumulates in a target destination and emits radiation.

The mathematical foundation of TT is rooted in the Radon transform, which is an
integral transform that maps a continuous object to continuous measurements [22,23]. In
ET, the basic Radon transform is extended to incorporate object-specific attenuation. The
solution to the attenuated Radon transform is not straightforward but has been presented
by Bronnikov and Natterer [24,25]. This, however, is outside of the scope of this paper.

The ET imaging process is similar to any linear digital imaging system, which maps
a continuous domain to a discrete domain [26]. However, the image formation process is
often simplified in a discrete-to-discrete forward model:

y = Mx. (6)

Here y represents our measurement, M is the system matrix describing the action of
the linear imaging system, and x represents the imaged object. In practice, the system
matrix M is sparse, exceptionally large, singular, ill-posed, and non-square and is therefore
not usually applied as a simple matrix multiplication. It is important to mention that the
system matrix M is only an estimate of the real forward operator, which is, in a real-case
scenario, unknown. In reality, M is usually applied as a series of operators Mi, describing
the relation from object space to measurement space.

M = Mk ⊗ ...⊗M1. (7)

The operators used in the imaging process allow for the inclusion of physical system-
specific details, such as the point spread function, as well as operators to account for
patient-induced attenuation and scatter. For this manuscript, we simplify the problem by
disregarding the attenuation operator and use a deterministic system matrix model suitable
for QA and their associated hybrid solvers. In the realistic case of an imperfect imaging
system and setting, a common representation includes additive noise [26], although the
noise can also be signal-dependent on x:

y = Mx + n. (8)

3.1. Discrete Tomography

Due to the nature of adiabatic quantum computing and its combinatorial optimization
through QA, the obtained reconstruction data in quantum algorithms is inherently discrete.
Unlike most classical algorithms that yield continuous results for the reconstructed image,
quantum computing is currently limited in achieving floating-point accuracy, especially
in its early stages of development. To bridge the gap between classical and quantum
approaches, we propose to embrace the discretization of the reconstruction problem. By
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adapting tomography to discrete tomography, we take a bold yet essential step in aligning
with the combinatorial nature of QA. In fact, discrete tomography is a specialized and
simplified case of tomography, where the image x consists of discrete, or in the simplest
case, binary pixels xi ∈ {0, 1} [27] and has applications in real-world tomographic imaging.
This case can apply to homogeneous scanning materials for non-destructive testing [27]
or angiography in TT. Applications of DT in ET include attenuation-map reconstruction
and cardiac and phantom imaging. We refer the reader to a manuscript by Herman et al.
summarizing the application of DT in the medical domain [28]. Because the complexity of
the optimization is constrained to discrete variables, the task’s difficulty is to reconstruct
with as few views as possible. In our experimental setup, we focus on discrete tomography
scenarios, as these problems are directly applicable to QA and associated hybrid solvers
available at present.

3.2. Image Reconstruction

ET reconstruction is in the class of ill-conditioned noisy inverse problems and con-
stitutes the problem of resolving an activity distribution that generated the measured
projection data. Due to the reasons mentioned earlier, obtaining an exact inverse of M is not
possible. Therefore, one conventional clinical method to reconstruct ET images is Filtered
BackProjection (FBP), an analytical and linear approach [29]. More advanced approaches
to reconstructing ET images are iterative reconstruction algorithms [30]. In contrast to
FBP, these algorithms are often non-linear and seek to minimize the projection difference
by repetitively applying back projections, updates, and forward projections [31]. Three
examples of iterative reconstruction techniques include Maximum Likelihood Expectation
Maximization [31,32], Conjugate Gradient [33], and Simultaneous Algebraic Reconstruc-
tion Technique (SART) [34]. SART is an algebraic iterative reconstruction algorithm that
performs additive and iterative updates from single projections. A popular reconstruction
algorithm for discrete tomography is the Discretized Algebraic Reconstruction Technique
(DART), which is an extension of the SART algorithm. Recently, deep-learning-based image
reconstruction [35] has gained popularity, and we acknowledge its success. However, the
primary focus of this manuscript is not to contest deep-learning methods but rather to
explore the application of image reconstruction on quantum computers. As the image size
for the QA-based reconstruction is inherently limited by the size of the annealer, we also
consider the Moore-Penrose general pseudoinverse (PI) as a reconstruction technique. The
Moore-Penrose PI is defined by [36]:

M† = (MTM)−1MT . (9)

For this work, we have chosen to compare our method to an FBP, DART, and a Moore-
Penrose-based PI [36] image reconstruction. Due to the fact that both FBP and PI result in a
continuous image, we observe a numerical error when compared to discrete reconstruction
techniques, which we mitigate by introducing a subsequent discretization step. We compare
the reconstructed images and their corresponding ground truth in terms of the root mean
square error (RMSE), which measures the average magnitude of the differences between
reconstruction and ground truth:

RMSE(x̂, x) =

√
1
n

n

∑
i=1

(x̂i − xi)
2. (10)

Here x̂ represents the reconstructed image, whereas x represents the corresponding
ground truth. Moreover, we compare the reconstructed images in terms of their Structural
Similarity Index Measure (SSIM), which measures the quality of a reconstructed image in
terms of their luminance, contrast, and structure as a mean over a moving window [37]:

SSIM(x̂, x) =
(2µx̂µx + c1)(2σx̂x + c2)

(µ2
x̂ + µ2

x + c1)(σ
2
x̂ + σ2

x + c2)
(11)
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For the computation of the SSIM, µx̂ and µx are the average pixel values of images x̂
and x, respectively. σx̂x is the covariance between images x̂ and x and σ2

x̂ and σ2
x are the

variances of images x̂ and x, respectively. c1 and c2 are small constants to stabilize the
division. The SSIM represents a unitless index measure indicating if images are similar
(SSIM of 1), dissimilar (SSIM of 0), or anti-correlated (SSIM of −1).

4. Related Work

Over recent years, QC research has accelerated rapidly as practical examples have
come within reach. Specifically, image processing and machine learning on quantum com-
puters have evolved to be an active area of research [38,39]. Here, relevant work of quantum
algorithm development for tomographic image reconstruction should be highlighted.

The first who proposed to perform image reconstruction with QC for TT, positron ET,
and magnetic resonance imaging were Kiani et al. [40]. The paper proposed to substitute
the classical Fourier transform with a quantum-based Fourier transform (QFT) for inverse
integral transform-based reconstruction methods to decrease runtime [40]. However, inte-
gral transform-based reconstruction, in contrast to analytic algorithms, fail to incorporate
additional knowledge of the physical measurement process and the imaging system itself.
Therefore, the incorporation of a system-specific matrix or operator is crucial to the success
of an image reconstruction algorithm, which can then be posed as the solution to a linear
system of equations. The initial proposal to solve linear equations on a gate-based quantum
computer was made by Harrow et al. in 2009 when they introduced the Harrow-Hassidim-
Lloyd (HHL) algorithm [41]. The HHL algorithm is based on quantum phase estimation
and, in theory, provides logarithmic speed-up against classical computers. Nonetheless,
there are a few caveats for which situations this speed-up is lost [42]. The first caveat is
the loading of the vector y into a quantum state. This also applies to the QFT approach.
The second caveat is that the matrix M needs to be sparse, and the third is that the matrix
M needs to be robustly invertible, which is associated with the ratio of the largest and
smallest eigenvalues and therefore limits the application to low-conditioned matrices. The
last caveat is associated with the readout of the solution vector x. This would, in practice,
have to be measured n times, again ruining the proposed speed-up. Therefore, the HHL
algorithm is not efficient to run on near-term quantum hardware, also due to the current
qubit count and error. We, therefore, disregard this approach.

Another take to solving (combinatorial) optimization problems on near-term gate-based
quantum computers is the Quantum Approximate Optimization Algorithm (QAOA) [43],
which is similar to QA-based systems in its problem formulation. The first example pre-
sented for QA was non-negative binary matrix factorization [44]. Furthermore, Chang et al.
demonstrated in 2019 that it is possible to solve polynomial equations with QA [45]. The
approach was refined to a linear system with floating-point values and floating-point
division by Roger and Singleton in 2020 [46]. Their paper utilizes the D-Wave 2000Q system
to its whole extent and shows results for matrix inversions of 3× 3 matrices. However,
they fail for matrices with high condition numbers. The first practical application to utilize
QA for linear systems was Souza et al., who presented a seismic inversion problem, which
they solved in a least-square manner [47]. Schielein et al. presented a road map towards
QC-assisted TT, describing data loading, storing, image processing, and image reconstruc-
tion problems [48]. For a long time, QA hardware needed to be more mature for realistic
problems. Schielein et al. and Jun also proposed to solve tomographic reconstruction with
QA or QAOA [48,49].

In this work, we want to present multiple achievements:

• Comparison of binary and integer-based tomographic reconstruction run on actual QC
hardware to classical reconstruction algorithms on small-scale images in a toy model

• Analysis of capabilities and limitations of QA regarding image size, discretization,
noise, underdetermination, and inverse crime of the reconstruction algorithm

• A framework for the creation of tomographic toy problems to accelerate quantum
image reconstruction research
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5. Methods

This section will cover how we solve an inverse problem with QA. We cover the
fundamentals of embedding the problem on the quantum processing unit’s (QPU) topology.
We elaborate on the limitations of the current topology and how hardware must advance
to run the optimization of problems at a significant scale. Furthermore, we describe how
hybrid algorithms can utilize QA to its full extent and how we must embed the problem
for the hybrid approach.

5.1. Problem Formulation

We recall that the reconstruction problem in tomography is an inverse problem of
the form shown in Equation (6). Because our system of equations is an ill-posed image
reconstruction problem that contains noise and may not be fully determined, we approxi-
mate the solution in a least-squares manner. Therefore, we reformulate Equation (6) as the
objective of a quadratic minimization problem, with its minimum being the approximated
solution of image x:

H(x) = ‖Mx− y‖2
2 = xTMTMx− xTMTy− yTMx + yTy. (12)

5.2. Quadratic Unconstrained Binary Optimization for Binary Tomography

In the QC fundamentals, we have discussed that the Ising model is the basic Hamil-
tonian for QA. In the case of binary tomography, the reconstruction problem is directly
mappable to a QUBO problem. We recall that the binary tomographic model is defined like
Equation (6), where M ∈ R(m×n), y ∈ R(m) and x ∈ {0, 1}n. The linear bias values can be
extracted by following Equation (12):

Qi,i = −2 ∑
j

yjMji. (13)

Furthermore, we can extract the coupler values as:

Qi,j = ∑
k

MkiMkj. (14)

The offset ‖y‖2 does not change the minimization problem’s objective. The overview
of the reconstruction process is as follows: We initialize the quantum annealer with the
obtained linear biases and quadratic couplers, specify the number of times the system
anneals, and then obtain a sample set containing the number of solutions, each associated
with an energy. The solution to the minimization problem is then chosen as the one
corresponding to the lowest energy. The optimization scheme is described in Algorithm 1.

When directly mapping a QUBO problem to the quantum annealer, one must consider
the embedding of the QPU’s topology. The qubits on a Chimaera topology, as embedded
on the D-Wave 2000Q, are internally connected to four other qubits and have one or two
external connections to other qubits. The newer D-Wave Advantage2 system features
internal connectivity of one qubit to 12 other qubits and two to three external couplers.
To map higher connectivity graphs to the QPU, one utilizes chains of physical qubits to
represent one logical qubit. Fully connected graphs, like our problem, are mapped to
the QPU using a clique embedding [18]. The most extensive, mappable, fully connected
graph on the QPU is a graph of 65 logical qubits on the D-Wave 2000Q and 100 logical
qubits on the D-Wave Advantage2. Our binary reconstruction problem, now defined as the
QUBO matrix Q, is fully connected. More to the point, variables usually have quadratic
interactions with all other variables. The limit in terms of reconstructed binary image size
for the D-Wave Advantage2 is 10× 10. Therefore, using a QA to reconstruct a R-bit integer
image of size N×N without problem optimization will require N2R fully connected qubits.
This qubit amount and connectivity will not be available soon. Figure 2 shows examples of
the graph and corresponding embedding for image sizes of 4× 4 and 8× 8. In Figure 2,
the directed graph represents the structure of the QUBO problem, where one vertex is a
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binary variable, or logical qubit, with a corresponding linear bias. The edges represent
the quadratic couplings between the variables. The physical embedding shows how the
directed graph is mapped to the QPU topology using a clique embedding. Here, the marked
vertices symbolize the physical qubits that are used to embed the directed graph. The
edges, again, represent the quadratic couplings. For a more detailed description of how
problem graphs are embedded in the corresponding hardware, we refer the reader to [50].
To embed more significant problems on the D-Wave machine, we use hybrid algorithms,
which are defined below.

Algorithm 1: Quantum annealing tomographic reconstruction

Data: M ∈ Rm×n: System matrix
y ∈ Rm: Projection vector

Parameter: number_reads: Number of annealing repetitions
Result: x ∈ {0, 1}n: Image vector
Linear_Coefficients← −2yTM
Quadratic_Coefficients← MTM
offset ← yTy
bqm← CreateBQM(Linear_Coefficients, Quadratic_Coefficients, offset)
// Scale chain strength of quantum annealer depending on problem
chain_strength← scaleChainStrengthToBQM(bqm)
// Run BQM on quantum annealer
sampleset← SampleBQMOnQuantumAnnealer(bqm, number_reads,
chain_strength)

// Retrieve sample associated with the lowest energy
x← sampleset[0]
return x

5.3. Hybrid Optimization

The intermediate step to complete quantum-assisted computation is to design hybrid
algorithms to enable the embedding of significant large problems on current QC hardware.
On quantum annealers, one can make use of hybrid workflows. Raymond et al. [5]
introduced one type of hybrid computation. Their algorithm uses a large neighborhood
local search to find subproblems in the original problem. The subproblems are then of a
size that is mappable to the QPU. To enable the solution of larger quadratic problems that
cannot be run efficiently on the quantum annealer, D-Wave has introduced a commercial
hybrid solver available through the Leap cloud service [21]. The D-Wave hybrid solver
represents a devised solution that combines their primary quantum annealing approach
with advanced classical algorithms. This hybrid solver efficiently allocates the quantum
processing unit (QPU) to where it offers the most advantages in problem-solving. Moreover,
one can utilize the hybrid solver to solve constrained quadratic models (CQM), which
enable the use of integer values and, therefore, drastically expand solution possibilities.
The new constrained quadratic model is defined as:

H(x) =
n

∑
i=1

aixi +
n

∑
i=1

n

∑
i 6=j

bijxixj + c. (15)

Here, xi is the unknown integer variable (pixel value) we want to optimize for, ai is
the linear weight, bi,j is the quadratic term between xi and xj and c can define possible
inequality and equality constraints. In principle, the workflow is defined by the classical
problem formulation and a time limit T [51]. The time limit T is automatically calculated
depending on the problem if not specified by the user. The solvers run in parallel and
utilize heuristic solvers to explore the solution space and then pass this information to
a quantum module that utilizes D-Wave systems to find solutions. The QPU solutions
then guide the heuristic solvers to find better quality solutions and restrict the search
space. This process iteratively repeats for the specified time limit. Furthermore, one has
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the possibility of introducing quadratic and linear constraints and restricting the range of
the integers [51]. Similar to QA, one obtains a set of solutions, each associated with energy,
where the solution associated with the lowest energy is the best-approximated solution to
the minimization problem. The optimization scheme is described in Algorithm 2.

Algorithm 2: Hybrid quantum annealing tomographic reconstruction

Data: M ∈ Rm×n: System matrix
y ∈ Rm: Projection vector

Parameter: time_limit: Time limit for the optimization
Result: x ∈ Zn

≥0: Image vector
x← [pixel_integer0, ..., pixel_integern]
objective← (Mx-y)2

cqm← CreateCQM(objective)
cqm.add_constraint(x ≥ 0)
// Run CQM on hybrid solver
sampleset← SampleCQMOnHybridSampler(cqm, time_limit)
// Retrieve sample associated with lowest energy
x← sampleset[0]
return x

6. Results

In this section, we present novel reconstruction results of our algorithm utilizing
D-Wave’s quantum computers and compare them to classical methods. Due to the size
restrictions on the actual quantum annealer, images are reconstructed using hybrid solvers
to enable the representation of more significant problems. Every hybrid reconstruction is
compared to three different classical methods: discretized FBP, DART, and discretized PI.
We discretize the reconstruction result of the classical algorithms to compare them in the
case of binary and discrete tomography. We refer to our hybrid reconstruction method
as QA. Moreover, we compare the ground truth image (GT) to the reconstructions and
visualize the corresponding sinogram (SG) to the tomographic problem. We utilize SymPy
for our problem formulation and solve the reconstruction problem as a classical forward
and inverse problem Mx = y. Therefore, it, in principle, applies to any linear imaging
or display system. The system matrix for the reconstruction problem is calculated using
the Radon transform. We acknowledge that for more realistic and significant problems,
the system matrix becomes infeasible to store, and our approach is not directly applicable.
Nevertheless, we want to test the general performance of hybrid solvers utilizing QA on
inverse problems regarding size, noise, and underdetermination of the linear equations,
even at the very beginning of practical QC.

6.1. Experimental Setup

We have constructed a tomographic toy problem framework to test quantum comput-
ers’ initial stages of image reconstruction. We set up example problems for our QA-based
reconstruction by generating tomographic problems in a linear system manner. We utilize
scikit-image [52] to perform Radon transforms of our GT images and create our system
matrices. Here, the integration of the object rotated by an angle α defines one projection
view. The number of angles is equally distributed between 0◦ and 180◦. ET inspires our
model. In contrast to TT, we do not model the attenuation of a source light ray through
the object. Instead, we aim to model the emission process of photons (counts) within the
object. For now, we are neglecting the attenuation of photons by the object. This aspect
may be addressed in future research. The projection views at 0◦ are taken from the top
of the image. Subsequently, the angles are distributed in a clockwise direction. We have
utilized scikit-image’s iradon to perform FBP with a ramp filter and modified sart to a
DART reconstruction algorithm. For DART, we perform two iterations of the algorithm.
The PI-based reconstruction uses NumPy’s pinv function to estimate a Moore-Penrose PI.
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We utilize scikit-image’s structural_similarity function to quantify SSIM, using a default
window size of 7× 7 for comparison and adapting it to 3× 3 for the smallest image size.
Furthermore, we introduce an uncertainty map (UC) for our proposed reconstruction
technique. The UC displays the pixel-wise variance of all returned samples by the hybrid
sampler, independent of their associated energy. This UC will only be highlighted in the
cases where the uncertainty is reasonably high.

Additive Noise

To test problems concerning noise in the data, we establish a simple noise model to alter
the projection data. Now, we want to imitate the statistics of a low-count ET measurement.
We apply the noise in an additive manner to the GT image for each projection view to create
independent noise realizations:

xnoise = x + n. (16)

The noise is therefore defined as follows:

ni =

{
−1, 0, 1, xi 6= 0
0, 1, if xi = 0

. (17)

With this noise model, we want to resemble the signal dependence of Poisson noise.
Poisson noise is the most prominent noise factor in projection images with very low counts.

6.2. Experiment 1: Image Size Evaluation

We test the reconstruction capabilities of the hybrid solver concerning the image size
N× N of x. Algorithm 2 describes the problem formulation for the hybrid solver. We apply
our reconstruction technique to four different binary images ‘foam’, ‘tree’, ‘snowflake’,
‘molecule’ at four different squared image sizes 4, 8, 16, and 32. We chose the images to
achieve a variance in frequency and image content. To downsample the image, we take local
means of image blocks. We take N projection view with N measurements for each view.
Thus, we have a fully determined system for image size N × N. We neglect the problem of
‘inverse crime’ for this experiment and test the algorithm in its simplest form. We show the
reconstructed images and their corresponding GT, SG, and comparable classical results for
the binary images ‘foam’ and ‘tree’ in Figure 3. The examples for ‘snowflake’ and ‘molecule’
are in the Appendix A.1. Moreover, we compare the reconstruction algorithms on the four
binary images measured by root mean square error (RMSE) and structural similarity index
(SSIM) in Figure 4. A comparison of the reconstruction runtimes is provided in Table 1.

(a) (b)

Figure 3. Binary reconstructions of sample image ‘foam’ (a) and ‘tree’ (b) for image sizes N × N,
where N is 4, 8, 16, and 32.
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Table 1. Overview of the reconstruction times for the hybrid QA-based reconstruction technique
compared to classical reconstruction methods FBP, DART, and PI. FBP, DART, and PI were carried
out on a developer’s workstation with an Intel® Core™ i7-10850H CPU. The runtime of the hybrid
QA-based reconstruction is subdivided into the creation of the binary quadratic model (BQM) on
both the developer workstation and the commercial hybrid solver and then the subsequent CPU and
QPU optimization carried out on the commercial hybrid solver. The time is measured as the mean of
four 32× 32 binary reconstructed images.

Reconstruction Create BQM (s) CPU Opt. (s) QPU Opt. (s) Total Runtime (s)

FBP - 0.002 - 0.002
DART - 0.007 - 0.007

PI - 0.641 - 0.641
QA 38.22 5.095 0.032 43.347

4 × 4 8 × 8 16 × 16 32 × 32
Image size (number of pixels)
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(a)

4 × 4 8 × 8 16 × 16 32 × 32
Image size (number of pixels)

0.4
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0.6

0.7

0.8

0.9

1.0

SS
IM

 (-
)

Mean SSIM: Image size

FBP
DART
PI
QA

(b)

Figure 4. Mean and variance RMSE (a) and SSIM (b) evaluation of images ‘foam’, ‘molecule’,
‘snowflake’ and ‘tree’ for image sizes N × N, where N is 4, 8, 16, and 32.

As a subsequent experiment, we employ the hybrid solver to solve for integer-valued
variables in a 4-bit range representing the numbers from 0 to 16. With this, we move
towards a more realistic use case. We simulate the well-known Shepp–Logan phantom
at the possible 4-bit range, compare the hybrid integer reconstructions with conventional
reconstruction methods, and visualize the UC in Figure 5. Furthermore, we plot a compari-
son regarding RMSE and SSIM for the reconstructed image size in Figure 6. Additionally,
we provide a more thorough component-wise analysis of the Shepp–Logan phantom in the
Appendix A.2, which increases the discretization values step-by-step.

Figure 5. 4-bit integer reconstructions of Shepp–Logan phantom for image sizes N × N, where N is 4,
8, 16, and 32.



J. Imaging 2023, 9, 221 12 of 22
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Figure 6. RMSE (a) and SSIM (b) of 4-bit integer reconstructions of the Shepp–Logan phantom for
image sizes N × N, where N is 4, 8, 16, and 32.

6.3. Experiment 2: Noise Evaluation

One typical problem in image reconstruction is the noise in the measured data. Espe-
cially in low-count tomography, one suffers from high photon noise. We alter the image
data with our noise model to imitate the high-noise level in low-count ET, which addresses
the problem of ‘inverse crime’. In comparison to the previous experiments, we use a
truncated PI with a cut-off value of 0.001 to make the corresponding reconstruction robust
to the noise induced. We test the hybrid-based reconstruction’s robustness with a sim-
ple noise alteration of the GT image during the acquisition. We utilize the UCI Machine
Learning Repository Digits dataset [53] for small-scale images with low bit range, as we
see the limitations of the approach in the Shepp–Logan phantom. The dataset consists
of 5620 digits of image size 8× 8 with a bit range of [0, 16]. We randomly chose 32 dig-
its and reconstructed them with and without noise. The additive noise is described in
Equation (16). Visual results of the reconstructed images without and with noise are shown
in Figure 7. Again, we show the reconstructed images and their corresponding GT, SG,
and comparable classical results. The remaining reconstructed digits can be found in the
Appendices A.3 and A.4. Furthermore, we present a quantitative evaluation of the RMSE
and SSIM for both noise-free and noisy data for each digit image in Figure 8.

(a) (b)

Figure 7. 4-bit integer reconstructions of four digits from the UCI digits dataset without (a) and with
random noise (b).
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Figure 8. Comparison of RMSE and SSIM for 4-bit integer reconstructions of 32 images from the UCI
digits dataset. (a,b) show results without noise, while (c,d) show results with noise.

6.4. Experiment 3: Underdetermined Evaluation

The reconstruction of binary images in a fully determinant setting is easy for any
reconstruction algorithm, as the number of combinatorial options is minimal compared
to integer or floating-point-based reconstruction. The problem in binary tomography
primarily results from reconstructing the objects with as few views as possible. In the
past, methods have been presented to reconstruct an object with two views only [27]. The
methods usually enforce much regularization and prior knowledge of the object due to the
associated null space of the projection operator in few-view reconstruction. Therefore, we
want to present reconstruction results of binary images of size 32× 32 with only 4 and 2
projection views acquired while only enforcing the prior knowledge of assuming binary
pixels. The reconstructed images, their comparison algorithm results, and corresponding
GT, SG, and UC are displayed for the binary image ’foam’ and ’tree’ in Figure 9. The other
examples are provided in the Appendix A.5. Moreover, we compare the reconstruction
algorithms on the four binary images measured by RMSE and SSIM in Figure 10.
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(a) (b)

Figure 9. Binary reconstruction of the 32× 32 image ‘foam’ (a) and ‘tree’ (b) from 2, 4, and 32 views.
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Figure 10. RMSE (a) and SSIM (b) of binary reconstructions from 2, 4, and 32 views.

6.5. Experiment 4: Inverse Crime and Applications towards Reality

In our previous experiments, we assumed the exact system matrix for precise forward
projection. This allows us to evaluate the algorithm in a controlled environment with
simulated perfection. However, real-world situations rarely provide a perfect system matrix,
and we often rely on estimated versions instead. To prevent biases caused by the ’inverse-
crime’ scenario, we now simulate the images on a different, higher-resolution grid during
simulation. To simulate these scenarios, we take the previously presented binary images
and scale them up to a size of 128× 128. We then simulate the projections and perform the
reconstructions using a rebinned SG. Again, we compare against a truncated PI in this case.
The reconstructed images, their comparison algorithm results, and corresponding GT, SG,
and UC are displayed for the binary image ’foam’ and ’tree’ in Figure 11. The remaining
examples are provided in the Appendix A.6. A comparison of the mean RMSE and SSIM is
given in Table 2.

(a) (b)

Figure 11. Outside of the inverse-crime scenario: Binary reconstructions of sample image ‘foam’
(a) and ‘tree’ (b) for image size 32× 32. The projections are simulated on an upscaled higher-resolution
image 128× 128 of the input, and the sinogram is consequently rebinned.
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Table 2. Overview of the RMSE and SSIM measured as the mean of the four 32× 32 binary recon-
structed images outside the inverse-crime scenario.

FBP DART PI QA

RMSE (mean + std) 0.281± 0.035 0.279± 0.038 0.289± 0.044 0.279± 0.039
SSIM (mean + std) 0.629± 0.050 0.623± 0.050 0.609± 0.066 0.638± 0.035

7. Discussion

Compared to previous approaches for matrix inversion based on QA, we observe an
improvement in linear systems with high condition numbers as well as the size of the linear
system itself. Rogers and Singleton’s method of solving linear systems using a quantum
annealer is restricted to small systems, 3× 3, with very low condition numbers [46]. With
the use of hybrid solvers, we can overcome this issue. Our system matrices M are singular,
with a condition number approaching infinity. When entirely determined, the results
of small binary tomographic reconstruction contest against conventional methods. We
hypothesize that the hybrid solver can handle binary image sizes of up to 32× 32 without
difficulty; see Figure 3. With integer-based tomographic reconstructions, we encounter
challenges with larger image sizes exceeding 8× 8, as observed from Figure 5. For this
reason, we further performed integer-valued tomography reconstruction only for the digits
dataset with image size 8× 8 in Figure 7. Here, we can see that hybrid-based reconstruction
can yield similar results to the conventional algorithms. An exciting finding is evident when
comparing the RMSE and SSIM of noisy simulations. The hybrid-based reconstructions are
robust to noise and yield similar performance to the conventional reconstruction technique
for all 32 digits in this small-scale experiment, as displayed in Figure 8. We acknowledge
that the energy optimization landscape appears to be minimally affected by noise during
the hybrid annealing process. However, further research is warranted to gain a deeper
understanding of this phenomenon. Moreover, we see that the reconstruction from as
few views as 2 or 4 projections can outperform standard reconstruction algorithms in
binary-based images in this specific toy example. However, the variance of the quantitative
results is relatively high, as seen in Figure 10. The high variance can be attributed to the
reconstructed images, which have higher frequency content, particularly within the imaged
object. Finally, we observe comparable results to conventional algorithms in a more realistic
binary reconstruction scenario, where the system matrix is not precisely known.

At this point, it is important to mention that the conventional reconstruction techniques
are not designed for such small-scale images, and the comparison may not accurately reflect
how the algorithm will compare on larger image sizes, especially in the case of real ET
reconstruction with non-discrete value. This is particularly manifested in the observation
that the error of conventional reconstruction methods minimizes when approaching larger
image sizes, as seen in Figures 4 and 6. This can be attributed to the fact that both FFT
and DART utilize linear interpolation in their reconstruction process. In contrast, both
QA and PI employ the direct system matrix, which mitigates these errors. However, for
the current state-of-the-art QC, it is infeasible to conduct such experiments, and we still
see great value in the experiments with such new computing technologies. If quantum
annealing can be scaled up to reasonable image sizes and pixel value ranges in the future,
it may offer advantages. These advantages include increased robustness to noise and the
ability to reconstruct with fewer views. In a realistic scenario, this could translate into
reduced radiation exposure for patients and shorter scanning times, but this remains an
open research question for evaluation in the future. We also see potential drawbacks of
our method. Most importantly, the D-Wave quantum annealer and the associated hybrid
solvers are no universal quantum computers. Therefore, we can only perform the QA
algorithm on the hardware. In return, this means that we cannot use the ability of quantum
computers to represent extensive data with significantly fewer qubits. On the other hand,
the data loading is part of the problem formulation for QA, which is a time-consuming
task for gate-based QC. However, there is no guaranteed speed-up or better solutions
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proofed for QA [54]. The use of hybrid solvers helps to improve the quality of solutions
and problem size. However, the problems may require a long runtime, which cannot
compete with purely classical methods. In the hybrid approach, a majority of the runtime is
attributable to the overhead of classical computation. Another drawback is the current cost
of QC, which is relatively high but is expected to decrease as it did for classical computers.

Finally, we observe that the hybrid-based integer reconstructions have problems
reconstructing homogeneous regions. Adding smoothness constraints to the objective
could improve reconstructed images in the future.

8. Conclusions and Outlook

We have given the reader an overview of quantum computing, especially adiabatic
quantum computing. More to the point, we have explained how quantum annealing
works and which problems it can solve. Subsequently, we present the inverse problem
of tomographic image reconstruction and describe the use case of emission tomography
and the difference to transmission tomography. We summarize previous work in the
solution of linear systems and image reconstruction with quantum annealing and quantum
computing and provide the fundamentals for our reconstruction method with quantum
annealing and hybrid solvers. Finally, we showcase the results of binary- and integer-
valued reconstruction for different matrix sizes. We also test the reconstruction concerning
noise and underdetermination. We have observed that hybrid-based reconstruction shows
potential benefits in noisy linear systems, especially for binary images and very small
integer-valued images, where the problem’s solution space is still tractable for the hybrid
solver. However, challenges arise as we increase the pixel bit range of images, and we
do not observe performance comparable to that of classical techniques. Furthermore, the
preparation of larger optimization problems, which is carried out on a classical computer,
becomes a bottleneck in the reconstruction pipeline due to the increasing size of the
system matrix used for reconstruction. Nevertheless, the stochastic nature of quantum
annealers allows for the introduction of additional uncertainty measures to interpret the
reconstructed images.
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AQC Adiabatic Quantum Computing
CQM Constrained Quadratic Model
DART Discrete Algebraic Reconstruction Technique
ET Emission Tomography
FBP Filtered BackProjection
GT Ground Truth
HHL Harrow-Hassidim-Lloyd
PI Pseudo Inverse
QA Quantum Annealing
QAOA Quantum Approximate Optimization Algorithm
QC Quantum Computing
QFT Quantum Fourier Transform
QFT Quantum Fourier Transform
QPU Quantum Processing Unit
QUBO Quadratic Unconstrained Binary Optimization
RMSE Root Mean Square Error
SART Simultaneous Algebraic Reconstruction Technique
SG Sinogram
SSIM Structural Similarity Index Measure
TT Transmission Tomography
UC Uncertainty Map

Appendix A

Appendix A.1. Matrix Size Comparison

(a) (b)

Figure A1. Binary reconstructions of sample image ‘snowflake’ (a) and ’molecule’ (b) for image sizes
N × N, where N is 4, 8, 16, and 32.

Appendix A.2. Shepp–Logan Components

Figure A2. Gradual analysis of the Shepp–Logan phantom. The y-axis shows the number of compo-
nents (discretization values) in the Shepp–Logan phantom.
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Appendix A.3. Digits

Figure A3. 4-bit integer reconstructions of digits from the UCI digits dataset.

Figure A4. 4-bit integer reconstructions of digits from the UCI digits dataset.

Figure A5. 4-bit integer reconstructions of digits from the UCI digits dataset.
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Figure A6. 4-bit integer reconstructions of digits from the UCI digits dataset.

Appendix A.4. Digits with Noise

Figure A7. 4-bit integer reconstructions of digits from the UCI digits dataset with random noise.

Figure A8. 4-bit integer reconstructions of digits from the UCI digits dataset with random noise.
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Figure A9. 4-bit integer reconstructions of digits from the UCI digits dataset with random noise.

Figure A10. 4-bit integer reconstructions of digits from the UCI digits dataset with random noise.

Appendix A.5. Underdetermination

(a) (b)

Figure A11. Binary reconstruction of the 32× 32 image ‘molecule’ (a) and ‘snowflake’ (b) from 2, 4,
and 32 views.



J. Imaging 2023, 9, 221 21 of 22

Appendix A.6. Inverse Crime

(a) (b)

Figure A12. Outside of the inverse-crime scenario: Binary reconstructions of sample image ‘molecule’
(a) and ‘snowflake’ (b) for image size 32× 32. The projections are simulated on an upscaled higher-
resolution image 128× 128 of the input, and the sinogram is consequently rebinned.
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