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Abstract: Any change in the light-source spectrum modifies the color information of an object. The
spectral distribution of the light source can be optimized to enhance specific details of the obtained
images; thus, using information-enhanced images is expected to improve the image recognition
performance via machine vision. However, no studies have applied light spectrum optimization to
reduce the training loss in modern machine vision using deep learning. Therefore, we propose a
method for optimizing the light-source spectrum to reduce the training loss using neural networks. A
two-class classification of one-vs-rest among the classes, including enamel as a healthy condition and
dental lesions, was performed to validate the proposed method. The proposed convolutional neural
network-based model, which accepts a 5 × 5 small patch image, was compared with an alternating
optimization scheme using a linear-support vector machine that optimizes classification weights and
lighting weights separately. Furthermore, it was compared with the proposed neural network-based
algorithm, which inputs a pixel and consists of fully connected layers. The results of the five-fold
cross-validation revealed that, compared to the previous method, the proposed method improved
the F1-score and was superior to the models that were using the immutable standard illuminant D65.

Keywords: computational lighting; spectral imaging; machine learning; spectrum estimation

1. Introduction
1.1. Light Sources and Optimization

Over the years, lighting technology has evolved with the development of various light
sources, such as incandescent light bulbs, gas lamps, halogen lamps, tungsten bulbs, and
fluorescent lamps, and technologies allowing a near-perfect reproduction of daylight, such
as the light-emitting diode (LED) and organic LED technologies. Various characteristics and
criteria are used to determine the value of a light source, such as the price, energy efficiency,
radiation power, exothermic properties, and time required to attain a steady state. Generally,
the light-source spectrum has been considered important because it affects the visibility of
objects. The irradiated object’s color changes with the spectrum of the light source’s spectrum,
which affects the information perceived visually, such as the object’s visibility, impression,
and discrimination of objects. Historically, the effects of light sources have been quantified
using the color rendering index (CRI) [1] and the color discrimination index (CDI) [2]. The
CRI represents the extent of similarity between the typical object color under a light source
and that of sunlight, while CDI denotes the extent to which the illuminant allows the observer
to perceive the vivid color of an object. Essentially, these parameters indicate an illuminant’s
colorfulness and color discrimination capacity. Accordingly, light sources have been developed
for the intended purpose by using these indicators.
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Recent developments in LED technology have yielded a wide variety of light sources.
LED lighting is characterized by a higher energy efficiency and longer lifetime than those of
traditional lighting technologies, does not require any warm-up time, and offers a spectrum
featuring various peak wavelengths and spectral broadening. By combining these spectra,
various spectral power distributions (SPDs) can be achieved; thus, optimal light sources can
be designed according to arbitrary criteria [3]. For example, a light source that maximizes
colorfulness [4], enhances psychophysical values based on experiments [5], is suitable for
the appreciation of art paintings [6], improves color discrimination [7], minimizes optical
damage due to light absorption and energy consumption while ensuring the color quality of
artworks to avoid degradation caused by light when exhibiting artwork [8,9], and maximize
the effectiveness of the Circadian rhythm for well-being [10]. Several light sources enhance
the contrast between objects for the discrimination of specific objects [11–16]. In particular,
the most suitable strategy for developing an optimal light source involves generating
several light sources featuring various spectra and selecting the optimal spectrum. Another
method is to sequentially optimize the intensity of each SPD as the lighting parameters.

When maximizing the effects of a plurality of objective indices for light sources and
optimizing the parameters of the light sources, trade-off relationships among the indices
must be considered. For example, it has been reported that there is a negative correlation
between color rendering indices and luminous efficacy of radiation (LER) that indicates the
energy efficiency of the light [17] as well as an inverse relationship between color quality
and energy efficiency [18]. To obtain favorable light sources from such a combination of
contradictory light-source effects, [16–18] have shown that optimization maximizes the
Pareto efficiency between each index using a multi-objective genetic algorithm (MOGA).
Convenient light sources can be examined from sets of better light-source parameters
(Pareto front set) that were obtained by the multi-objective optimization. In terms of multi-
objective optimization, swarm intelligence such as particle swarm optimization (PSO) is
also used [19,20], since the genetic algorithm and swarm strategy indicates several good
options of parameters for the objectives.

In the case of these optimization methods, only the light-source parameters with the
maximum or minimum values of the objective function are selected or optimized, without
other parameters such as a machine learning model. When applying this light-source
optimization to a machine learning model that uses images of illuminated scenes as the
input, the weights of the light source (lighting weights) and the discrimination parameters
of the machine learning model should be optimized. However, because changing the SPD
modifies the color information of the input images, simultaneously optimizing these two
parameters in an efficient manner is a challenging task. To solve this issue, Higashi et al. [21]
proposed a method for optimizing the light source; this method maximizes the performance
of machine learning through iterative optimization of the SPD and alternately training the
machine learning model (hereafter referred to as alternating optimization). Although this
method has been validated in terms of logistic regression and linear classification using a
linear support vector model (SVM), it has not been applied to more intricate and nonlinear
regression or discrimination models such as deep neural networks.

Recent developments in image recognition using deep learning techniques have been
remarkable. These image recognition systems can perform outstanding tasks such as gen-
eral object recognition and annotation, which are difficult to achieve using conventional
machine learning models. These systems can now perform more complex tasks, such as
classifying images and annotating them with high precision. They provide object recog-
nition for detecting objects in images, image segmentation that provides pixel-by-pixel
classification, and valuable information, such as the posture, skeletal structure, direction
of movement, estimated price, and brand of goods [22]. Light-source optimization can be
applied to accelerate deep learning-based image recognition owing to its potential. Fur-
thermore, extending the optimization method of light-source spectra to enhance machine
learning performance will expand the practicality of spectral optimization and can further
improve the machine vision performance.
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1.2. Periodontal Disease

A system that modulates color information using light-source optimization can be
implemented with a relatively inexpensive system consisting of a red–green–blue (RGB)
camera and multiple LEDs. Using light-source optimization can reduce the cost of diag-
nostic assistance systems in dentistry where hyperspectral and X-ray technologies with
expensive equipment are used.

Periodontal disease degrades the quality of life and affects daily life regarding pain,
oral function, and aesthetics [23,24]. For example, periodontal disease may cause disadvan-
tageous outcomes such as expensive treatment, loss of bite and chewing function owing to
replacement with dentures or post crowns, worsening halitosis, and loss of appearance.
Additionally, periodontal disease has been suggested to be associated with health status
and other diseases such as cardiovascular and respiratory diseases [25,26]. From this per-
spective, maintaining proper oral hygiene and preventing worsening periodontal disease
is essential for optimal quality of life and health.

In addition to visual examinations conducted by dentists, periodontal disease is
diagnosed using radiographic imaging and periodontal probing to determine the progress
of the periodontal disease. Generally, diagnosis via periodontal probing causes severe
pain to the examinee because the probe is inserted deep into the periodontal pocket. This
problem is exacerbated in low- and middle-income countries where expensive radiographic
instruments are not widely available. Automatic diagnostic methods for periodontal
disease via machine learning have been implemented in specific research using X-ray
and hyperspectral images as the inputs [27–30]. However, both of these methods are not
practical compared to diagnosis by a medical practitioner using X-rays because of the high
cost of imaging and the protracted processes involved. By optimizing the light source’s
SPD and changing the objects’ visibility in the visible region, color information can be
enhanced in images captured by RGB cameras, which are more cost-effective than X-ray
imaging equipment.

1.3. Spectral Imaging for Machine Learning

In most cases, spectral data are highly multivariate with collinearity compared with
those measured by RGB and infrared cameras since they have many spectral channels where
the spectral intensities next to each other in wavelength are similar. A typical method for
dimensionality reduction of spectral data is principal component analysis (PCA). PCA finds
new coordinates that transform the correlated multi-dimensional features into a new feature
space where they are uncorrelated with each other, which allows dimension reduction while
preserving information [31]. Also, partial least square (PLS) is used for spectral data with
many variables [32]. It allows for selecting preprocessing methods and variables for regression
and discrimination while avoiding the problem of collinearity between variables [33,34]. PLS
is effective for analyzing spectral signals, but it is not a technique specialized for image
recognition that inputs multiple pixels utilizing spatial information.

There are many examples of image recognition by deep leaning using spectral images.
Researchers in [35] utilized balanced local discriminant embedding (BLDE) that linearly
transforms the spectral features to reduce spectral dimensions while maximizing the
margin between classes. The spatial shape information is extracted separately; the principal
components of spectral images by dimensionality reduction using PCA are fed into the
convolutional neural network (CNN), combined with the linearly transformed spectral
information by BLDE, and used for discrimination.

Other studies in [36] proposed a recurrent model for spectral–spatial information
extraction that learns the spectral information by making the spectral domain correspond to
the time step and treating the spectral information grouped by pixel with a long short-term
memory (LSTM). An LSTM is expected to be superior in learning relationships among
spectral domains since it learns relationships among the contiguous data as conceptual
information. In [37], a 3D convolution was performed to convolve the spectral and spatial
domains using a 3D kernel to extract spectral information and spatial information between
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pixels simultaneously. Instead of increasing the number of weights by a 3D convolution,
the possibility of overlearning and a vanishing gradient is suppressed by using the residual
for each convolution block.

The self-attention mechanism dynamically identifies where to focus attention on the
data; therefore, estimating which spatial regions and channels to focus on for learning and
inference. In [38] the researchers utilized spectral attention as a spectral channel of interest,
which was computed using a recurrent neural network (RNN) that mapped the spectral
domain for each pixel to a time step. In [39] a module was proposed that calculated a vector
of the spectral channel lengths used for spectral–spatial attention through pooling and a
multi-layer perceptron (MLP) to reduce the spatial information of spectral images.

Spectral images are used in many machine learning applications because they contain
considerable information that would otherwise be compressed if imaged by a camera such
as an RGB or infrared. They contribute to a high discrimination performance, especially in
complex machine visions, such as deep learning. However, acquiring spectral information
in the real world requires expensive equipment such as spectral cameras, spectral band-pass
filters, and time-consuming photography. Thus, effective imaging systems are needed to
utilize the potential of spectral information for applications of machine learning problems
in the real world.

1.4. The Aim and Contribution of This Study

This study proposes a method for optimizing the light-source spectrum using the
learning mechanism of neural networks. To date, simple RGB, infrared, and distance
information have been used for image processing, and the increase in visual information
using light sources has not been the mainstream approach. The increased color information
by changing and optimizing the light-source spectrum may enhance the performance
of machine vision systems that use images as cues. As deep learning can be applied to
accomplish various tasks, if the performance can be improved by optimizing the light-
source spectrum using neural networks, further advancement of machine vision technology
can be rendered possible.

To confirm the effectiveness of the proposed method, we applied it to solve problems
encountered in oral lesion detection using dental images to verify the optimization effect.
Moreover, we compared it with the conventional method, alternating optimization, as a
method for light-source optimization. Subsequently, to confirm the effectiveness of the
proposed method, we applied it to lesion detection challenges using dental images to
verify the effectiveness of the optimization and compared it with the conventional method,
alternating optimization. Compared with the conventional method, the proposed method
using a neural network can perform more complex identification with nonlinearity, and
computation via the CNN can be efficient for image processing.

This study aimed to develop an optimization method for the light-source spectrum
using a neural network capable of machine vision tasks. Furthermore, this method was eval-
uated for diagnosing periodontal disease and oral hygiene using RGB images illuminated
by an optimal light source.

Since the proposed system uses images captured via RGB or infrared cameras under
multiple light sources while utilizing spectral information, our system can be realized at
a lower cost in terms of time and price than machine learning systems that use features
captured by the spectral imaging system. In addition, the proposed system is expected to
contribute to the spread of low-cost and high-accuracy machine vision systems.

2. Materials and Methods
2.1. The Color Observation Model

Assuming a machine learning model that performs identification and regression based
on the features of the subject under a light source, the features are defined according to
the following color observation model. When NL light sources featuring different spectral
intensity distributions (hereafter referred to as sub-light sources) simultaneously illuminate
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at their respective intensities, the spectral intensity distribution l(λ) of the light sources can
be expressed as follows:

l(λ) =
NL

∑
i

xiqi(λ), (1)

where qi(λ) denotes the SPD of the i-th sub-light source (i = 1, 2, . . . , NL), and xi is the
weight of intensity of each sub-light source. When observing an object illuminated by a
light source, the observed feature oj of the j-th channel of the object is expressed as:

oj =
∫

cj(λ)l(λ)r(λ)dλ, (2)

where cj(λ) represents the sensitivity distribution of the j-th channel sensor of the observer
(e.g., camera or human eye), l(λ) symbolizes the SPD of the light source, and r(λ) depicts the
reflectance of the object. When observing a transparent object, r(λ) denotes the transmittance:

O = CTRQx
= Ax

(
∵ A = CTRQx

)
,

(3)

where C ∈ RNλ×Nch represents the matrix summarizing the spectral response of channel
i shown as ci ∈ RNλ and C =

[
c1, . . . , cNch

]
, R ∈ RNλ×Nλ denotes the reflectance matrix

with its diagonal component representing the reflectance to be observed and the other is
zero, Q ∈ RNλ×NL denotes a matrix summarizing the SPD of the i-th sub-light source as
Q =

[
q1, . . . , qNL

]
, and x ∈ RNL symbolizes the weight of intensity as x =

[
x1, . . . , xNL

]T.
Equation (3) indicates that the feature O is equal when the features photographed under
the sub-light sources are added with the lighting weights, x, and when the features are
photographed under the spectrum composed of the lighting weights, x (Figure 1).
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Figure 1. The observed features: (a) The image was measured under the accumulated (mixed)
spectral power distribution (SPD) of sub-SPDs with the intensities of x = [x1, . . . , xNL ]. (b) Images
were measured for each sub-SPD, then synthesized into one image by multiplication with the linear
weights, x. Equivalence was achieved between the case observed under the accumulated spectral
power distribution (SPD) and a linear synthesized variant of the observed features under each
sub-SPD. Considering that the observed features that were measured under the accumulated SPD

(=
(

CTRQ
)

x ) and the synthesized features, after measuring under the sub-SPDs (= CTR(Qx) ), are
the same, from Equation (3), the images in (a,b) are the same if lighting weights, x, are the same as
each other and measuring the images by camera has linearity.
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Upon determining the sensitivity of the camera and the spectra of the sub-lights, sim-
ply photographing the subject under each sub-light will yield A before optimization, thus
eliminating the need for repeated spectral optimization and photography, as demonstrated
by Liu et al. [13]. Additionally, compared with methods that use spectral images captured
using diffraction grating or narrow-pass filters, the use of simple RGB or infrared cameras
is expected to reduce the requirements in terms of time and price.

2.2. Alternating Optimization: A Light-Source Spectrum Optimization for Machine Learning

Alternating optimization is an innovative method for optimizing the light-source
spectrum, aiming to maximize the performance of machine learning [21]. The method
proposed in this study is based on alternating optimization to advance the application of
light-source spectrum optimization to machine vision. This section presents the details of
alternating optimization, which forms the basis of the proposed method.

We introduce the concept of alternating optimization, which is a conventional method
of optimizing the light-source spectrum, while minimizing the performance loss of machine
learning models [21] using a linear discriminant model that infers y based on the observed
sensor value, O, as expressed in Equation (3). The infrared value ŷ can be formulated as:

ŷ = f
(
wTO + b

)
= f

(
wTAx + b

)
,

(4)

where w ∈ RNch denotes the weights of the linear model, f (·) is a function, such as the logistic
sigmoid function transforms the input to range [−1, 1] because target class y ∈ {−1, 1}
for classification tasks, and b is a bias for boundary. In this method, to optimize the linear
discrimination expressed in Equation (4), A is used as the training sample, and the discriminant
weights, w, and lighting weights x are treated as the parameters to be trained. These weights
are optimized by repeating the optimizations presented in Equations (5) and (6):

w = argmin
w

J(w|x), (5)

x = argmin
x

J(x
∣∣∣w), (6)

where J(·) symbolizes the cost function of the discriminant model. In the case of discrimina-
tion with the SMV, the model requires only a vector of linear weights and kernel parameters
to determine multiple separating hyperplanes, so the solution is obtained immediately. By
dividing the optimization of w and x into their subproblems, the space of parameters to
be optimized is less complex than when w and x are optimized simultaneously, and the
solution can be obtained stably in the alternating optimization.

When applying this alternating optimization to complex machine learning models
such as deep neural networks (DNNs), a large number of weights to be optimized must
be considered. Although discriminative hyperplanes represented by a small number of
parameters, as in the case of SVM, are relatively simple, deep learning models such as DNN
have many discriminative weights. In a complex hyperspace with many parameters, there
are many local optimums, and the possibility of getting caught in them is higher, making it
more challenging to arrive at a better solution.

If the NN model’s weights WNN are trained in lighting weight x until the cost
J(WNN|x) converges, thus, many parameters have fallen into their local optimum. So even
if x is subsequently optimized via cost J(x|WNN ), it will be hard to change dynamically
to remove it from the local optimum. Therefore, when training a neural network in the
alternating optimization, we face the practical problem: how many epochs is efficient to
switch over. Also, if the number of parameters of x is small compared to WNN, the dif-

ference between the subproblem min
WNN

J(WNN

∣∣∣∣x) and the whole problem min
WNN, x

J(WNN, x)

will be small. Thus, there will be little merit in dividing the problem into subproblems
and optimizing them alternately. In other words, there are better options than alternat-
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ing optimization for lighting optimization for machine leazcrning models with complex
parameters such as NN.

Therefore, in the next section, we show a method to optimize both the NN model
and the lighting weight x simultaneously through backpropagation by incorporating x
into the NN model. Since the gradients are computed in a backpropagation process for
min
WNN

J(WNN |x) and min
WNN , x

J(WNN , x) in either case, the proposed method that optimizes x

simultaneously is more efficient.

2.3. The Optimization of the Light-Source Spectrum Using a Neural Network

Inspired by alternating optimization, we propose a model that optimizes and discrimi-
nates between light sources using a neural network. The model consists of a light-source
synthesis (rendering) component and a neural network model (Figure 2). It accepts the
input, A ∈ RNch×NL , which is expressed in Equation (3), and subsequently renders the
RGB image, which is calculated using the weighted sum of the sub-light components of
the A-matrix with the lighting weight, x. This weight, x, is used for rendering, and the
optimized light source is reproduced using the weighted sum of the SPD of the sub-light
with x. The infrared value ŷ can be represented as:

ŷ = f ( fNN(A|x, W ))
= f

(
f ′NN(Ax|W)

)
,

(7)

where, fNN(·) denotes the computation of the neural network containing the rendering
process, f ′NN(·) denotes the neural network without rendering, W are the weights of the
neural network, and f (·) denotes an activation function of the output layer. Thereafter,
the rendered image is used as the input for the consequent neural network models, and
the image processing is performed based on the model. This model can be replaced with
a conventional model that flexibly utilizes the rendered image. Therefore, this model is
feasible for other tasks such as image classification, masking, and annotation.

J. Imaging 2023, 9, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 2. The concept of optimization of the light-source spectra using a neural network (NN). The 
input to the model is a set of images of objects taken with the same camera under sub-spectral power 
distributions (SPDs) that have different spectral proportions from each other, where each sample is 
composed of 𝑁୐ number of sub-light images of 𝑁ୡ୦-channels. The input image is linearly combined 
according to the lighting weights x to obtain a single image with 𝑁ୡ୦-channels (rendering process), 
fed into the NN model. During training, the NN model’s weights 𝑾 and 𝒙 are updated simultane-
ously according to the gradients, which are computed by backpropagation from the cost (error) of 
the NN model’s output. After sufficient training, the accumulated SPD obtained by mixing the sub-
SPDs with intensities of 𝒙 becomes the optimal light source for the machine learning problem. The 
image measured under the optimal light source is equivalent to the image obtained by the rendering 
process. This can be entered into the model for inference with fewer shots of images than when the 
dataset was obtained. 

The features under the optimal light source composed of the sub-light sources can be 
computed using a weighted sum of the lighting weights of the features under these 
sources (Figure 1). As the output to the subsequent layer is the sum of the product of the 
lighting weights, 𝒙, and the input, it is differential by 𝒙. Suppose the light-source optimi-
zation is applied to the neural network model that is end-to-end; in this case, every layer’s 
outputs in the model are differentiable by the weights, thereby rendering it an end-to-end 
learning model. A neural network with a fully connected layer, convolutional layer, and 
fully connected layer (FCL) was applied to the model to validate the proposed optimiza-
tion method (Figure 3). 

  
(a) (b) 

Figure 3. A classification model featuring the optimization of light-source spectra: (a) the model 
with only a fully connected layer (FCL), (b) the model featuring an FCL and a convolutional neural 
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Figure 2. The concept of optimization of the light-source spectra using a neural network (NN). The
input to the model is a set of images of objects taken with the same camera under sub-spectral power
distributions (SPDs) that have different spectral proportions from each other, where each sample is
composed of NL number of sub-light images of Nch-channels. The input image is linearly combined
according to the lighting weights x to obtain a single image with Nch-channels (rendering process), fed
into the NN model. During training, the NN model’s weights W and x are updated simultaneously
according to the gradients, which are computed by backpropagation from the cost (error) of the NN
model’s output. After sufficient training, the accumulated SPD obtained by mixing the sub-SPDs with
intensities of x becomes the optimal light source for the machine learning problem. The image measured
under the optimal light source is equivalent to the image obtained by the rendering process. This can be
entered into the model for inference with fewer shots of images than when the dataset was obtained.
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The features under the optimal light source composed of the sub-light sources can be
computed using a weighted sum of the lighting weights of the features under these sources
(Figure 1). As the output to the subsequent layer is the sum of the product of the lighting
weights, x, and the input, it is differential by x. Suppose the light-source optimization is
applied to the neural network model that is end-to-end; in this case, every layer’s outputs
in the model are differentiable by the weights, thereby rendering it an end-to-end learning
model. A neural network with a fully connected layer, convolutional layer, and fully
connected layer (FCL) was applied to the model to validate the proposed optimization
method (Figure 3).

J. Imaging 2023, 9, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 2. The concept of optimization of the light-source spectra using a neural network (NN). The 
input to the model is a set of images of objects taken with the same camera under sub-spectral power 
distributions (SPDs) that have different spectral proportions from each other, where each sample is 
composed of 𝑁୐ number of sub-light images of 𝑁ୡ୦-channels. The input image is linearly combined 
according to the lighting weights x to obtain a single image with 𝑁ୡ୦-channels (rendering process), 
fed into the NN model. During training, the NN model’s weights 𝑾 and 𝒙 are updated simultane-
ously according to the gradients, which are computed by backpropagation from the cost (error) of 
the NN model’s output. After sufficient training, the accumulated SPD obtained by mixing the sub-
SPDs with intensities of 𝒙 becomes the optimal light source for the machine learning problem. The 
image measured under the optimal light source is equivalent to the image obtained by the rendering 
process. This can be entered into the model for inference with fewer shots of images than when the 
dataset was obtained. 

The features under the optimal light source composed of the sub-light sources can be 
computed using a weighted sum of the lighting weights of the features under these 
sources (Figure 1). As the output to the subsequent layer is the sum of the product of the 
lighting weights, 𝒙, and the input, it is differential by 𝒙. Suppose the light-source optimi-
zation is applied to the neural network model that is end-to-end; in this case, every layer’s 
outputs in the model are differentiable by the weights, thereby rendering it an end-to-end 
learning model. A neural network with a fully connected layer, convolutional layer, and 
fully connected layer (FCL) was applied to the model to validate the proposed optimiza-
tion method (Figure 3). 

  
(a) (b) 

Figure 3. A classification model featuring the optimization of light-source spectra: (a) the model 
with only a fully connected layer (FCL), (b) the model featuring an FCL and a convolutional neural 
network (CNN). In the rendering layer, input images are linearly combined with lighting weights 𝒙. Rendered images are fed into the fully connected layer (FC) in (a). The referenced class of the 
model is calculated as a one-hot coding with the softmax of FC’s output. In the case of (b), the ren-
dered image is fed into a few 2D-convolution layers (Conv2d) and then into an FC. Eventually, the 
class is referenced via softmax, the same as (a). 

Figure 3. A classification model featuring the optimization of light-source spectra: (a) the model
with only a fully connected layer (FCL), (b) the model featuring an FCL and a convolutional neural
network (CNN). In the rendering layer, input images are linearly combined with lighting weights x.
Rendered images are fed into the fully connected layer (FC) in (a). The referenced class of the model
is calculated as a one-hot coding with the softmax of FC’s output. In the case of (b), the rendered
image is fed into a few 2D-convolution layers (Conv2d) and then into an FC. Eventually, the class is
referenced via softmax, the same as (a).

2.4. Problem Setting for Oral Lesions Detection

To verify the effectiveness of the proposed method, we focused on the problem en-
countered in classifying oral lesions. Herein, we present the problem scenario. Table 1
summarizes the problem settings.

2.4.1. The One-vs-Rest Classification

The one-vs-rest classification was used to classify the classes of the input image using
1-pixel or 5× 5 patch images for the healthy enamel portion of the tooth and the attrition
and erosion, calculus, initial caries, microfracture, and root lesions, respectively.

2.4.2. The Input and Output

As the input, we used RGB 3-channel images calculated using Equation (3), 1× 1 pixels
for alternating optimization and NN-based source-spectrum optimization, and 5× 5 patch
images for the CNN-based source-spectrum optimization.

The output for a 1× 1 pixel is the class of that pixel. Only the class of the central pixel
of the image was used as the output for samples of 5× 5 patch images (Figure 4).
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Table 1. Conditions of a classification problem.

Methods

Previous Proposals

Alternating Optimization
(Linear Support Vector Machine) Neural Network (NN) Convolutional Neural

Network (CNN)

Input 1× 1 pixel 5× 5
image

Task One-vs-rest, 2-class Classification

Target Class of pix Class of the
central pixel

Light source
1 24 light-emitting diodes (optimization),
2 D65 (Fixed, as reference)

Cross Validation five-Fold

Initial lighting weights Randomized vector in [−1, 1]

2.4.3. Initial Lighting Weights

Three types of initial vectors were used to verify the difference in the initial vectors of
the lighting weights:

• A randomized vector in the range of [−1, 1];

• Weights which construct a cumulative SPD using weighted sub-lights that approxi-
mates the D65;

• Uniform weights with 1: 1NL = [1, 1, . . . , 1].

Randomized initial vectors were used for optimization by utilizing the 400–830 nm
band, and other initializations were used only for the CNN-based optimization by utilizing
the 400–1000 nm band. The approximation of D65 consisting of sub-lights was formulated
based on the following assumption:

qD65 = Qx, (8)

where qD65 ∈ RNs denotes the vector of the SPD, Ns is the number of spectral components,
and the lighting weights for the sub-lights are:

xapprox = Q+qD65, (9)

where Q+ represents the pseudo-inverse of the SPD matrix of sub-light Q ∈ RNs×NL , x
denotes the estimated lighting weight of the sub-light to approximate the SPD of D65.
Consequently, the approximated distribution, q′D65, is the product of the sub-lights and the
weights xapprox:

q′D65 = Qxapprox. (10)

2.4.4. The Cost Function for Alternating Optimization

A linear SVM was used for each optimization in the alternating optimizations shown
in Section 2.2. SVM solves the decision hyperplane to maximize margins from samples.
The margin, which is the distance between hyperplanes, determines the decision boundary
from a sample A from Equation (4) is formulated as:

d(w|A, x ) =

∣∣wTAx + b
∣∣

||w || , (11)

d(x|A, w ) =

∣∣wTAx + b
∣∣

||x || , (12)
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where b is a bias of the hyperplane. To make a decision for the sample means keeping:

yi

{
wTAix + b

}
≥ 1, (13)

where i = 1, . . . Ns, Ns is number of samples, and yi ∈ {−1, 1} is for target of the decision
for the i-th sample. Equation (13) holds equal for the nearest sample and the margin
are d(w|A, x ) = 1

||w || and d(x|A, w ) = 1
||x || , respectively. Thus, the cost function corre-

sponding to the expressions in Equations (5) and (6) is the inverse of the margin and the
optimization problems, as follows:

min
w

J(w|x),
where J(w|x) = ||w||,
subject to yi

{
wTAix + b

}
≥ 1, i = 1, . . . , Ns.

(14)

min
x

J(x|w),

where J(x|w) = ||x||,
subject to yi

{
wTAix + b

}
≥ 1, i = 1, . . . , Ns.

(15)

2.4.5. The Cost Function for the Neural Network-Based Optimization

The softmax function was used for the activation function of the output layer in
Equation (7) for the multi-class classification and cross-entropy loss expressed in Equation
(16), which was used for the cost function in the NN-based and CNN-based optimization
models, as follows:

J(ŷ, y) = −
C

∑
c=1

log

(
exp(ŷc)

∑C
j=1 exp

(
ŷj
))yc, (16)

where ŷ = [ŷ1, . . . , ŷC] with ŷj from [0, 1] symbolizes the vector of the score of class j, y

depicts a one-hot vector,
{

v ∈ {0, 1}C
∣∣∣ ∑C

i=1 vi = 1
}

, for the truth class, and C represents
the number of classes.

2.4.6. The Grid Search and Trials

A grid search was performed to find better hyperparameters for the NN and CNN-
based models, since the NN-based models have many hyperparameters which determine
the model’s behavior and means of learning, such as the number of layers and weights
for each layer, type of activation function, and learning rate. Parameters tried in the grid
search are listed in Table 2.

Table 2. The hyperparameters of NN and CNN for the grid search.

Parameters NN-Based CNN-Based

# of layers {3, 5, 7}
# of units {10, 15, 20}

Activation {Rectified linear unit (ReLU), None}

Conv2d - Size = 3 × 3, stride = 1,
10× 3-channels

Output layer Softmax

Dropout p = 0.3

The alternating optimization was conducted ten times and different initial weights
were used in each trial.
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2.5. The Materials for Oral Lesions’ Detection Problems

The periodontal spectral images, SPDs of sub-light sources, and the sensitivity distri-
bution of the RGB camera as an observer’s sensor were used to simulate oral images under
lights with an arbitrary SPD. The corresponding details are presented in this section.

2.5.1. Light Sources

For comparison with optimized lights, the standard illuminant D65 (defined by the
International Commission on Illumination) was used as a reference light source (Figure 5),
and two types of SPD were used as sub-lights to reproduce various spectra for optimization,
as follows:

• Measured SPDs of 24 real LEDs in the 400–830 nm band;
• Simulated SPDs, with their mean aligned at even intervals, in the 400–1000 nm band.
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approximated SPD corresponds to the 24-LEDs sub-lights, and compared to D65, the 
wavelength ranges covered by the sub-lights are 720–760 and 800–830 nm. This result in-
dicates that the sub-light can be disadvantageous compared to D65, and thus, the spectral 
information in the lacking bands cannot be utilized. For a fair comparison with the refer-
ence, the wavelength range covered by the sub-lights should be aligned with D65. The 
distribution of the D65 light source can be reproduced by combining it with a sub-light 

Figure 5. The SPD of D65, which was used as the reference light source.

These SPDs have different peaks and proportions (Figures 6 and 7, and Table 3). The
approximated SPD corresponds to the 24-LEDs sub-lights, and compared to D65, the
wavelength ranges covered by the sub-lights are 720–760 and 800–830 nm. This result
indicates that the sub-light can be disadvantageous compared to D65, and thus, the spectral
information in the lacking bands cannot be utilized. For a fair comparison with the
reference, the wavelength range covered by the sub-lights should be aligned with D65. The
distribution of the D65 light source can be reproduced by combining it with a sub-light SPD
that has been adjusted to cover the entire wavelength range. With the simulated sub-lights,
the optimized SPD may have a similar distribution to D65 and result in a similar score, or it
may be more optimal compared with D65, resulting in a higher-performing light source.
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Figure 6. Sets of SPDs with real light-emitting diodes (LEDs): (a) measured SPD of 24 LEDs for sub-lights,
and (b) approximation of an SPD of D65 standard illumination with SPDs represented in (a).
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Figure 7. (a) The simulated sub-light source: each spectral distribution was computed by assuming a
Gaussian distribution with a full-width at half maximum (FWHM) wavelength, λFWHM = 40 nm,
and its means are 412, 437, 462, 487, 512, 537, 562, 587, 612, 637, 662, 687, 712, 737, 762, 787, 812, 837,
862, 887, 912, 937, 962, and 987 nm. (b) The approximation of the D65 standard illumination spectral
distribution with band-adjusted sub-light sources is represented in (a).

Table 3. The specification of sub-lights.

Sub-Light Peek Wavelength [nm]
Measured Simulated

1 405 412
2 420 437
3 435 462
4 450 487
5 470 512
6 490 537
7 505 562
8 525 587
9 535 612

10 555 637
11 565 662
12 570 687
13 590 712
14 600 737
15 610 762
16 625 787
17 630 812
18 645 837
19 660 862
20 670 887
21 680 912
22 690 937
23 700 962
24 780 987

2.5.2. The RGB Camera

To simulate the observation of the illuminated object, the spectral sensitivity of an RGB camera
(AR1335; ON Semiconductor, Phoenix, AZ, USA) was used as the image sensor (Figure 8).
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2.5.3. Datasets

The reflectance spectral images were obtained from the oral and dental spectral image
database dataset [40]. The Computational Spectral Imaging Laboratory published these
images at the University of Eastern Finland, Joensuu campus (Joensuu, Finland), and
the Institute of Dentistry at the University of Eastern Finland Kuopio campus (Kuopio,
Finland). Additionally, annotations of 40 classes as ground truths were obtained from a
dental expert’s assessment. Figure 9 shows a sample of the periodontal image under the
D65 from the dataset.
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Figure 9. Samples of the periodontal image from ODSI-DB [40] (CC BY-NC-SA 4.0). (a,b) are rendered
from reflectance spectral image computationally with camera sensitivity in Figure 8 and spectral
power distribution of D65 in Figure 5.

To validate the proposed optimization method, the two-class classification problem
of one-vs-rest was assumed to distinguish the target class and the other in each lesion on
teeth and enamel as a healthy part of teeth. In this study, we focused on five lesions on
the teeth: attrition/erosion, calculus, initial caries, and microfractures. For comparison
of the methods, 1× 1 pixels for alternating optimization, the proposed method with fully
connected NN and the 5× 5 patch images for CNN were selected (Table 4). The sample
size for each class in the one-vs-rest classification problem is presented in Table 5.

Table 4. Samples chosen for the one-vs-rest classification.

Class

Previous Proposal

Alternating
Optimization,

1×1

NN,
1×1 CNN,5×5

Enamel 11,836 11,836 11,836
Attrition and Erosion 2500 2500 2500

Calculus 1608 1608 1608
Initial Caries 792 792 792

Microfracture 900 900 900
Root 897 897 897
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Table 5. The sample size for each class in the one-vs-rest classification.

Class
Sample Size

One Rest

Enamel 11,836 6697
Attrition and Erosion 2500 16,033

Calculus 1608 16,925
Initial Caries 792 17,741

Microfracture 900 17,633
Root 897 17,636

The dataset contains spectral reflectance images obtained via two types of cameras
with different spectral resolutions: 450–950 nm with 10-nm band steps, and 400–1000 nm
with approximately 3-nm band steps. From the dataset, images containing the 400–830 nm
band were selected and subsequently interpolated for the wavelength axis into a 5-nm
band step resolution.

3. Results and Discussion

To verify the proposed method, a classification was performed for each method under
the conditions listed in Table 2. A five-fold cross-validation was conducted to measure the
scores for alternating optimization and optimization using neural networks. As indicated in
the results of the alternating optimization, the cost function of the optimization converged
in all trials, and the best score in all trials was subsequently selected based on the F1-
score. In the methods utilizing NN and CNN, a grid search was conducted using sets of
hyperparameters, as detailed in Section 3.1. The optimal models for each classification
problem were selected based on the F1-score of the cross-validation among the models with
sets of parameters in the grid search.

3.1. The Performance Comparison among Methods

As a learning result, the classification F1-score of the NN and CNN on the optimal
light source exceeds that of the previous method in the average of each class (Figure 10).
Among all methods, the optimization with CNN yielded the best performance results. In all
optimizations, the F1-score is greater than that in the reference light (D65) case (Figure 11),
indicating that the optimization method involving the light-source spectrum improved the
performance of the classification.
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Figure 11. The comparison of performance between the reference (D65) vs. the optimal light in the
five-fold cross-validation: alternating optimization (linear SVM), proposed method with only FCL
(NN), and proposed method with CNN (CNN): (a) F1-score and (b) accuracy.

Comparing the results of the NN and CNN with the D65 light source revealed that the
average F1-score is approximately identical, suggesting that the CNN does not effectively
employ peripheral information in the image input by the D65. In contrast, the performance
of the CNN with the optimal light source was improved compared to the D65, suggesting
that the enhancement of input information by optimizing the light-source spectrum may be
effective in more complex feature spaces. The optimization model with CNN accepts the
5× 5 image that contains information regarding the area surrounding the pixel of interest
and possesses a more complex feature space than as the 1× 1 input that does not possess
this information.

3.2. The Effect of NIR Information and Specific Initial Lighting Weights

A grid search for the CNN-based optimization was conducted using band-adjusted
sub-lights (Figure 12). Three cases of the initial vector of lighting weights were used:
randomized case, approximation of D65, and approximation of uniform weights.
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Figure 12. The performance of each method of the band-aligned SPD utilizing the NIR in the
400–1000 nm band with the proposed method with CNN: (a) F1-score for each method, and
(b) comparison of performance between the reference (D65) and the optimal light. In the three models
utilizing the 400–1000 nm band, the lighting weights were initialized in different ways: randomized
in [0,1], approximating D65, and as uniform vector 1, respectively.
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In the learning results, optimization using band-adjusted sub-lights in the near-
infrared (NIR) range (400–1000 nm) exhibits inferior performance compared to the results
obtained using the 400–830 nm range. The following two factors are suggested to have
simultaneously affected the cause of performance decline:

• The camera sensitivity in the NIR region does not differ between the three RGB
channels (Figure 8) and no information appears in the RGB channel;

• Upon extending the wavelength range to 1000 nm and evenly spreading them, the
variety of the cumulative SPD is lost, as represented by the sub-light in the distinct
wavelength band of 400–800 nm.

The performance may be improved by using sub-lights evenly distributed over a
narrower range where differences in sensitivity of RGB appear, such as 400–800 nm, or by
using the four-channel information from an RGB-NIR camera with an additional channel
exhibiting sensitivity in the infrared region.

Comparing the initial weights’ differences revealed that the randomized vector results
offered a superior performance. In addition, the optimization result using the initial value
that approximates D65 is superior to that using D65, which suggests lighting weights that
are superior to D65. In a randomized manner, positive and negative weights are input as
the initial values, but in approximating the D65 and uniform weights, only the positive
or negative values are obtained, which is considered a disadvantage; consequently, the
performance is lower than that of the randomizing method.

A randomized initial vector yields the highest performance and is more optimal than
using D65. In particular, random initialization is considered sufficient without any special
effort regarding the initial lighting weights.

3.3. The Optimal SPD and Stability

To analyze the stability of the optimization, we computed the optimized light source
from the lighting weights obtained by the CNN-based optimization, which yielded the
highest performance among all the methods (Figure 13).
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Figure 13. The optimal SPDs of the CNN-based optimization in a five-fold cross-validation with the
measured LEDs having spectral powers in the 400–830 nm band for each classification of one-vs-rest
classification: (a) attrition and erosion vs. others, (b) calculus vs. others, (c) enamel vs. others,
(d) initial caries vs. others, (e) microfracture vs. others, and (f) root vs. others.

Evidentially, the optimal light sources obtained via the five-fold cross-validation
possessed different proportions and did not exhibit the same light-source weights. As
different light-source weights were learned, the solution via the CNN-based light-source
optimization did not yield the optimal global solution. In addition, because the solution
was not proven to be at least locally optimal, it could not be considered the optimal local
solution. From this result, we concluded that a better solution could be obtained, and the
performance could be improved. To obtain a more optimal local solution for the light-source
weights, after training the model, we can update only the lighting weights while fixing
the training weights of the model, except for the lighting weights. Moreover, the lighting
weights are different for each training, indicating that the optimization may not be verifiably
stable. Multiple trials with different initial values under the same hyperparameters are
necessary to find a better solution.

The feature space to be explored is vast and complicated because many parameters,
including the training weights of the neural network, change during training. To improve
the stability of the solution of the lighting weights, a pre-trained model, such as that pre-
trained using the input image of a fixed light source such as D65, can be used as the training
weights of the neural network. Although obtaining stable solutions for lighting weights is
a challenging task owing to a large number of training parameters of the neural network
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and the complexity of the search space, the stability can be improved via mechanisms to
avoid overfitting, such as pre-training and dropout, in neural network training.

3.4. The Distances between Classes in the Enhanced Feature Space

The distances between the target class and dataset samples in the feature space were
analyzed to reveal how color enhancement with optimal light improved the discrimination
performance. A bigger interclass distance means tolerance of the classification to noise
caused by the ambient light in actual measurements. Therefore, the interclass distance is
useful as a metrics of robustness.

The Mahalanobis distance is the statistically-defined distance between the center of the
probability distribution of the class in interest and a sample in the feature space normalized
by the variance–covariance matrix of the distribution of interest. In outlier detections for
abnormal samples and classifications such as “healthy” or “unhealthy,” the Mahalnobis
distance can be used as a scale of samples’ features [41,42]. Regarding the one-vs-rest
classification, the distance of a sample’s feature x in the ‘rest’ class from the probability
distribution D of the target class c as ‘one’ in one-vs-rest is computed as:

dM(x, D(µc, Σc)) =

√
(x− µc)

TΣ−1
c (x− µc) (17)

where x =
[
x1, . . . , xNd

]T is the feature vector of a sample with Nd dimension and D is

the multivariate distribution described by mean of features µc =
[
µc, i, . . . , µc, Nd

]T and
variance-covariance matrix Σc ∈ RNd×Nd of class c, hence µc and Σc are calculated as:

µc =
1

Nc

Nc

∑
i

yc, i, (18)

Σc = YT
c Yc, (19)

where Yc ∈ RNc×Nd denotes the data matrix for Nc samples of class c, and yc, i ∈ RNd×1

denotes a feature vector of i-th sample of class c. The feature space has Nd = 75 dimensions
in the case of the CNN-based classification from a 5× 5 patch image with three channels
of RGB. The comparison of the Mahalanobis distances between the proposed CNN-based
method and the D65 without optimization is shown in Figure 14. The distances are more
significant for the result of the optimal lights with the CNN-based method than the D65.
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According to the result of expanded interclass distances (Figure 14) and the improved
discrimination performance (Figure 11), we can say that RGB information containing more
valuable spectral information is obtained with the lighting learned through the proposed
method and contributed to the more accurate classification. In addition, measurements
with an optimal light source with an increased interclass distance indicated the possibility
of being more resistant to noise due to ambient light than measurements under a standard
light source.

4. Limitations and Future Work

This study performed a two-class one-vs-rest classification to verify the proposed
method. In addition, considering the demand for image processing, the two-class classifica-
tion task is limited, and validating the proposed method is a prerequisite to its application
in further tasks, such as multiclass classification and annotation.

Although the light-source spectrum optimization was proven effective, its performance
is inadequate for practical applications, and further improvements are required. In this study,
we only used six classes, including enamel and lesions of teeth. However, other lesions such as
stains, dentin caries, and other areas such as the oral mucosa and gums were not considered.
For the classification of dental lesions, multiclass classification and annotation are necessary.
The solutions of the lighting weights obtained using the proposed method were unstable
and differed from trial to trial. Multiple pieces of training were required under the different
conditions of initial lighting weights to obtain improved performance.

The final goal of this study was to realize a system at a lower cost compared to more
expensive systems and a longer imaging time. The proposed method has been developed,
with the assumption of being replaced with other machine vision systems using spectral
images; although, we used features obtained by simulating rendered images using spectral
images to validate the proposed method. The rendering conditions, such as the distance
and intensity of the light source, were not strictly considered, and upon its realization,
the system’s successful operation could not be guaranteed. Therefore, the validation of
the recognition performance of building an imaging system in reality, the estimation of
measuring time, and the costs are required.

In addition, although the deep learning methods utilizing spectral imaging without
lighting optimization have been developed, comparative verification of the proposed
method to those applications is not shown in this study. Thus, the clarification of its
accuracy is needed as compared to other methods such as [36–39]. Since the discrimination
with the small patch image is inefficient for comparison to the methods, the application of
the proposed method to the semantic segmentation task and the comparison to the recent
studies, are required for validating the use of the proposed methods.

5. Conclusions

By optimizing the light-source spectrum, the color information of objects can be
emphasized. Moreover, the performance of image recognition systems can be improved
by using images with enhanced information as the input. In this study, we proposed a
method for optimizing the light-source spectrum using deep learning and compared it with
conventional methods.

The proposed methods, NN-based and CNN-based optimization, yielded superior
classification performance than when the D65 light source was used without light-source
spectrum optimization, indicating the effectiveness of optimizing the light-source spectrum
in NN-based image recognition. Compared with the conventional alternating optimization
method, the proposed method improved the performance of the one-vs-rest classification
in the F1-score. Notably, the effect of optimizing the light-source spectrum on the image
recognition via neural networks was demonstrated in the limited problem of a one-vs-rest
classification of small image patches.

The model used in this study was a CNN that performed a two-class classification using
a small 5× 5 image as the input; the scale of the model was small. To verify the practical use
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of the model, it should be trained with larger input images with more complex models and
applied to various tasks other than the two-class classification, such as semantic segmentation.
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