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Abstract: Surface defect detection with machine learning has become an important tool in industries
and a large field of study for researchers or workers in recent years. It is necessary to have a simplified
source of information that helps us to better focus on one type of surface. In this systematic review, we
present a classification for surface defect detection based on convolutional neural networks (CNNs)
focused on surface types. Findings: Out of 253 records identified, 59 primary studies were eligible.
Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines, we analyzed the structures of each study and the concepts related to defects and their
types on surfaces. The presented review is mainly focused on finding a classification for the types
of surfaces most used in industry (metal, building, ceramic, wood, and special). We delve into the
specifics of each surface category, offering illustrative examples of their applications within both
industrial and laboratory settings. Furthermore, we propose a new taxonomy of machine learning
based on the obtained results and collected information. We summarized the studies and extracted
the main characteristics such as type of surface, problem types, timeline, type of network, techniques,
and datasets. Among the most relevant results of our analysis, we found that the metallic surface is
the most used, as it is the one found in 62.71% of the studies, and the most prevalent problem type is
classification, accounting for 49.15% of the total. Furthermore, we observe that transfer learning was
employed in 83.05% of the studies, while data augmentation was utilized in 59.32%. Our findings
also provide insights into the cameras most frequently employed, along with the strategies adopted
to address illumination challenges present in certain articles and the approach to creating datasets
for real-world applications. The main results presented in this review allow for a quick and efficient
search of information for researchers and professionals interested in improving the results of their
defect detection projects. Finally, we analyzed the trends that could open new fields of study for
future research in the area of surface defect detection.

Keywords: defect detection; deep learning; CNN; industrial surface; automatic surface inspection;
quality inspection

1. Introduction

Defect detection is an important part of industrial processes. Currently, many manual
inspections are carried out with experts in the process but have a high cost due to the staff’s
working hours. In recent years, there has been a significant increase in the use of machine
learning to carry out these processes, reaching a significant impact on industries to improve
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the quality of their products. Within the inspection process in an industry, the detection of
defects has a very important role because it approves or rejects parts produced in factories
or delivered by suppliers. It also helps to reduce material wastage because it can include
the rework and repair of parts [1], even though within machine learning there are several
options for solving defect detection problems, such as support vector machines (SVMs) in
the metal industry [2], cellular neural networks (CNNs) in the metal industry [3], or using
different image processing algorithms in the metal industry [4]. Based on the information
collected in [5], CNNs stand out in a number of existing studies, result in the extraction of
information from images, and outperform other traditional machine learning architectures;
therefore, CNNs were chosen as our starting point. CNNs have mostly been used for defect
detection in metals and recently in other materials or surfaces such as wood, ceramics, and
concrete, among others. Currently, there are types of defects that cannot be detected by
various factors, so there is no final or specific solution for the target detection task. The
most popular algorithms are grounded on deep learning methods because they are based
on input data, so they automatically learn the characteristics of the defects. Conversely,
traditional detection technology is based on human labor, so the difference is that current
methods reduce labor consumption [6]. Defect detection is generally carried out on images
of a dataset from a camera, but it can also be developed using lamb wave data converted
images such as in [7] or through sensors such as in [8], where the authors obtain C-scan
images from an anisotropic magneto-resistive (AMR) sensor. There are more examples to
generate a dataset, but this review is focused on learning through images because visual
inspections are carried out in industrial processes and the objectives of the studies found is
to improve said processes. In addition, large amounts of information and datasets were
found, which helped us to better understand how the creation and use of images in CNNs
have evolved. According to He et al. [9], using deep learning is possible for learning directly
from two-dimensional images and for reducing image preprocessing; for these reasons,
there is no need to manually extract features, since they are automatically learned more
accurately from input layers. The incorporation of various techniques such as transfer
learning (TL) and data augmentation (DA), with utilization rates of 83.05% and 59.32%,
respectively, has notably enhanced experimental outcomes. A majority of studies (67.80%)
engage in trials using customized CNNs, successfully identifying combinations that elevate
the accuracy of current CNN models. Similarly, we detail the various types of datasets and
their respective creation methods for each surface, accompanied by real-world examples.

In this article, a CNN literature review is carried out, considering various aspects such
as types of surfaces, different types of CNNs, datasets, cameras, and network architectures.
It was possible to go from 253 studies to 59 specific studies and perform a systematic review.
In this review, defect detection articles (DDAs) use labeled data, so all articles are of the
supervised learning type, because the majority of the conducted studies using CNNs use
supervised learning; therefore, we exclude other types such as unsupervised learning,
self-supervised, semisupervised, and reinforcement.

1.1. Research Relevance

The study of surface defect detection has significant relevance in industries because it
improves the quality of products and reduces production costs, but as of the date in which
this systematic review is carried out, there are still no studies comparing types of surfaces,
problem types, or origins of the datasets. This systematic review becomes a significant help
for researchers and students who need to focus directly on a type of surface, speeding up
the search time and providing a general guide.

1.2. Research Questions

To conduct this review, we first conducted a preliminary study to define a group of
which we consider to be the most relevant research questions (RQs), which we will answer
throughout this article.

• RQ1: Which are the most used types of surfaces in defect detection?
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• RQ2: What are the main problem types for surface defect detection?
• RQ3: Which is the type of network architecture most used for each type of surface

defect detection?
• RQ4: What techniques were used to improve performance in studies regarding surface

defect detection?
• RQ5: Which is the most used type of dataset?
• RQ6: How did the number of studies evolve over the years?

1.3. Contributions

Besides the intrinsic value of the answers to the main research questions of this article,
several other contributions are highlighted:

• A comparison between techniques is made by the type of material, which will guide
researchers when searching specifically for a specific material or to perceive the main
trends in the industry;

• The studies were classified by type of learning, to easily understand what is being
used in each study reviewed;

• The proposal of a taxonomy for machine learning and surface defect detection.

1.4. Review Structure

In Section 2, the methods used in this systematic review are addressed. Then, in
Section 3, after the systematic literature review, the obtained results will be presented,
showing results through relevant tables and graphs, as well as the taxonomy and existing
applications according to the surface type. Section 4 discusses and analyzes the research
questions and also highlights the main learned lessons. Finally, Section 5 presents the
relevant conclusions from this systematic review and future directions within this field
of study.

2. Methods

This systematic review was based on three stages represented in Figure 1: planning
the review, conducting the review, and reporting the review results. For conducting the
review in Section 2.3, a thorough literature search was undertaken, employing the PRISMA
methodology to meticulously assess and choose pertinent primary studies.

First, planning the review; the need to develop this systematic review was determined,
and then we defined the research questions and created a review protocol. Second, con-
ducting the review; with the review protocol implemented, the next step was to conduct
the review stage. We started to identify the research questions because these serve as a
guide to carrying out this review, and these questions were answered while this systematic
literature review (SLR) was developed. Then, we defined search strategies where we found
the first research studies to be reviewed, followed by a primary selection of studies that
are relevant to our research questions. After that, we proceeded with the study quality
assessment, obtaining better filtering. Once the studies were chosen, the next step was data
extraction, where the information obtained from the primary studies was recorded; in this
case, the work was made easier by using forms to answer the research questions posed at
the beginning. Then, the results of the primary studies were collected and summarized
(data synthesis). Finally, the results were reported; reporting the review results.
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Figure 1. Systematic review process.

2.1. Literature Search

The search was carried out using synonyms and alternative terms referring to the same
topic, with a combination of the boolean expressions “AND” and “OR”. In addition, these
searches were filtered to find studies between the years 2011 and 2021. We decided to start
our search in 2011 until nowadays due to the big boom in deep learning using CNNs that
started in 2012 when AlexNet won the 2012 ImageNet Challenge for image classification.
AlexNet proved to be a landmark deep learning model with GPU acceleration, triggering
the deep learning revolution. Although this network was not the first to use the GPU, the
big stage where it succeeded gave it media attention, setting a milestone and sparking the
deep learning revolution. These facts gave us a guideline, so we decided to keep a one-year
margin (2011) to include possible studies before the rise of AlexNet.

A general key was created as a basis and 559 primary research studies were found in
Scopus. Then, the search parameters were improved, and after several attempts, Key1 was
created and used to search for studies in electronic digital databases. After performing an
analysis of backward and forward citation search, we found relevant articles that guided us
to structure the search for studies; surveys especially helped us because they cited articles
with relevant topics to our search topic. With this information, Key1 was improved again
to focus mainly on surfaces, quality control, defect detection, and machine learning, in a
combination that allowed us to find the articles studied in the following stages. Key1 can
be used in several electronic journals because the journals share a general format, which
facilitates the search process. The four electronic databases used to search for primary
studies were Scopus, IEEE Xplore, ACM Digital Library, and Web of Science. Key1 is
expressed as follows: ((surface AND (ceramic OR metal OR wall OR wood OR building))
AND (defect OR deformity OR fracture OR deficiency OR crack) AND ((quality control)
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OR (detection OR detecting OR identification OR sensing OR classification)) AND (cnn OR
convolutional OR machine learning OR deep learning)).

The search process begins with the 4 electronic databases and Key1, so searches are
performed to find candidate studies, which are then filtered according to the exclusion and
inclusion criteria shown in the next section.

2.2. Eligibility Criteria

The criteria results considered to assess the results in this study include both inclusion
and exclusion criteria, which are presented below.

Inclusion criteria:

• Empirical studies using CNNs for surface defect detection;
• Empirical studies using supervised learning for surface defect detection;
• Empirical studies combining CNNs and other commonly used machine learning

techniques;
• Review studies, conference papers, and articles;
• Studies between 2011 and 2021;
• Studies in English;
• Final published versions.

Exclusion criteria:

• Studies without empirical analysis or results of the use of CNNs;
• Studies using CNN techniques in a context other than surface defect detection;
• Studies using CNNs with datasets not based on images;
• Studies with only abstracts;
• Articles in press.

2.3. Study Selection

This study selection is based on PRISMA [10], and the process for the selection of
primary studies is described in Figure 2. The first 253 possible research studies were filtered
to a final number of 62, and then each study was analyzed to extract information and
answer the research questions. The search was carried out on 10 March 2022, on 4 main
electronic databases: Scopus, IEEE, ACM, and Web of Science. First, in the identification
stage, we used Key1 to obtain 253 primary studies. Because some studies are in more than
one electronic database, we implemented a filter to eliminate duplicate studies. This led
to 136 primary studies in this stage. In the second stage, called screening, we started with
the 136 primary studies obtained in the previous stage and proceeded to filter based on
the title of the study, document type, and documents that could not be downloaded, thus
reaching 118 possible primary studies. The next step was to analyze these studies through
the abstracts and the conclusions to have a better idea of which ones to exclude, so we
reached 71 possible primary studies. Finally, the primary studies were analyzed in depth,
excluding only 9 that did not align with our field of study (the method of obtaining images
was not through cameras; instead, signals and sensors were used). In this way, we had
62 defined primary studies, which are the continuation of this systematic review.
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Figure 2. Study selection process.

2.4. Study Quality Assessment

A quality assessment was performed to select only the most relevant studies for
this review in the field of surface defect detection with CNNs. Thus, we developed a
questionnaire of nine questions based on the guidelines in [11,12], to analyze the relevance
and strength of the primary studies, which were carried out based on the suggestions of
the most experienced members of the team. Table 1 shows the quality assessment questions
with scores of 1 (yes), 0.5 (partially), and 0 (no). Two researchers analyzed each DDA and
answered the quality assessment questions; therefore, the final score is obtained from the
average of the sum of the values assigned to each question, considering that the maximum
score of a DDA is 9 and the minimum score is 0. The final scores for each question are
ranked in the following categories: very high (9 ≥ score > 8), high (8 ≥ score > 6.5),
medium (6.5 ≥ score > 4.5), low (4.5 ≥ score > 2.5), and very low (2.5 ≥ score ≥ 0).

Table 1. Quality assessment (QA) questions.

#Q Quality Questions Yes Partially No

QA1 Are the objectives of the study clearly identified?
QA2 Are the limitations of the study specified?
QA3 Is the type of surface specified and characterized?
QA4 Does the study have a description and characterization of the used technology?
QA5 Is it clear how the data collection was performed for the datasets?
QA6 Is the dataset size appropriate?
QA7 Are the findings and results correctly declared and discussed?
QA8 Is the research methodology repeatable?
QA9 Was a comparative analysis conducted (algorithm types)?
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The list of these 62 selected papers up to this point in the process, the scores of each
researcher independently, and the final scores for each primary study can be found in
Table A1 located in the Appendix A. After calculating the average scores, we created
Table 2 to show the number of studies for each category. The results indicate that most
of the studies are in the “Very high” and “High” categories, giving meaning to the filters
applied in the previous subsections, emphasizing that 41 studies had the highest scores. To
ensure the quality of the obtained results, the team members chose only studies with an
average score greater than 4.5 or studies from the “Medium” category onwards, to use in
the following sections.

Finally, after several meetings and debates on the exclusion and inclusion of the
studies, only DDA12, DDA14, and DDA27 (located in Table A1) were discarded, which
obtained the lowest results; therefore, we decided to establish 59 final primary studies
(the ones identified in Table 2 from the “Medium” category onwards) as the basis of this
systematic review.

Table 2. Studies per category.

# Rank Category Studies

1 9 ≥ score > 8 Very high 6
2 8 ≥ score > 6.5 High 35
3 6.5 ≥ score > 4.5 Medium 18
4 4.5 ≥ score > 2.5 Low 2
5 2.5 ≥ score ≥ 0 Very low 1

3. Results

This section shows the results of the literature review with the studies selected in the
previous section. The first result is the five-part taxonomy defined for this systematic review,
and then Section 3.1 details the results through tables and figures generated throughout
this process, and finally, Section 3.2 provides an overview of the applications of CNNs in
defect detection.

The taxonomy (see Figure 3) is divided into five dimensions: the first dimension
(type of surface) refers to the classification of surfaces into five main categories, the second
dimension (problem types) is organized into four categories according to problem types
with which the networks will be used, the third dimension (network architecture) is
divided into two categories according to the network modifications, the fourth dimension
(techniques) refers to the most used techniques, and finally, the fifth dimension classifies
according to the origin of the dataset.

We refer to learning based on artificial neurons called ANNs, which are large sets of
neurons where most neurons are interconnected with each other, literally like our human
brain, and they consist of several neurons organized in different layers: an input layer, an
output layer, and one or more hidden layers [13]. A deep neural network (DNN) represents
an ANN architecture with a greater number of layers between the input layer and output
layer; these layers are interconnected to each other and work in parallel [14]. A CNN is a
type of DNN that has convolutional layers to reduce the number of training parameters
(biases and weights) [1].

Taking into account the number of studies and their surface types, we created five
groups that have characteristics in common and were grouped into metal, construction,
ceramic, wood, and special. Among the five types of surfaces, special surfaces stand out
because they have special characteristics, few studies, and uncommon defects.
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Figure 3. Results taxonomy.

Machine learning algorithms include several types based on problem types; among the
most common, we defined four categories used for surface defect detection. The first type is
classification, whose objective is to accurately identify the features present in an image; thus,
the unknown data in an image are classified into predefined classes using a label during
training [15]. Then, object detection is based on identifying the location in images or digital
videos and then determining to which previously determined class it belongs [16,17]. After
that is semantic segmentation, which consists of assigning a previously defined category
to each pixel of an image, first dividing an image into several parts or regions called
“segments” and then classifying the segments into different classes [18,19]. Finally, instance
segmentation is based on the combination of object detection and semantic segmentation;
therefore, it allows for the detection of multiple objects as distinct individual instances
of the same class, assigning different labels to each one, unlike semantic segmentation
which detects multiple objects into a single class [20]. The result of a prediction can be
true positive (TP), true negative (TN), false positive (FP), or false negative (FN), so we
need metrics to evaluate the performance of a model. The most used in defect detection
are accuracy, precision, recall (specificity), f1-score, miss rate, average precision (AP), and
mean average precision (mAP). These metrics are used depending on the problem type
of learning.

Regarding network architectures, we divide them into two types: unchanged networks,
such as AlexNet or ResNet, and networks with modifications in their hidden layers or that
have been created specifically for an experiment, called custom networks. The output layer
is always modified; therefore, these changes are not considered customization.

As for additional techniques, we detail three of the most used techniques for surface
defect detection, which helps to improve the results of training in CNNs. Transfer learning
uses previously acquired knowledge when solving problems and uses it in a new problem
with similar characteristics [21]. Fine-tuning is a common technique used in transfer
learning that uses a pretrained model for a specific task and adjusts or modifies it for a
specific new task, so it is similar to transfer learning, with the difference that this technique
can retrain all or the last layers using new data [22,23]. Data augmentation is a helpful
technique when we have small datasets available because it creates synthetic instances and
adds them to the training set, through data warping or oversampling [24].
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In industries, datasets are generally proprietary and are not exposed to researchers,
due to the costs of generating them, for example, BS5-DET [6], but it is still possible to
find datasets already created and for open use, like the DAGM dataset [25] or the COCO
dataset [26]. Most free datasets are found in Kaggle [27]. For surface defects, one of the
most popular and used is the NEU surface defect database [28], made of six kinds of typical
surface defects of the hot-rolled steel strip.

3.1. Study Characteristics

This subsection provides a summary of all the information found throughout this
systematic review. Each study used is referenced in Table 3, so it is the basis for the used
analysis to answer the research questions.

Table 3. Summary.

Reference Author Reference Author

[6] Kou et al. [29] Q. Jiang et al.
[9] He et al. [30] Cao et al.
[31] Aslam et al. [32] Min et al.
[33] Lin and Wibowo [34] Le et al.
[35] Block et al. [36] Tabernik et al.
[37] Y. Xu, Li, et al. [38] Lian et al.
[39] Shu et al. [40] Karangwa et al.
[41] Luo et al. [42] Zheng et al.
[43] Zou et al. [44] Ding et al.
[45] Y. Xu, Zhang, et al. [46] Lv et al.
[47] Kim et al. [48] K. Li et al.
[49] Sauter et al. [50] J. Liu et al.
[51] F. Xu et al. [52] Ahmed et al.
[53] R. Liu et al. [54] Ren et al.
[55] Feng et al. [56] Mittel and Kerber

[57] Baskaran and
Fernando [58] Ooi et al.

[59] Mouzinho and Fukai [60] J. Sun et al.
[61] Kumar, Sharma, et al. [62] Han et al.
[63] Kumar, Batchu, et al. [64] Santolini et al.
[65] Saeed [66] Zhao et al.
[67] Kamiyama et al. [68] Guo et al.
[69] Mao et al. [70] Wang et al.
[71] Phua and Theng [72] Ferguson et al.
[73] Ali et al. [74] W. Sun et al.
[75] Zhou et al. [76] Shang et al.
[77] Bahrami et al. [78] Jung et al.
[79] Maningo et al. [80] Y. Li et al.
[81] Gai et al. [82] Birlutiu et al.
[83] J. Jiang et al. [84] Natarajan et al.
[85] Yun et al.

We analyzed and organized the information collected in the studies from Table 3 to
find statistics that support our answers to the research questions, so Figure 4 shows seven
charts, each chart representing a dimension of the taxonomy and individually showing the
details found quantitatively.
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Figure 4. Statistics of study characteristics.
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The type of surface refers to the number of studies found for this dimension of the
taxonomy. Figure 4a shows that metal is the most used surface type in defect detection
studies with 37 research studies, and it presents a huge difference compared to other
surfaces. In the case of special surfaces, each study shows a surface type that is not easily
found in the studies carried out. There are very few studies including these special surface
types, and it is because they are not topics that are applied in the industry. Therefore, they
do not have a larger budget or an urgent need to be solved but show a field of study that
can be explored in the future. Table 4 shows the details of special surface types.

Table 4. Specifics of special surfaces.

Reference Surface Details

[43] Special Colored paintings on the surfaces of ancient Chinese buildings
[51] Special Paint film to protect and decorate metallic workpieces
[83] Special Mobile phone back glass defects
[34] Special Decorative sheets and welding defects
[36] Special Plastic embedding defects in electrical commutators
[80] Special Sealing surface defect of a container in the filling line

As for the problem types, Figure 4b shows the number of studies and the problem
type that was used. We find studies in which only one type of problem is used and others
in which the authors use a combination of problem types. In the case of networks, we
defined two types of network architecture custom CNNs and traditional CCNs. Custom
CNNs have greater use than traditional networks without alterations, as seen in Figure 4c,
so this shows that most studies are based on experimenting with new changes in traditional
networks to improve results, training times, or use of resources. According to the type
of technique used, Figure 4d shows the number of research studies, so most studies use
techniques to improve their performance, especially the combination of data augmentation
and transfer learning. The datasets have two categories according to their origins, first the
datasets that were created as soon as the studies were carried out and then the datasets that
had already existed before. Figure 4e shows the number of studies for each type of dataset,
so the datasets created were the most used in research studies. This is due to factors such
as specificity and the small number of free datasets to carry out studies. Figure 4f shows
the number of studies according to the type of camera used. Thus, we were able to identify
that industrial cameras are the most used because they have more robust characteristics
compared to digital cameras. The timeline presented in Figure 4g shows an increase in
the number of studies through the years (the years 2011 to 2021, those considered in the
inclusion criteria of this review), which follows the fact that the industry needs to improve
quality, and that is why more studies and investment in research began to emerge to help
mitigate losses. In 2021, more research studies were carried out than ever.

3.2. Applications of CNNs in Defects Detection

This section presents the surface defect detection applications found in this systematic
review, grouped according to the taxonomy proposed in this review, specifically for the
dimension “type of surface”. To arrive at this relationship, we started by studying the
defects of the surfaces and then the most used surfaces in the detection of defects. Thus,
five main types of surfaces emerged. The objective is to show the main characteristics
of each study as a summary to help researchers who need information on how to detect
defects in a type of surface. Metal surfaces are one of the most difficult types for defect
detection processes due to the metallic sheen, which affects the visualization of defects.
This feature causes visual limitations when performing human eye inspection in industrial
manufacturing processes, added to slow detection speed and high labor costs, and makes
industries have to look for other alternatives, becoming one of the most studied fields
for defect detection [33]. Defect detection in building structures helps us to know the
structural stability and prevent structural failure when detected early, so these defects
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are indicators of aging, decay, or any internal structural fault [73]. Defect detection in
ceramic-made products and the porcelain industry is a field of study that has grown in
recent years to obtain the benefits of automation, focused on detecting defects such as
cracks, bubbles, scratches, and burrs to obtain high-quality control in the industry. So, this
type of surface requires delivering top-quality products, because customers are demanding
and competition is high; therefore, manual inspection must be improved, at least to reduce
material waste [32,82]. Wood is one of the most used engineering materials in the industry
and also one of the oldest. Although there are few studies dedicated to this type of surface,
its use is still valid and it is exposed to errors in its production, so this type of surface has a
large field of study [86]. Finally, according to our analysis and classification, special surfaces
are those that are made of unusual materials or materials that have not been studied in
depth. These surfaces have singular defects that only occur on these surfaces. Due to the
fact of having a small number of studies, they can become a field of study in the coming
years. The most important aspects according to the type of surface are presented below
in the corresponding tables for each type. Here, the headers P, D, C, and T correspond to
the problem type, origin of the dataset, camera, and techniques. P1: image classification,
P2: object detection, P3: semantic segmentation, P4: instance segmentation, D1: created,
D2: already, C1: industrial, C2: no industrial, C3: dataset camera, C4: no information, T1:
transfer learning, T2: data augmentation, T3: no techniques.

3.2.1. Metal

Metal is the group with the largest number of studies and is the most used material in
industries because metal products are found in our daily lives and industrial production due
to their mechanical and physical properties; therefore, failures in metal products not only
affect visual characteristics but also characteristics that interfere with the proper functioning
of a product. Consequently, these failures cause economic losses in the industry [9]. The
rise in research within the metal industry is depicted in Figure 5, underscoring that, despite
a decline in 2020 due to the hiatus in activities across most industries during that year, there
was a renewed growth in 2021, surpassing all previous years.

Figure 5. Time line for metals.
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The details of Table 5 show that due to a large number of studies and accumulated
knowledge about the networks in this type of surface, the trend is to customize the existing
networks, because the networks in a simple way already have studies that demonstrate
their effectiveness, and the goal is to improve the results or find faster and more efficient
methods. YOLOv3 is improved by Shu et al. [39] and Y. Xu, Zhang, et al. [45]. Luo et al. [41]
present a method called Smoothing Complete Feature Pyramid Networks (SCFPN), based
on FPN, complete intersection over union (CIoU), and label smoothing. Sauter et al. [49]
improved VGG16 by eliminating the last layer and replacing it with global average pooling
with two dense layers. R. Liu et al. [53] developed a feature refinement Faster R-CNN
(FR-FRCNN) based on ResNet. Baskaran and Fernando [57] show a custom MobileNet
using GlobalAveragePooling2D and rectified linear unit activation, in addition to using the
SGD optimizer with categorical cross entropy loss functionality. Gai et al. [81] presented a
custom VGG16 created from the characteristics of ResNet and Inception. Q. Jiang et al. [29]
presented a method with a combination of ResNet101 and Faster R-CNN to develop
the classification of large images of little objects. Cao et al. [30] present an improved U-
Net called SE-U-Net, with two important parts: the SE-Res block and the add operation.
Lv et al. [46] proposed an end-to-end defect detection network (EDDN) based on the Single
Shot MultiBox Detector, VGG16, and a method called hard negative mining. J. Liu et al. [50]
proposed a CNN with batch normalization (BN). Ferguson et al. [72] proposed a defect
detection system based on the Mask R-CNN architecture with some parts of ResNet101
and Faster R-CNN; in addition, it is made up of four modules: a feature extraction module,
a CNN for a region proposal network (RPN), a CNN for the classification of objects in
each RoI, and image segmentation. A framework called MVM-VGG-19 was proposed by
Natarajan et al. [84] for anomaly classification that utilizes CNNs with transfer learning
together with a mechanism called the majority voting mechanism (MVM).

Table 5. Details of metal surfaces.

Reference Problem Dataset Camera Technique Year Network Architecture

[6] P2 D1 C4 T1-T2 2021 Custom R-CNN
[9] P1 D1 C1 T2 2021 ResNet, DenseNet
[31] P3 D1 C4 T1 2021 Custom U-Net
[33] P2 D1 C1 T1-T2 2021 YOLO, SDD, Faster R-CNN
[35] P2 D1 C1 T1 2021 RetinaNet
[39] P2 D1 C4 T1-T2 2021 Custom YOLOv3
[41] P2 D1 C1 T1 2021 Custom FPN
[45] P2 D2 C1 T1-T2 2021 Custom YOLOv3
[49] P1 D2 C1 T1-T2 2021 Custom VGG16
[53] P2 D2 C3 T1 2021 Custom Faster R-CNN
[55] P1 D1 C4 T2 2021 Custom Xception
[57] P1 D2 C3 T1-T2 2021 Custom MobileNet
[67] P1 D1 C2 T1-T2 2021 Custom VGG19
[69] P1 D2 C3 T1 2021 Custom ResNet
[71] P1 D1 C2 T1-T2 2020 ResNet, SSD-VGG16
[75] P1 D1 C1 T1 2020 Compact CNN
[77] P2 D1 C2 T1 2020 Faster R-CNN, SSD, Inception v2
[81] P1 D1 C1 T1-T2 2020 Custom VGG
[85] P1 D1 C1 T2 2020 Custom CNN
[29] P2 D1 C1 T1 2020 Custom CNN
[30] P3 D2 C3 T1-T2 2020 Custom SE-U-Net
[38] P1 D1 C1 T2 2020 Custom CNN
[46] P2 D1 C1 T1 2020 EDDN
[48] P2 D2 C3 T1-T2 2019 Custom Faster R-CNN and FPN
[50] P1 D2 C3 T3 2019 Custom with BN
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Table 5. Cont.

Reference Problem Dataset Camera Technique Year Network Architecture

[54] P2 D1 C1 T1-T2 2019 Custom Slighter Faster R-CNN
[56] P1 D1 C2 T1-T2 2019 GoogLeNet, AlexNet
[58] P1 D1 C4 T2 2019 Custom CNN
[60] P1 D1 C1 T1-T2 2019 Custom VGG16
[62] P1 D1 C2 T1-T2 2019 Custom Inception v4
[64] P1 D2 C3 T1 2019 Custom CNN
[66] P1 D1 C1 T2 2019 AlexNet, BP neural network
[68] P2 D1 C4 T1 2019 YOLOv3
[72] P4 D2 C1 T1-T2 2018 Custom CNN
[74] P1 D1 C1 T1-T2 2018 Custom CNN
[76] P2 D1 C1 T1 2018 Inception v3
[84] P1 D2 C2 T1 2017 Custom VGG

However, a small group of studies use no customized networks but propose techniques
to improve results. To save training time with poor datasets, Lin and Wibowo [33] proposed
a comprehensive evaluation score combining defect visibility, visibility distribution, and
overexposure based on CNN operating principles. Block et al. [35] proposed a framework
based on RetinaNet and minimum output sum of squared error (MOSSE) for tracking. This
last part is used to avoid ignoring the temporal coherence between frames and not produc-
ing redundant detections for the same defect. Phua and Theng [71] proposed a cascading
CNN architecture (DLADC) based on ResNet101 and SSD-VGG16, with the particularity
that the authors use the size of the defect as an important indicator in the process. Mittel
and Kerber [56] show an automated visual inspection system based on transfer learning,
data augmentation, oversampling, and supervised learning with GoogLeNet and AlexNet.
Shang et al. [76] proposed two-stage defect detection with Inception v3, transfer learning,
and a novel loss function.

Metal surfaces are the group with the most subtypes because metals can be used in
their pure state, in alloys such as steel (the most used metal in this systematic review), or
in interesting surfaces such as titanium-coated metal [31], microscopic images from thin
metal film in electronic components [67], semiconductor wafers (from the metal layers) [71],
polishing metal shafts [29], car wiper arms [58], microscopic metal parts [62], cuts from laser
cutting machines [64], wind turbine blades [66], insulators in the transmission line aims [68],
and X-ray images from metals [72]. Most of the datasets are created by the authors and
are kept private; however, some are free to use like BS5-DET [6], CSU_STEEL [41], and
GC10-DET [46]. For studies that aim to compare the proposed methods with traditional
networks or their datasets such as [41,46,50,53,57,84], the most commonly used option for
metal is NEU-DET [28], which has been tested and contains six of the most common defects
(crazing, inclusion, patches, pitted surface, rolled-in scale, and scratches).

Each study presents its categories of defects according to the experiments and the
characteristics of the material used. Although some are similar, these defects are categorized
according to the criteria of the researchers, for example, contusions [6], protrusions [9],
abrasions [39], wrinkles [45], rubbing [81], and dents [58]. Among the most common
metallic defects are scratches, spots, oxidation, oil droplets, cracks, inclusion, bumps, and
cuts. This list of defects, together with the categories of the datasets, is a guide for future
studies in this type of material.

As for the techniques used, transfer learning was used in most of the experiments,
to take advantage of the knowledge generated previously, marking a trend in the use of
this technique for this type of surface. For data augmentation, the use is limited to half
of the studies, due to several reasons. On the one hand, there are public datasets with
large numbers of images; therefore, it is not necessary to apply the technique. On the
other hand, the created datasets use this technique because the metal industry is limited
by the rules of factories, which causes difficulties in capturing images for the datasets and



J. Imaging 2023, 9, 193 15 of 29

makes necessary the use of the data augmentation technique to save time and improve the
datasets. Finally, factories invest large amounts of money which, in most cases, allows them
to purchase high-end equipment and create specific modules for image capture within the
production environment. These modules contain fixed lighting to solve the problem of
glare and mostly use industrial cameras due to image quality.

3.2.2. Building

Building surfaces cover several locations such as bridges, pavement, roads, houses,
or dams. The most common defects are cracks, but there are others such as intact, spall,
or efflorescence [70]. In this type of surface, the authors do not have a bias toward using
one type of network architecture; on the contrary, the number of studies for each type
of network is almost equal. Y. Xu, Li, et al. [37] proposed an automatic defect detection
and segmentation technique based on an improved Mask R-CNN, data augmentation,
and transfer learning in tunnel surface images. Kim et al. [47] proposed a novel shallow
CNN-based architecture for crack defect detection on concrete surfaces called OLeNet.
Mouzinho and Fukai [59] proposed a U-Net-based framework for road surface damages
and markings detection on paved roads, to avoid off-road defect detection. Kumar, Sharma,
et al. [61] showed a semantic segmentation of concrete surface defects based on Mask
R-CNN with transfer learning. Kumar, Batchu, et al. [63] presented a multidrone-based
real-time damage detection system (DDS) using the edge computing principle and YOLOv3
for surface concrete damage. Saeed [65] proposed a method for concrete surface defect
detection in high places like the pillars of bridges, high-rise buildings, and tall concrete
structures, with CNNs. The work presented by Ali et al. [73] shows an automatic inspection
system based on CNNs and transfer learning, which consists of using pretrained models
and customizing the CNNs. Maningo et al. [79] proposed a crack-detecting system capable
of analyzing the physical characteristics of cracks and mapping the surfaces of walls, based
on a Faster R-CNN. Zheng et al. [42] present a method for the detection of building cracks
based on FCN, R-CNN, and RFCN using semantic segmentation, to detect anomalies in
concrete structures. Ahmed et al. [52] created a customized CNN and compared the results
between their network and the state-of-the-art Inception-ResNet-v2, Inception-v3, and
Xception. N. Wang et al. [70] carried out a study on an interesting surface. It was for
Masonry Historic Structures, specifically from orthophotos of the Forbidden City Wall
in China.

Creating a dataset becomes a challenge in this type of surface because of the difficulty
of access to the site. To achieve a great variety of images, the authors take advantage of
different time periods (morning, noon, evening), different shooting distances, light and
shadow illuminations, etc. Consequently, the authors use unmanned aerial vehicles for
buildings with difficult access such as in [47,61,63,65], or they use ground vehicles for roads
such as in [37,52,59]. Moreover, it is the surface where industrial cameras do not stand
out; on the contrary, other types of cameras are used, such as Canon (SX60 HS) [63], the
Transcend DrivePro 230 camera [59], or smartphone cameras [52], demonstrating that on
this surface the important thing is to find the way to access the place to take the picture.
These created datasets are mostly kept private, except for the brick/masonry dataset [70],
created and available online, along with the code to replicate the project. On the other
hand, there are online public datasets such as the Middle East Technical University (METU)
dataset [47], the Kaggle library [73], and the SDNET2018 dataset [79], which contain
thousands of checked images and are used to demonstrate whether the proposed method
obtains good results. Ahmed et al. [52] use the Cityscapes and KITTI road datasets to
compare with the dataset created by the authors, which is a practice with excellent results.

As shown in Table 6, in most of the studies, it was not necessary to use data augmenta-
tion, because the building industry is not limited to a factory, so image capture depended
mostly on the researchers of the proposed methods. The methods created by the authors
facilitated the capture of images, and in other cases, public datasets containing thousands
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of images were used; however, the use of transfer learning remains a constant in most of
the studies, taking advantage of the knowledge acquired by previously trained networks.

Table 6. Details of building surfaces.

Reference Problem Dataset Camera Technique Year Network Architecture

[37] P4 D1 C1 T1-T2 2021 Custom Mask R-CNN
[47] P1 D2 C3 T1 2021 Custom LeNet-5
[59] P3 D1 C2 T1-T2 2021 U-Net
[61] P4 D1 C2 T1 2021 Mask R-CNN
[63] P2 D1 C2 T1 2021 YOLOv3
[65] P1 D1 C2 T3 2021 Custom CNN
[73] P1 D2 C2 T1-T2 2020 Custom CNN
[79] P2 D2 C3 T1 2020 Faster R-CNN
[42] P3 D1 C2 T1 2020 FCN, R-CNN, and RFCN
[52] P1 D1 C2 T3 2019 Custom CNN, Inception-ResNet-v2, Inception-v3, and Xception
[70] P2 D1 C2 T1-T2 2018 AlexNet for MHSD, GoogLeNet for MHSD

3.2.3. Ceramic

Defect detection in the ceramics industry is aimed at reducing manufacturing time and
increasing production efficiency by avoiding the release of defective products to the market.
As it is an industry with few studies, most of them use networks already created and com-
pare them. Min et al. [32] proposed the use of CNNs (ResNet20, ResNet56, and ResNet110)
in defect detection for ceramic images with data augmentation. Karangwa et al. [40]
present a proposal for surface defect detection based on a Faster R-CNN with VGG16.
However, with custom CNNs, Birlutiu et al. [82] presented an automated defect manage-
ment system with real-time high-speed processing to classify and predict images with and
without defects.

Defects like breaks, cracks, pinholes, dirt, pits, and spots, shown in [40], are repeated
in this material; therefore, they can be used as a guide for future studies. The datasets
have not been released because we work with factories, so the information is kept private.
Likewise, we did not obtain much information on the cameras used and lighting, but [40]
detailed how the authors solved the problem of lighting in highly reflective materials with
a light source intensity controller and coaxial lights to create a lighting system. In terms
of techniques, there is a tendency to use a combination of data augmentation and transfer
learning, as shown in Table 7.

Table 7. Details of ceramic surfaces.

Reference Problem Dataset Camera Technique Year Network Architecture

[32] P1 D1 C4 T1-T2 2020 ResNet
[40] P2 D1 C1 T1-T2 2020 Faster R-CNN with VGG16
[82] P1 D1 C4 T3 2017 Custom CNN

3.2.4. Wood

The wood industry is a good place to conduct studies because wood has the charac-
teristic of creating randomly textured surfaces, which is an advantage when using data
augmentation techniques. In a study conducted by Jung et al. [78], the authors propose
a technique to create randomly textured surfaces, augmenting their dataset with up to
10,000 images divided into five classes (dye, adhesives, oil, scratch, and normal or defect-
free), overcoming the problems of missing images, dataset imbalance, overfitting, and
underfitting. To test their technique, the authors used LeNet, VGG19, and Densenet121
with transfer learning, achieving accuracy values of 95.00%, 99.80%, and 98.90%, respec-
tively, without many drawbacks.
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As in most studies, in [44], a custom network for defect detection with an improved
SSD is proposed. This proposal modifies the SSD algorithm, internally replacing the VGG16
network with a DenseNet121, together with the transfer learning technique. For the dataset,
the authors use image acquisition equipment, with industrial cameras and controlled lights
on a walkway, collecting 400 images, which were cut, segmented, and resized, arriving at
an initial dataset of 500 images of wood knots, dead knots, and checking defects. Then, the
dataset was improved to over 2000 images with data augmentation techniques. This study
achieved a mean average precision of 96.1%, which was superior to the compared methods
during the experiments.

These two research papers demonstrate that a surface with few studies should use
transfer learning and data augmentation techniques to improve results. Furthermore, in
both cases, the authors were found to create their datasets with industrial cameras to
improve image quality. These details are shown in Table 8.

Table 8. Details of wood surfaces.

Reference Problem Dataset Camera Technique Year Network Architecture

[44] P2 D1 C1 T1-T2 2020 Custom SSD
[78] P1 D1 C1 T1-T2 2018 LeNet, VGG19, DenseNet121

3.2.5. Special

These surfaces stand out for their unique qualities, and most use customized nets to
achieve their objectives. Zou et al. [43] proposed an improved U-Net for defect detection
on colored paintings on the surfaces of ancient Chinese buildings, to help restorers with
a reference and orientation of how the paintings looked before the weathering process,
because this is repetitive work that takes considerable time. J. Jiang et al. [83] proposed
a novel inspection system for manufacturing mobile phone back glass (MPBG), based
on a modified segmentation DCNN. Tabernik et al. [36] proposed a segmentation-based
DCNN based on a two-stage architecture for detecting surface-crack defects in industrial
processes specifically on the surface of the plastic embedding in electrical commutators.
Y. Li et al. [80] proposed a method called MobileNet-SSD to identify the types and locations
of defects such as breaches, dents, burrs, and abrasions on the sealing surface of a container
in the filling line. Furthermore, some studies do not alter the existing nets and use several
to check the results. F. Xu et al. [51] proposed a method for defect detection in paint film
for anticorrosion and decoration of metal workpieces, based on SSD and Faster R-CNN
with data argumentation techniques. Le et al. [34] presented a proposal for the detection of
defects in small databases based on data augmentation, transfer learning, and multimodel
ensemble for decorative sheet and welding defects, with the distinctive feature that the
latter defects are X-ray images.

As detailed in Table 9, regarding techniques, these studies use transfer learning,
data augmentation, or a combination of both. However, only [83] did not use the data
augmentation technique, due to a coaxial bright-field (CBF) imaging system and a low-angle
bright-field (LABF) imaging system proposed by the authors which captured more than
10,000 images. In this type of surface, industrial cameras continue to be the most widely
used; however, Zou et al. [43] captured the images with a smartphone camera, achieving a
good image quality. The datasets created are generally private; only KolektorSDD [36] is
for public use.
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Table 9. Details of special surfaces.

Reference Problem Dataset Camera Technique Year Network Architecture

[43] P3 D1 C2 T1-T2 2021 Custom U-Net
[51] P2 D1 C1 T1-T2 2021 SSD and Faster R-CNN
[83] P3 D1 C1 T1 2020 Custom U-Net
[34] P1 D1 C1 T1-T2 2020 MobileNet, Inception
[36] P3 D1 C4 T1-T2 2019 Custom CNN
[80] P2 D1 C1 T1-T2 2018 Custom MobileNet-SSD

4. Discussion

This section presents the results gathered from the analysis of the primary studies
for surface defect detection. We present the answers to the research questions in each
subsection, including an analysis and discussion of each one, considering the information
obtained throughout the systematic review and the results of Section 3. We also highlight
the main lessons learned in this review.

4.1. Research Questions

We made a more detailed review of the results gathered in Section 3 to answer the
research questions. In this way, we obtained answers and trends that have been marked in
recent years for surface defect detection.

4.1.1. RQ1: Which Are the Most Used Types of Surfaces in Defect Detection?

In the first instance, there is a significant difference between the surfaces used, as
presented in Table 10, which shows the total number of studies for each type of surface.
Metal is the type of surface with the most studies carried out, at 62.71%. This is because
metal and its derivatives are widely used materials in world industry, despite the difficulty
involved in studying this material because lighting and its reflection have been a challenge
in most of the studies. The second type of surface with the highest number of studies is
building surfaces, at 18.64%. Although there are few studies, these are important because
most of them are used as a method to prevent damage or catastrophes, but even so, the
difference between it and the metal industry is wide. Special surfaces as a whole achieved
10.17%, demonstrating that research into new types of materials is growing. Ceramic and
wood surfaces are common types of surfaces but do not have a considerable number of
studies yet, which indicates that they are good fields for future research.

Table 10. Total of types of surfaces.

Surface Total Percentage

Metal 37 62.71%
Building 11 18.64%
Special 6 10.17%
Ceramic 3 5.08%
Wood 2 3.39%

4.1.2. RQ2: What Are the Main Problem Types for Surface Defect Detection?

According to problem types, we categorized four types:

• P1: image classification;
• P2: object detection;
• P3: semantic segmentation;
• Instance segmentation.

To find the most used problem types, Table 11 shows the percentages of use of each
type. Here, we found that image classification is the most used problem type, with 49.15%
of studies using this type. This difference in percentages between classification and the
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other methods is because most of the deep learning methods are made for this type of
data; in addition, the computational cost is the lowest and there is enough information
to carry out experiments or consult. Then, object detection, in 33.90% of the studies, is
used to detect the place where the defects are located, which gives more information to
researchers than using it but requires more computational resources. Finally, semantic
segmentation at 11.86% and instance segmentation at 5.08% are the types with the least
use. This reduction in the percentages is because their computational cost is quite high
compared to the other types; also, the cost of economic resources is higher, which makes
researchers and industries think twice before deciding on these algorithms, although their
level of detail is quite high and gives more information to make decisions.

In this systematic review, we account for the problem types that have the greatest
impact on each study. However, there are also studies where more than one type is used, as
in the case of [71,76], where the authors combine classification and object detection, or in the
case of study [36], which uses a combination of semantic segmentation and classification.
These combinations occur because the authors make comparisons with several models or
create modules or phases in their proposals, therefore requiring more than one problem
type to better show their results.

Table 11. Individual percentages for use in studies for each type.

Problem Type Total Percentage Details

P1 29 49.15% Studies using image classification
P2 20 33.90% Studies using object detection
P3 7 11.86% Studies using semantic segmentation
P4 3 5.08% Studies using instance segmentation

For image classification challenges, exploring alternatives like graphs is valuable.
In [87], a fresh approach using multiple graph learning neural networks (MGLNN) for
classification is presented. This method employs semisupervised learning and multiple
datasets, including Caltech101-7 [88] with 1474 images. The current challenge revolves
around the issue of bounding box noise in object detection networks. Consequently, one of
the most extensively studied approaches is exemplified in [89], where the authors propose
a solution termed DenseSPH-YOLOv5. This solution incorporates convolutional block
attention modules (CBAMs) to enhance real-time performance. These focused point-wise
amalgamations delineate an emerging frontier of exploration within CNNs.

The ongoing challenge in semantic and instance segmentation is the computational
cost, which motivates researchers to concentrate on finding solutions. A starting point
could be the analysis of performance under hardware limitations presented in [90] or the
survey presented in [91], where the issue of computational cost is tackled. Subsequently, it is
valid to explore proposals such as [92–94], in which authors introduce innovative modules,
network adjustments, and methodologies aimed at alleviating the computational burden.

4.1.3. RQ3: Which Is the Type of Network Architecture Most Used for Each Type of Surface
Defect Detection?

Given the plethora of variations within network architectures, our focus lies in catego-
rizing them into two main types: CNNs and custom CNNs. A CNN entails a traditional
convolutional neural network devoid of alterations. Typically, comparative studies in-
volving datasets or techniques devised by researchers are employed to enhance outcomes.
Conversely, a custom CNN pertains to a personalized convolutional neural network that
undergoes structural alterations or modifications. In certain instances, authors enhance
these networks by crafting novel modules or amalgamating components from various
network architectures to engender a novel network configuration.

The difference between the studies that created their own CNNs and those that used
state-of-the-art networks to carry out the experiments is shown in Table 12. Therefore,
67.80% of the studies created a new CNN based on other CNNs that already exist or they
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also customized a CNN with a few modifications to make it faster or more accurate. On the
contrary, only a third of the studies used traditional or existing networks, which shows the
tendency to make modifications to find better results.

Table 12. Custom and noncustom networks.

Network Total Percentage Details

CNN 19 32.20% Studies that used unmodified networks to perform the experiments
Custom CNN 40 67.80% Studies that created a CNN based on other networks

4.1.4. RQ4: What Techniques Were Used to Improve Performance in Studies Regarding
Surface Defect Detection?

According to the types of techniques, we categorized two types:

• DA: data augmentation;
• TL: transfer learning.

The number of studies using transfer learning, data augmentation, or a combination of
both to improve the performance of the models is summarized in Table 13. An interesting
fact is that only 6.78% of the studies do not use these techniques or the authors do not give
details about the technique used, which shows us that most researchers use at least one of
these two techniques. The combination of transfer learning and data augmentation has the
highest percentage of utilization, at 50.85%, because most studies use this combination to
improve results. Then, 32.20% of studies use only transfer learning and 10.17% of studies
use only data augmentation. A few studies use only one of these two techniques, unlike the
combinations that are widely used for the defect detection process. Therefore, we conclude
that to obtain the best results, most authors use the combination of transfer learning and
data augmentation.

Table 13. Studies with data augmentation and transfer learning.

Technique Total Percentage Details

DA 6 10.17% Studies that use only data augmentation
TL 19 32.20% Studies that use only transfer learning
DA and TL 30 50.85% Studies that use a combination of data augmentation and transfer learning
No technique 4 6.78% Studies that do not use these techniques

To find out which is the most used technique, we are guided by Table 14, which shows
the number of studies where each technique was used, regardless of whether it was used
in a combination or individually. Transfer learning is the most used technique, with a
percentage of 83.05%, and data augmentation follows, being used in 59.32% of the studies.
These percentages are high due to the benefits of using pretrained models or performing
data augmentation techniques when our datasets are small. Transfer learning has the
highest percentage because a few studies train their neural networks without the use of a
pretrained model, but for data augmentation, the percentage decreases because the authors
have the possibility of capturing images in the modules that they create and implement
or because public datasets can have a large number of images, which do not require an
increase in data.

Table 14. Use of techniques.

Technique Total Percentage Details

TL 49 83.05% Studies that use data augmentation
DA 36 59.32% Studies that use transfer learning
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4.1.5. RQ5: What Type of Dataset Is the Most Used?

The origin and availability of datasets are important parameters when starting ex-
periments with defect detection. Table 15 shows the origin of datasets, so 77.97% of the
datasets were created from cameras and 22.03% used datasets previously created, which
are generally downloaded or obtained from other similar studies. This means that most
experiments need to create their datasets because there are few options available in digital
repositories, and these available datasets are not similar to the type of surface needed by
researchers. Regarding availability in Table 16, the datasets created above are generally
available in digital repositories and are in public use, which is a great help for researchers.
The most used public datasets are the Kaggle library [73], KITTI [95], SDNET2018 [79],
GDXray [72], and NEU [28] which is the dataset that was referred to more often in this
systematic review.

Table 15. Origin of datasets.

Origin Total Percentage

Created 46 77.97%
Already exists 13 22.03%

Table 16. Availability of all datasets.

Origin Total Percentage

Private 39 66.10%
Public 20 33.90%

According to Table 17, only a few of the datasets created are public. This is because
industries invest money and time and they prefer to reserve their information privately. In
numerical terms, from the 45 datasets created, only 7 studies are available in public repos-
itories. These datasets are ALCIDE [64], BS5-DET [6], CSU_STEEL [41], GC10-DET [46],
KolektorSDD [36], and the datasets created in [35,70].

Table 17. Availability of created datasets.

Availability Total Percentage

Private 39 86.67%
Public 7 13.33%

In this systematic review, the studied datasets primarily employ cameras for image
capture. There are instances where existing datasets alone are used and others where a
combination of precreated datasets and camera images are employed for defect detection
experiments. Table 18 provides an overview of the study count and the types of cam-
eras utilized. Industrial cameras take the lead at 44.07%, primarily due to their superior
resolutions compared to other camera types. It is important to note that despite lacking
autofocus capabilities in many cases, industrial cameras heavily rely on specific lighting
conditions and specialized lenses, explaining their prevalence. Subsequently, nonindustrial
cameras account for 25.42%. Within this category, prevalent nonindustrial cameras encom-
pass smartphone cameras, USB cameras, drone cameras, and even common-use cameras.
Merely 15.25% of studies exclusively conduct experiments using dataset images, primarily
focusing on neural network comparisons. Conversely, 15.25% of studies acknowledge
camera usage, albeit without furnishing detailed specifications regarding camera types or
attributes. This limitation hinders the direct applicability of these studies within industry
contexts. Notably, some authors choose to retain proprietary information, and certain
companies restrict the dissemination of images, consequently constraining their suitability
for real-world applications.
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Table 18. Camera types for each study.

Camera Studies Percentage

Industrial 26 44.07%
Nonindustrial 15 25.42%
Camera dataset 9 15.25%
No information 9 15.25%

4.1.6. RQ6: How Did the Number of Studies Evolve over the Years?

The search key begins with studies from the year 2011, and the first two studies appear
in the year 2017, while in the previous years, no studies were found, according to our
filtering in Section 2. Since then, the number of studies has begun to increase. This increase
is due to the continuous improvement of algorithms and techniques for the detection of
defects. Thus, Table 19 shows that the year with the most studies was 2021, at 37.29%.

Table 19. Total of types of surfaces.

Year Total Percentage

2017 2 3.39%
2018 6 10.17%
2019 11 18.64%
2020 18 30.51%
2021 22 37.29%

4.2. Learned Lessons

The review at hand encompassed a meticulous examination of numerous works within
the chosen literature. Over the course of this systematic review, a predominant concern that
emerged was the insufficiency of information in specific studies. Among the most notable
aspects, information pertaining to lighting, quantity of images, and image dimensions
stood out. Gathering this information proved to be a challenge; nevertheless, it served as
a valuable learning tool that could drive the execution of further systematic reviews of
this nature in the future. The obtained results and the collected information allowed us to
arrive at a set of insights that translate into several lessons learned. Therefore, the main
learned lessons are the following:

• In industry, metal surfaces are the most used, being in 62.71% of primary studies, even
though this type of surface is difficult to study because the light is reflected and it is
not easy to obtain superior-quality datasets at the beginning;

• According to problem types, image classification is the most used type of learning
individually or in combination, because there is a lot of information and its computa-
tional cost is less high than the other problem types. It is followed by object detection
and finally by semantic segmentation together with instance segmentation, which
have the highest computational cost and take the longest time to compute;

• Using techniques to improve performance is common in this type of study, due to
the difficulty of creating datasets with large numbers of images. A total of 93.22%
of the studies use at least one technique to improve performance; it can be transfer
learning or data augmentation. Individually, transfer learning is the most popular
among researchers;

• The number of studies conducted on surface defect detection with CNNs is increasing
every year because it provides better results in the industry, helps reduce costs, and
increases the speed of production when implemented in a factory. These technological
solutions not only offer these benefits but also have the potential to bring about signif-
icant changes in the industrial sector. By harnessing these advancements, businesses
can gain a substantial competitive edge over their counterparts;

• To create datasets, industrial cameras are the most used and showed better results
due to their ability to capture better-quality images than conventional cameras or web
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cameras. However, in conditions of difficult access to study sites, the authors used
various types of cameras;

• The traditional networks have already been tested with several experiments and
studies. However, to obtain more and more accurate results, current studies are
focused on modifying these networks or creating complementary methods to improve
defect detection. We note that this trend is growing, especially on surfaces with the
largest number of studies.

5. Conclusions and Future Work

In this paper, we present a systematic literature review for surface defect detection
using CNNs with supervised learning. First, we carried out an analysis of the main
databases, defining 59 primary studies between 2010 and 2021. Secondly, we summarized
the studies and extracted the main characteristics such as type of surface, problem type,
timeline, type of network, techniques, and datasets. Finally, we compared and analyzed
the information gathered.

The use of CNNs for surface defect detection is increasing every year. Even though
the metal industry is the one that invests the most in these studies, other industries are
beginning to investigate due to the satisfactory results that have been shown, and so
in the future, they will continue to be excellent fields of study for future research and
applications in the industry. In addition, computers are becoming more powerful and
accessible, allowing researchers to perform more complex processing tasks, taking less
time to obtain results. Therefore, although Classification is the most used problem type, in
the coming years, projects could be carried out that combine the four types (classification,
object detection, semantic segmentation, and instance segmentation) to obtain more precise
results that improve the quality of the products.

We observed that in about half of the studies, there is no information provided re-
garding the cameras, lighting, or image size used. Specifically, we encounter challenges
when searching for information that explains how they address lighting challenges in both
controlled environments and those with natural light. This becomes critically important
because in real industry settings, products are often manufactured in warehouses or spaces
with natural lighting to save costs. Therefore, this aspect is vital for improving image
quality, especially when cameras lack autofocus. All of this information becomes crucial
when using a study as a reference in developing a practical application aimed at defect de-
tection. However, we are faced with the difficulty of finding studies that offer the necessary
guidance for creating effective applications in the industry.

The following guidelines were made for future researchers and professionals interested
in this field of study:

• Researchers must diligently screen articles containing extensive information on image
capture. Often, in this domain, data from one source can be reused in another, making
data reuse feasible. In this scenario, it is noteworthy that only 15.25% of the studies did
not reveal information about the use of cameras for their datasets. Therefore, existing
modules created for image capture can be used as a guide;

• Some studies withhold relevant information within their datasets, especially the quan-
tity of generated images. This omission restricts essential data access for researchers
or professionals in need of using such information for real-world applications or
comparing new network architectures. Therefore, utilizing existing datasets as a guide
for constructing our dataset proves to be a prudent approach;

• Researchers about to conduct flaw detection studies must first focus on the type of
surface they are going to study. If there is no information regarding the surface sought,
similar surfaces must be used because defects are repeated on most surfaces;

• Researchers who possess limited experience in this field should initiate their endeavors
by conducting experiments on metal surfaces, leveraging the wealth of existing data.
Subsequently, they can transition to their specific area of interest or the surface type
they are studying.
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Appendix A

In this appendix section, the answers to the quality questions stated in Table 1 are
presented (in Table A1).

Table A1. Final quality scores of answers for each DDA.

Study No. Reference Score 1 Score 2 Final Score Study No. Reference Score 1 Score 2 Final Score

DDA1 [6] 7 8 7.5 DDA32 [83] 7.5 8.5 8
DDA2 [9] 4.5 6 5.25 DDA33 [85] 8.5 6.5 7.5
DDA3 [31] 7.5 6 6.75 DDA34 [29] 9 7.5 8.25
DDA4 [33] 8 9 8.5 DDA35 [30] 7.5 7.5 7.5
DDA5 [35] 8.5 8.5 8.5 DDA36 [32] 7 6.5 6.75
DDA6 [37] 8 8 8 DDA37 [34] 8 7.5 7.75
DDA7 [39] 8.5 8.5 8.5 DDA38 [36] 8 8 8
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Table A1. Cont.

Study No. Reference Score 1 Score 2 Final Score Study No. Reference Score 1 Score 2 Final Score

DDA8 [41] 7 7 7 DDA39 [38] 7 8 7.5
DDA9 [43] 6 5.5 5.75 DDA40 [40] 6.5 6 6.25
DDA10 [45] 5.5 5.5 5.5 DDA41 [42] 8.5 8.5 8.5
DDA11 [47] 7.5 8 7.75 DDA42 [44] 8 8 8
DDA12 [86] 4 3.5 3.75 DDA43 [46] 8 8 8
DDA13 [49] 6 6 6 DDA44 [48] 7 8 7.5
DDA14 [96] 2 3 2.5 DDA45 [50] 5 5.5 5.25
DDA15 [51] 7 7 7 DDA46 [52] 6 5 5.5
DDA16 [53] 7 7 7 DDA47 [54] 8.5 8.5 8.5
DDA17 [55] 6.5 6.5 6.5 DDA48 [56] 7 7.5 7.25
DDA18 [57] 5.5 5.5 5.5 DDA49 [58] 6.5 6.5 6.5
DDA19 [59] 7 6.5 6.75 DDA50 [60] 6 7.5 6.75
DDA20 [61] 8 8 8 DDA51 [62] 6.5 6.5 6.5
DDA21 [63] 6.5 6 6.25 DDA52 [64] 7.5 7.5 7.5
DDA22 [65] 6.5 6.5 6.5 DDA53 [66] 4 8 6
DDA23 [67] 6.5 7 6.75 DDA54 [68] 3.5 6 4.75
DDA24 [69] 6.5 7 6.75 DDA55 [70] 7.5 7.5 7.5
DDA25 [71] 5.5 6.5 6 DDA56 [72] 7.5 7.5 7.5
DDA26 [73] 7 8.5 7.75 DDA57 [74] 8 8 8
DDA27 [97] 2.5 5 3.75 DDA58 [76] 8 8 8
DDA28 [75] 7.5 8.5 8 DDA59 [78] 8 7.5 7.75
DDA29 [77] 5.5 8.5 7 DDA60 [80] 8 8 8
DDA30 [79] 5.5 6.5 6 DDA61 [82] 7.5 7.5 7.5
DDA31 [81] 5 5.5 5.25 DDA62 [84] 7.5 7.5 7.5
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