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Abstract: Background: The identification of histopathology in metastatic non-seminomatous tes-
ticular germ cell tumors (TGCT) before post-chemotherapy retroperitoneal lymph node dissection
(PC-RPLND) holds significant potential to reduce treatment-related morbidity in young patients,
addressing an important survivorship concern. Aim: To explore this possibility, we conducted a
study investigating the role of computed tomography (CT) radiomics models that integrate clinical
predictors, enabling personalized prediction of histopathology in metastatic non-seminomatous
TGCT patients prior to PC-RPLND. In this retrospective study, we included a cohort of 122 patients.
Methods: Using dedicated radiomics software, we segmented the targets and extracted quantitative
features from the CT images. Subsequently, we employed feature selection techniques and developed
radiomics-based machine learning models to predict histological subtypes. To ensure the robustness
of our procedure, we implemented a 5-fold cross-validation approach. When evaluating the models’
performance, we measured metrics such as the area under the receiver operating characteristic curve
(AUC), sensitivity, specificity, precision, and F-score. Result: Our radiomics model based on the
Support Vector Machine achieved an optimal average AUC of 0.945. Conclusions: The presented
CT-based radiomics model can potentially serve as a non-invasive tool to predict histopathological
outcomes, differentiating among fibrosis/necrosis, teratoma, and viable tumor in metastatic non-
seminomatous TGCT before PC-RPLND. It has the potential to be considered a promising tool to
mitigate the risk of over- or under-treatment in young patients, although multi-center validation is
critical to confirm the clinical utility of the proposed radiomics workflow.

Keywords: radiomics; metastatic non-seminomatous testicular germ cell tumors; computed
tomography; histopathology

1. Introduction

Germ cell cancer is a prevalent type of solid neoplasm that primarily affects young
adult men within the age range of 18 to 44 years [1]. Among testicular tumors, testicular
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germ cell tumors (TGCT) are particularly noteworthy, and the incidence of this cancer has
been on a steady rise in various developed countries over the past few decades. While
advancements in diagnosis and treatment have brought this disease into focus, it remains
unique among malignant diseases in terms of its limited number of identified risk factors.
The precise reasons behind the increase in testicular cancer cases are still unknown, and
our understanding of these risk factors remains relatively limited. Numerous studies have
suggested potential links between exposure to various factors during adolescence and
adulthood and the development of testicular cancer [2].

TGCT metastasis commonly occurs in the retroperitoneal lymph nodes located in the
abdominal region behind the peritoneum [3]. These are the most frequent sites where
TGCTs spread beyond the initial site of origin [4]. The combination of chemotherapy and
surgery has resulted in a cure rate of >90%, and this result was achieved with meticulous
management of retroperitoneal metastasis. The propensity for metastasis is a crucial as-
pect to consider in the diagnosis, staging, and treatment planning of patients with TGCT.
As such, a comprehensive understanding of the behavior and patterns of metastasis in
TGCTs can significantly impact patient outcomes and guide clinical management deci-
sions [5]. Therefore, ongoing research efforts focus on improving our knowledge of the
biological mechanisms driving TGCT metastasis to enhance early detection, prognosis, and
therapeutic strategies for this group of young male patients.

In the era of precision medicine, Artificial Intelligence (AI)-based image analysis
emerges as a groundbreaking solution to tackle the challenges associated with traditional
medicine [6]. This cutting-edge approach offers distinct advantages, including its non-
invasive nature. By leveraging AI algorithms, radiomics focuses on analyzing texture
features within a volume of interest (VOI) derived from medical images. These features
serve as valuable indicators of tumor physiology and radiologic phenotype [7]. With its
ability to extract meaningful information from images, AI-based image analysis holds great
promise for enhancing diagnostic accuracy, personalized treatment planning, and patient
care, driving us closer to a future of more precise and effective healthcare interventions.

In this paper, we aimed to investigate the potential of the radiomics model in predicting
histopathology outcomes (i.e., fibrosis/necrosis, teratoma, and viable tumor) following
post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) in metastatic non-
seminomatous testicular cancer. This cancer presents a significant clinical challenge, and
PC-RPLND is a crucial surgical intervention aimed at removing residual masses after
systemic chemotherapy. The successful outcome of PC-RPLND greatly depends on the
ability to accurately predict the histopathological characteristics of the residual masses,
as it influences treatment decisions and patient prognosis. Through the use of radiomics,
quantitative features from medical images are extracted and analyzed [8]. These features
provide valuable insights into the underlying tumor biology and have shown potential for
predicting treatment responses and patient outcomes across various cancer types.

For these reasons, we conducted a retrospective analysis of preoperative imaging data,
specifically computed tomography (CT) images, from patients who underwent PC-RPLND
for metastatic non-seminomatous testicular cancer. Our principal aim was to identify the
radiomics features that most strongly correlate with specific histopathological outcomes.
We sought to assess their potential as non-invasive predictive biomarkers for guiding
treatment decisions, stratifying patient risk, and monitoring therapeutic responses [9]. This
investigation was conducted within the context of personalized and precision therapy for
this particularly aggressive form of testicular cancer.

2. Materials and Methods

The residual masses of patients who underwent PC-RPLND for meta-static non-
seminomatous testicular cancer were accurately delineated in CT images, and a wide range
of radiomics features from the segmented regions were extracted, capturing information
related to the tumor’s shape, intensity, texture, and spatial relationships. These radiomics
features serve as quantitative biomarkers reflecting the tumor’s phenotypic characteristics,
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heterogeneity, and microenvironment. To establish the association between radiomics fea-
tures and histopathology (i.e., fibrosis/necrosis, teratoma, and viable tumor), we correlated
the extracted features with the corresponding surgical pathology results obtained from
the PC-RPLND specimens. Therefore, we performed statistical analyses and developed
predictive models using machine learning algorithms to optimize the classification perfor-
mance. The following subsections provide a detailed description of the various parts of the
adopted methodology.

2.1. Study Design

We enrolled patients with metastatic testicular germ cell tumors at diagnosis as can-
didates for retroperitoneal surgery to extirpate residual tumors after chemotherapy. We
considered patients with seminoma and no seminoma tumors. Specifically, the collected
dataset consisted of CT images of patients affected by metastatic TGCT who underwent
PC-RPLND between January 2015 and December 2021. Electronic medical records of all
consecutive TGCTs (n = 560) treated by the multidisciplinary uro-oncology team were
retrospectively reviewed.

In this study, as illustrated in Figure 1, the inclusion criteria comprised the following:

(a) Residual nodal size exceeding 1 cm, as determined through transverse axial dimension
on CT imaging, following frontline cisplatin-based chemotherapy for metastatic non-
seminomatous TGCT.

(b) Residual nodal size exceeds 3 cm in cases of seminoma.
(c) Residual nodal size measuring less than 1 cm in patients exhibiting intermediate or

poor prognosis or pure teratoma in the primary orchiectomy specimen.

The exclusion criteria encompassed the following:

(a) Lack of contrast-enhanced CT imaging data post-chemotherapy.
(b) Inadequate image quality is attributable to motion artifacts.
(c) CT scans were conducted at external institutions.
(d) Images displaying a tumor size exceeding 15 cm.
(e) Patients without comprehensive clinical data, pre-operative and intraoperative records,

or patients who underwent primary RPLND.

For all patient examinations, a CT scanner from Siemens Healthineers was utilized,
specifically the SOMATOM Definition Flash model. The acquired images were displayed in
the axial plane, with a slice thickness ranging from 2.0 to 5.0 mm and an in-plane resolution
varying between 0.62 × 0.62 mm and 0.86 × 0.86 mm. Standard CT configurations were
employed for the thorax, abdomen, and pelvis, following conventional protocols.

All surgery is carried out by three surgeons with ten years of experience. All patients
were treated with conventional open surgery, preferring a transabdominal approach via a
midline laparotomy incision or minimally invasive retroperitoneal lymph node dissection.
It was performed in all patients beyond the resection of residual mass on a unilateral or
bilateral modified template, including all ipsilateral lymph nodes between the level of the
renal vessels and the bifurcation of the common iliac artery.

Finally, 122 patients with metastatic TGCT, underwent PC-RPLND were included in the
radiomics analysis. Each patient was labeled according to the following histopathology: fi-
brosis/necrosis (57 observations), teratoma (48 observations), viable tumor (17 observations).

This study complies with the Declaration of Helsinki, and local ethics committee
approval was obtained (Instituto Nacional de Cancerología of Mexico, n. 2020/0123).
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Figure 1. Diagram flowchart that summarizes the process of patient inclusion.

2.2. Segmentation

Image segmentation was performed semi-automatically using the 3D Slicer open-
source software platform (version 4.8; www.slicer.orgwww.slicer.org) (accessed on
28 August 2023) by an experienced biomedical engineer and uro-oncologist with 10 years of
experience. After loading the Digital Imaging and Communications in Medicine (DICOM)
files, we used images of CT in the arterial and portal-venous contrast phases to create
3D lymph node segmentation with manual corrections. Specifically, we used MONAIL-
abel (https://monai.io/) (accessed on 1 April 2023) and R-Vessel-X (http://tgi.ip.uca.fr/
r-vessel-x) (accessed on 1 April 2023) plugins to create and edit segmentations. Figure 2
presents an example of a 3D segmentation and the corresponding resected tumor.

www.slicer.orgwww.slicer.org
https://monai.io/
http://tgi.ip.uca.fr/r-vessel-x
http://tgi.ip.uca.fr/r-vessel-x
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Figure 2. (a) CT images with 3D segmentation of a 30-year-old patient with an enlarged left pericaval
lymph node (LN) after chemotherapy. The patient underwent PC-RPLND. The volume of LN was
15 cm in diameter. (b,c) Pictures of intraoperative retroperitoneal surgery of the tumor that displaced
the v. cava and infiltrated the aorta. (d) The tumor was totally resected. (e) Aortic vascular prosthesis.

2.3. Radiomics Feature Extraction

A wide range of radiomics features were extracted from CT images and analyzed to
uncover hidden information related to the investigated disease. These quantitative features
include the texture, shape, and intensity characteristics of the target, in our case the residual
masses of patients who underwent PC-RPLND for metastatic non-seminomatous testic-
ular cancer. By systematically analyzing these features, radiomics aims to aid in disease
diagnosis, prognosis, treatment planning, and therapeutic response assessment, ultimately
contributing to personalized and more effective healthcare decisions. Specifically, in our
study, PyRadiomics was used to extract 851 features belonging to the original images (107)
and the images pre-processed through wavelet decomposition (744), which was performed
by configuring the Filter Module of PyRadiomics. Moreover, all the features belonged to the
Shape class (14 features), the First Order Statistics (162 features) class, and the Texture class,
which can be further divided into 5 feature classes: the gray level co-occurrence matrix
(GLCM) (216 features), the gray level run length matrix (GLRLM) (144 features), the gray
level size zone matrix (GLSZM) (144 features), the neighboring gray tone difference matrix
(NGTDM) (45 features), and the gray level dependence matrix (GLDM) (126 features).
PyRadiomics parameters used for the feature extraction process were:

• diagnostics_Configuration_Settings.additionalInfo (True)
• Configuration_Settings.binWidth (25.0)
• Configuration_Settings.distancesforce2Ddimension (0)
• Configuration_Settings.interpolator (sitkBSpline).label (1.0)
• minimumROIDimensions (2)
• minimumROISize (null)
• normalize (false)
• diagnostics_Configuration_Settings.normalizeScale (1)
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• diagnostics_Configuration_Settings.padDistance (5)
• diagnostics_Configuration_Settings.preCrop (false)
• diagnostics_Configuration_Settings.removeOutliers (null)
• diagnostics_Configuration_Settings.resampledPixelSpacing (null)
• diagnostics_Configuration_Settings.resegmentRange (null)
• diagnostics_Configuration_Settings.symmetricalGLCM (true)

2.4. Machine Learning Pipeline

Firstly, clinical features and radiomics features were combined to obtain the final
feature dataset (855 features) before sending it as input to the machine learning pipeline
using a modified version of matRadiomics [10], to handle multiple outcomes, namely
i. fibrosis/necrosis, ii. teratoma, and iii. viable tumor. The adopted pipeline consists of the
following: (i) feature normalization through min-max normalization; (ii) Synthetic Minority
Oversampling Technique (SMOTE) [11] to oversample the minority classes and balance the
dataset; (iii) Kruskal–Wallis analysis followed by the least absolute shrinkage and selection
operator (LASSO) for feature selection; (iv) model training; (v) model validation; and
hyperparameter optimization. The machine learning pipeline is shown in Figure 3.
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2.4.1. Minority Classes Oversampling

Since the dataset was strongly unbalanced, we used SMOTE [11] to oversample
the minority classes. In fact, when the distribution of data among classes is uneven in
classification, the learning function is dominated by the features of the majority classes,
resulting in a high misclassification rate for minority samples. Therefore, synthetic samples
were created for the teratoma and tumor viable classes, thus increasing their amount from
48 to 57 and from 17 to 57, respectively, and the total number of cases from 122 to 171.

2.4.2. Feature Reduction and Selection

Given that the combined dataset comprises high-dimensional data, encompassing a
substantial number of radiomics features (855), far exceeding the number of cases (171),
it was imperative to employ feature reduction and selection techniques to streamline the



J. Imaging 2023, 9, 213 7 of 16

model in terms of either training efficiency or model explainability. To achieve this, we
employed Kruskal–Wallis to retain features with p-values below predefined thresholds and
leveraged LASSO, a widely recognized radiomics feature selection algorithm, to identify
the most important features. Consequently, we established three incremental thresholds
(p-value < 0.005, p-value < 0.01, and p-value < 0.05) and adopted the following strategy for
transitioning between these thresholds:

• In the event that none of the features meet the first threshold (p < 0.005), we elevated
the p-value threshold to the second level;

• If the second threshold remains unmet, we escalate the p-value to the third threshold;
• If none of the features satisfied the third threshold, all the features were given as input

to the LASSO. The optimal lambda value was determined through a rigorous 10-fold
cross-validation process.

2.4.3. Classification

We employed a robust validation approach by conducting 100 repeated iterations
of stratified 5-fold cross-validation for model validation. This process also included the
fine-tuning of hyperparameters [12]. To expedite the hyperparameter tuning process,
we opted for Bayesian optimization. Performance metrics were based on the average
of the 100 repetitions of the cross-validation procedure. Finally, six machine learning
models, namely Discriminant Analysis Classifier (DC) [13], tree [14], K-nearest neighbors
(KNN) [15], support vector machines (SVM) [16], Naïve Bayes (NB) [17], and ensemble [18],
were trained, validated, and optimized.

2.4.4. Statistical Analyses

For each trained model, we calculated several performance metrics, including:

• Accuracy ((TP + TN)/(TP + TN + FP + FN))
• True Positive Rate (TPR) or sensitivity (TP/(TP + FN))
• True Negative Rate (TNR) or specificity (TN/(TN + FP))
• Positive Predicted Value (PPV) or precision (TP/(TP + FP))
• The area under the receiver operating characteristic curve (AUC)
• F-score

where TP (true positive), TN (true negative), FP (false positive), and FN (false negative).
The metrics TPR, TNR, PPV, AUC, and F-score were averaged across the three classes for
each classifier. For instance, the average AUC (AUCav) was computed as the sum of the
AUC values for each class (AUCclass1-SVM + AUCclass2-SVM + AUCclass3-SVM) divided
by 3.

3. Results
3.1. Clinical Data

Clinical data are shown in Table 1: age, clinical stage at diagnosis, prognostic group
according to International Germ Cell Cancer Collaborative Group (IGCCCG) classification,
serum markers at diagnosis, primary histopathology, serum markers before PC-RPLND,
type of PC-RPLND (standard, salvage, desperation, and redo-surgery), side of orchiec-
tomy (left, right, bilateral, extragonadal, deferred), damage to organs, vascular damage.
PC-RPLND standard refers to surgery after first-line chemotherapy and negative serum
markers; PC-RPLND salvage after more lines of chemotherapy and negative serum mark-
ers; desperation RPLND applies to patients with persistently elevated or increasing serum
tumor markers after primary inductive chemotherapy or after salvage chemotherapy; and
redo PC-RPLND in cases with recurrent or persistent disease after surgery. We included
age, side of orchiectomy, damage to organs, and vascular damage as clinical features in the
radiomics analyses.
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Table 1. Clinical data.

Fibrosis/Necrosis Teratoma Viable Tumor

Patient age at diagnosis (years) 26.03 ± 6.46 23.94 ± 5.95 28.81 ± 11.66

Clinical stage (initial)
I 2/57 (3.51%) 7/48 (14.6%) 9/17 (52.9%)
II 20/57 (35.1%) 16/48 (33.3%) 6/17 (35.3%)
III 35/57 (61.4%) 25/48 (52.1%) 2/17 (11.7%)

IGCCCG (initial)
Good 14/57 (24.6%) 15/48 (31.2%) 5/17 (29.4%)
Intermediate 26/57 (45.6%) 19/48 (39.6%) 7/17 (41.2%)
Poor 13/57 (22.8%) 12/48 (25.0%) 5/17 (29.4%)
Missing information 4/57 (7.0%) 2/48 (4.2%) 0/17 (0%)

Serum Marker initial
AFP 2278 ± 7246 3639 ± 8481 5401 ± 9912
hCG 3596 ± 12,899 13,436 ± 40,984 925 ± 1331
LDH 1334 ± 2202 475 ± 384 546 ± 431

Primary histopathology
Seminoma 13/57 (22.8%) 1/48 (0.021%) 1/17 (0.059%)
Non-seminoma 44/57 (77.2%) 47/48 (97.9%) 16/17 (94.12%)
Containing teratoma 1/57 (0.017%) 2/48 (0.042%) 6/17 (35.3%)
Without teratoma 56/57 (98.2%) 46/48 (95.8%) 11/17 (64.7%)

Type of pcRPLND
Primary 2/57 (3.5%) 0/48 (0%) 2/17 (11.8%)
Standard 8/57 (14.0%) 10/48 (20.8%) 0/17 (0%)
Salvation 41/57 (71.9%) 28/48 (58.3%) 6/17 (35.3%)
Desperation 5/57 (8.8%) 9/48 (18.8%) 5/17 (29.4%)
Redo 1/57 (1.8%) 1/48 (2.1%) 4/17 (23.5%)

Serum marker prior pcRPLN
AFP 4.0 ± 3.5 6.6 ± 11.8 56.4 ± 91.2
hCG 3.1 ± 18.5 5.3 ± 30.0 21.7 ± 83.8
LDH 195 ± 105 247.7 ± 170.1 631.3 ± 1461.3

Side of orchiectomy
Left 31/57 (54.4%) 30/48 (62.5%) 7/17 (41.2%)
Right 19/57 (33.3%) 16/48 (33.3%) 9/17 (52.9%)
Bilateral 2/57 (3.5%) 1/48 (2.1%) 1/17 (5.9%)
Extragonadal 1/57 (1.8%) 1/48 (2.1%) 0/17 (0%)
Deferred 4/57 (7%) 0/48 (0%) 0/17 (0%)

Damage to organs
Yes 4/57 (7%) 2/48 (4.2%) 1/17 (5.9%)
No 53/57 (93%) 46/48 (95.8%) 16/17 (94.1%)

Vascular damage
Yes 4/57 (7%) 7/48 (14.6%) 2/17 (11.8%)
No 53/57 (93%) 41/48 (85.4%) 15/17 (88.2%)

Volume (cm3) 65.8 ± 132.4 505.4 ± 744.6 1156.6 ± 1689.3

3.2. Feature Reduction and Selection

After feature extraction, since the combined dataset of extracted features and clinical
features was high-dimensional (855 features), a feature selection pipeline was adopted to
analyze these features, as reported in Section 2.4.2. The feature reduction (i.e., Kruskal–
Wallis analysis) and selection (i.e., LASSO) processes reduced the total number of combined
radiomics-clinical features (851 features extracted from the CT images and 4 clinical features)
to the most predictive ones, thus producing a subset of 30 features. Only 3 features belonged
to the original images, namely, original_firstorder_Median, original_firstorder_90Percentile,
and original_glszm_LargeAreaEmphasis, while the rest all belonged to the wavelet decom-
posed images. No clinical features were selected as the most predictive ones. In Table 2, we
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report the 30 selected features associated with the p-value derived from the Kruskal–Wallis
analysis. The lower the p-value, the more statistically significant the difference in feature
values between groups (fibrosis/necrosis, teratoma, tumor viable) for a specific feature.
As shown in Table 2, only First Order and Texture features were included in the subset of
selected features, while Shape features were not present. For the features whose p-value
was much lower than 0.005 (p-values whose order of magnitude ranged from 10−12 to
10−4, threshold = 5 × 10−3), we used the “<<0.005” notation. As shown in Table 3, which
reports the number of selected features based on image type and class, 12 features belonged
to the First Order Statistics class, 2 based on the original images and 10 on the wavelet
decomposed images, and 18 features belonged to the Texture feature class, 1 based on the
original images and 17 on the wavelet decomposed images.

Table 2. Subset of selected features and their p-value obtained through the Kruskal–Wallis analysis.

Selected Features p-Value

original_firstorder_Median <<0.005
wavelet_LLH_glcm_MCC <<0.005

original_firstorder_90Percentile <<0.005
wavelet_LLL_glcm_Idmn <<0.005

wavelet_LLL_firstorder_RootMeanSquared <<0.005
wavelet_HHH_glszm_LargeAreaEmphasis <<0.005
wavelet_HLH_glszm_SmallAreaEmphasis <<0.005

wavelet_HHH_glszm_LargeAreaHighGrayLevelEmphasis <<0.005
wavelet_HHH_firstorder_Median <<0.005

wavelet_HLH_glrlm_RunLengthNonUniformityNormalized <<0.005
wavelet_LHL_glrlm_RunLengthNonUniformityNormalized <<0.005

wavelet_LLH_glcm_InverseVariance <<0.005
wavelet_LLH_gldm_SmallDependenceEmphasis <<0.005

wavelet_LLH_glszm_ZoneVariance <<0.005
wavelet_LLL_firstorder_10Percentile <<0.005

wavelet_HLH_glszm_LargeAreaEmphasis <<0.005
wavelet_HHL_firstorder_Minimum <<0.005

wavelet_LHL_glszm_SmallAreaHighGrayLevelEmphasis <<0.005
wavelet_LHH_firstorder_Range <<0.005

wavelet_LHH_glrlm_LongRunHighGrayLevelEmphasis 0.0011
wavelet_LLH_firstorder_Minimum 0.0017

wavelet_HHL_glszm_SizeZoneNonUniformityNormalized 0.0018
wavelet_HHL_glrlm_RunLengthNonUniformityNormalized 0.0021

wavelet_LLH_firstorder_Kurtosis 0.0022
wavelet_LHH_ngtdm_Complexity 0.0028

wavelet_HLH_glcm_MCC 0.0040
original_glszm_LargeAreaEmphasis 0.0041

wavelet_LHH_gldm_DependenceNonUniformity 0.0042
wavelet_HLL_firstorder_10Percentile 0.0045

wavelet_HHL_gldm_HighGrayLevelEmphasis 0.0048

Table 3. Number of selected features based on Image Type and Class.

Image Type Class Number of Features

Original Shape 0
Original First Order 2
Original Texture 1
Wavelet Shape 0
Wavelet First Order 10
Wavelet Texture 17
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3.3. Classification

We reported the accuracy, AUC, sensitivity (TPR), specificity (TNR), precision (PPV),
and f-score averaged on the 100 times repeated 5-fold cross-validation for the six different
classifiers (DC, KNN, SVM, Naïve Bayes, Tree, and Ensemble) from Figures 4–9.
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As reported in Figure 4, which shows the accuracies obtained by each classifier, the
Support Vector Machines (SVM) obtained the highest accuracy (0.8532). Since we performed
a multiclass classification (3 classes), results related to the AUC (Figure 5), TPR or sensitivity
(Figure 6), TNR or specificity (Figure 7), PPV or precision (Figure 8), and F-score (Figure 9)
are given, divided by class (Fibrosis/Necrosis, Teratoma, Tumor Viable), placed along the
rows of the figures. Therefore, given a row, the corresponding class was considered the
positive label, while the remaining classes were the negative labels. In such a way, each
classifier measures the AUC, TPR, TNR, PPV, and f-score of one class (positive) against the
remaining classes (negative). For each classifier and metric, averaging the results obtained
for each class leads to the classifier global metric. As reported in Figure 5, the highest
value of AUC (0.965) is reached when the KNN classifier is adopted to distinguish the
Tumor Viable class from the other two classes, but in general, the SVM classifier reached
the highest average AUC (0.945).

As reported in Figure 6, the highest value of TPR (0.958) is reached when the KNN
classifier is adopted to distinguish the Tumor Viable class from the other two classes, but in
general, the SVM classifier reached the highest average TPR (0.851). As reported in Figure 7,
the highest value of TNR (0.967) is reached when DC is adopted to distinguish the Teratoma
class from the other two classes, but in general, the SVM classifier reached the highest TNR
(0.926). As reported in Figure 8, the highest value of PPV (0.928) is reached when DC is
adopted to distinguish the Teratoma class from the other two classes, but in general, the
SVM classifier reached the highest average PPV (0.858). As reported in Figure 9, the highest
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value of f-score (0.889) is reached when DC is adopted to distinguish the Teratoma class
from the other two classes, but in general, the SVM classifier reached the highest f-score
(0.851). All the values are rounded to three decimal places. Moreover, we reported an
example of receiver operating characteristic (ROC) curves obtained in one repetition of the
cross-validation procedure for the most performant classifier, namely the SVM, in Figure 10.
Each curve (three in total) describes the ability of the classifier to distinguish one class from
the remaining classes. The larger the area under the curve, the better the result.
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4. Discussion

In the proposed study, we developed a radiomics model for the individualized pre-
operative prediction of histopathology in metastatic non-seminomatous TGCT before
PC-RPLND. Residual nodal masses are observed in around 40% of patients following
chemotherapy, and surgical intervention is recommended when post-chemotherapy axial
nodal measurements exceed 1 cm. The primary goal of surgery is to excise residual mature
teratoma or viable tumors, which are present in approximately 30% to 40% and 5% to 10%
of surgical specimens, respectively. Consequently, approximately 50% of patients have
fibrosis/necrotic tissue [19]. These findings were confirmed in our study cohort, where we
observed 57 fibrosis/necrosis (47% of the entire cohort), 48 teratoma (39%), and 17 viable
tumors (14%).

To date, the most commonly employed algorithm for histopathology identification
relies on six clinical variables: prechemotherapy tumor markers [alpha-fetoprotein, beta-
human chorionic gonadotropin, lactate dehydrogenase], residual mass size, percentage of
mass shrinkage, and the presence of teratoma elements in the orchiectomy specimen [20].
Although it has demonstrated a high level of discriminative accuracy, with AUC values
ranging from 0.77 to 0.84, this model has not been widely embraced in clinical practice
due to its inherent complexity [21]. In addition, according to the European Association of
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Urology 2023 guidelines, contrast-enhanced CT stands out as the most sensitive method
for assessing the thorax, abdomen, and pelvis in the staging of testicular cancer. The
recommendation advocates the use of contrast-enhanced CT for staging in all patients prior
to orchidectomy; however, it may be postponed until histopathological confirmation of
malignancy is obtained.

For these reasons, the main result of our radiomics study can be summarized as fol-
lows: Using an adapted version of matRadiomics [10], starting from 4 clinical parameters
that can be easily collected together with 851 CT imaging features, we developed a pre-
dictive model based on 30 radiomics features after the selection and reduction process.
The proposed radiomics model, implemented using SVM, demonstrated optimal accuracy
(85%) in predicting histopathological outcomes, specifically differentiating between fibro-
sis/necrosis, teratoma, and viable tumors. To ensure the reliability of our approach, we
assessed its robustness through 100 iterations of 5-fold cross-validation. In particular, as
detailed in Section 3, the results indicate that the performance of various classifiers varies
based on the specific class they aim to distinguish from the other two classes. However,
when considering overall performance, SVM consistently outperforms the others. SVM
achieves the highest overall average AUC (0.945), the highest overall average TPR (0.851),
the highest overall average TNR (0.926), the highest overall average PPV (0.858), and the
highest overall average F-score (0.851). Conversely, Naïve-Bayes demonstrates the least
favorable performance.

In the literature the results of usefulness of the radiomics in testicular cancer in
primary and post-chemotherapy settings have been controversial. Similarly to our study,
Baessler et al.

demonstrated that a SVM classifier, utilizing radiomics data from CT scans, had the ca-
pability to predict lymph node histopathology following lymph node dissection in patients
with TGCT who had undergone chemotherapy [22]. This single-center retrospective study
included 81 patients with a total of 204 lesions and achieved 81% accuracy in classifying
them into “benign” (necrosis/fibrosis) or “malignant” (viable tumor/teratoma), unlike
our study, where a 3-outcome classification was performed (fibrosis/necrosis, teratoma,
and viable tumor). In addition, they did not include clinical variables in the proposed
radiomics approach, even though, in our case, clinical features were not identified as the
most predictive ones by the feature selection and reduction algorithms. Furthermore, they
partitioned this study cohort, which was of moderate size, into three subgroups. The test
group comprised merely 19 patients, leading to an overall decrease in statistical significance.
To address this limitation, we adopted a cross-validation methodology based on recurrent
data partitioning, serving the dual purpose of guarding against overfitting and yielding
precise model coefficient estimates [23]. Venishetty et al., using Pyradiomics in 45 patients
undergoing PC- RPLND, failed to prove that radiomics analysis can predict pathology after
retroperitoneal surgery [24]. In another retrospective study conducted at a single center [25],
involving 77 patients with metastatic TGCT and a total of 102 lesions, the accuracy of ra-
diomics to identify germ cell tumor vs teratoma vs fibrosis was 72 ± 2.2% (area under the
curve [AUC], 0.74 ± 0.028); sensitivity was 56.2 ± 15.0%, and specificity was 81.9 ± 9.0%.
Upon incorporating clinical variables such as the presence of teratoma in the primary tumor,
pre-chemotherapy tumor marker levels, and pre- and post-chemotherapy mass size into the
radiomics signature, the optimal classifier was determined. This classifier demonstrated
superior performance when applied exclusively to axial masses with a diameter less than
2 cm, achieving an accuracy of 88.2% and an AUC of 0.80. They implemented a nested
10-fold cross-validation protocol to ascertain the accuracy of the classifier. Unlike this study,
we aimed to discriminate among three distinct tissues, not restricting our focus to masses
with diameters smaller than 2 cm. Nevertheless, we still achieved high levels of accuracy;
our results argue in favor of the use of radiomics to predict histopathology through a
machine learning pipeline based on matRadiomics. Notwithstanding that PC-RPLND for
residual tumors is pivotal in the management of TGCT, a complicated dispute continues
to avoid surgery cautiously. So, the use of radiomics could be included in the current
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guidelines [26–28] to distinguish which patients should be treated by surgery or kept under
surveillance. However, radiomics is a relatively recent field and is evolving rapidly. It does
not constitute a perfect solution or replace clinical management. Radiomic features can
provide information about the tumor and support clinical decisions. [29,30]. Radiomics
in conjunction with standard clinical predictors might help you decide if to keep patients
under surveillance in case of residual necrosis or perform retroperitoneal surgery promptly
so as to prevent undertreatment or overtreatment. PC-RPLN, although necessary, remains
a surgery with a broad complication rate [31].

Finally, it is essential to acknowledge the potential limitations of the present radiomics
study. By addressing the challenges mentioned below, we hope to pave the way for
personalized and precise therapeutic approaches in the management of this aggressive
form of testicular cancer.

First, since this study is retrospective in nature and employs a relatively small cohort,
it is critical to highlight the potential presence of inherent selection bias.

Second, classes were highly unbalanced (57 fibrosis/necrosis, 48 teratoma, and 17 vi-
able tumors). To overcome this limitation, we used SMOTE [11] to oversample the minority
classes and balance the dataset. In addition, in contrast to previous radiomics studies fo-
cused on LN metastasis, which primarily extracted features from the largest cross-sectional
area, our study conducted a comprehensive whole-lesion analysis by encompassing all
available CT slices. This approach yielded a wealth of information concerning tumor
heterogeneity.

Third, our case was a single-institution study without an external validation cohort.
Therefore, prospective, multicenter validation is essential to gathering more robust ev-
idence for clinical application. Nonetheless, considering our approach based on fold
cross-validation, we hold confidence that our integrated prediction model exhibits general-
izability. Future studies should aim to validate our trained model in prospective research
settings [32].

Fourth, the use of an operator-independent segmentation system is mandatory in
the study of radiomics [33]. Although we used semi-automatic segmentation, this may
suffer from inter-observer variability. This variability provides less precise and mostly
irreproducible results since the radiomics signature is strongly influenced by the VOI
designed to identify the tumor.

Finally, this is a radiomics study based on CT alone; if multiple modalities are com-
bined, such as CT, PET, and MRI, the resulting feature set could increase the ability to
predict histopathology in TGCT patients [34].

5. Conclusions

The presented CT-based radiomics model may potentially serve as a non-invasive
tool for predicting histopathology differentiation among fibrosis/necrosis, teratoma, and
viable tumor in metastatic non-seminomatous TGCT before PC-RPLND. It has the potential
to be considered a useful tool in mitigating the risk of over- or under-treatment. In other
words, the proposed model could help in the future to predict residual histology in the
retroperitoneum after chemotherapy. We observed the propensity of the model to anticipate
teratoma histology. The future objective is to predict the presence of fibrosis to avoid surgery
on residual tumors smaller than one centimeter. Radiomics and the application of artificial
intelligence in TGCT are fascinating areas that should be considered to improve the quality
of life of patients suffering from this disease.
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