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Abstract: Background and Objectives: Brain Tumor Fusion-based Segments and Classification-Non-
enhancing tumor (BTFSC-Net) is a hybrid system for classifying brain tumors that combine medical
image fusion, segmentation, feature extraction, and classification procedures. Materials and Methods:
to reduce noise from medical images, the hybrid probabilistic wiener filter (HPWF) is first applied as
a preprocessing step. Then, to combine robust edge analysis (REA) properties in magnetic resonance
imaging (MRI) and computed tomography (CT) medical images, a fusion network based on deep
learning convolutional neural networks (DLCNN) is developed. Here, the brain images’ slopes
and borders are detected using REA. To separate the sick region from the color image, adaptive
fuzzy c-means integrated k-means (HFCMIK) clustering is then implemented. To extract hybrid
features from the fused image, low-level features based on the redundant discrete wavelet transform
(RDWT), empirical color features, and texture characteristics based on the gray-level cooccurrence
matrix (GLCM) are also used. Finally, to distinguish between benign and malignant tumors, a deep
learning probabilistic neural network (DLPNN) is deployed. Results: according to the findings,
the suggested BTFSC-Net model performed better than more traditional preprocessing, fusion,
segmentation, and classification techniques. Additionally, 99.21% segmentation accuracy and 99.46%
classification accuracy were reached using the proposed BTFSC-Net model. Conclusions: earlier
approaches have not performed as well as our presented method for image fusion, segmentation,
feature extraction, classification operations, and brain tumor classification. These results illustrate
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that the designed approach performed more effectively in terms of enhanced quantitative evaluation
with better accuracy as well as visual performance.

Keywords: classification; deep learning; DLPNN; feature extraction; robust edge analysis; brain
tumor segmentation

1. Introduction

Brain tumor (BT) is the tenth leading cause of death and disability worldwide and has
been recognized by organizations such as the World Health Organization (WHO), National
Brain Tumor Society (NBTS), and the Indian Society of Neuro-Oncology (ISNO) as one
of the most important primary neoplasms causing morbidity and mortality across the
world [1]. According to the international agency for cancer research, over 97,000 people
in the United States and nearly 126,000 people worldwide suffer disability and related
consequences of brain tumors each year [2]. If appropriate diagnosis, intervention, and
management are received at an early stage, an increase in survival rates can be achieved.

Medical image fusion (MIF) techniques such as digital imaging, pattern recognition,
and machine learning ML) by fusion of images now have various applications in clinical
medicine and are widely used to diagnose neoplasms as well [3]. These fusion methods
overcome the constraints of traditional imaging techniques and are described to be more
effective than magnetic resonance imaging (MRI) as well as computed tomography (CT) [4].
Various images of organs have been created by using different sensor strategies [5]. It is
crucial to differentiate a neoplastic lesion and also to derive lesion characteristics as opposed
to the surrounding normal tissues to help in diagnosis. Since lesion size, texture, shape, and
placement vary based on different individual characteristics, images must be evaluated as
well as categorized using tissue segmentation, which has been detailed in different forms
of automation, to produce a diagnosis. Curvelet domain coefficients providing substantial
structural features and functional mapping are necessary [6]. To distinguish the boundaries
between normal and abnormal brain tissue, expert segmentation requires several upgraded
datasets and pixel profiles. It is ideal in this case to use fully automated machine learning
techniques. Multimodal medical image fusion was thus designed utilizing the particle
swarm optimization technique (PSO) to improve the efficiency of multimodal mapping [7].

The fusion-based techniques help to analyze and evaluate the disease by expanding
the visual data and lucidity. Direct fusion techniques frequently create unwanted impacts
prompting distortion and low contrast. Multi-scale decomposition (MSD) strategies have
made progress in different image fusion issues and the limitations are overcome through
the total variation (TV-L1) method [8]. MIF is well-known terminology in this area of
satellite imaging and diagnostic medical imaging, which has now expanded its presence
in clinical diagnosis and has proven to be beneficial in multimodal medical image fusion
(MMIF) [9]. The spatial domain is where multimodal image fusion and pixel-to-pixel fusion
take place. Additionally, a max/min for the fusion approaches using weighted pixels is
available [10].

Utilizing phase congruency and local laplacian energy, pixel activity determines
the weights to select the most active pixels. [11]. The image features are first scaled by
a designed method with average weighting. Yin et al. [12] in their study utilised the
maximum average mutual information, this image fusion technique. MIF has widely
used optimization techniques to resolve deficiency issues such as the whale optimization
algorithm (WOA), which is one of the most used optimal algorithms [13].

For image fusion, the authors of [14] designed a method and different features are
extracted by individually multiplying each input image’s first convolutional sparsity com-
ponent. A few techniques are also discussed, including the principle of feature mea-
surement [15] and graph filter and sparse representation (GFSR) [16]. Dual-branch CNN
(DB-CNN) [17] as well as separable dictionary learning based on Gabor filtering [18]
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and local difference in the non-subsampled domain (LDNSD) [19] are also considered.
Edge-based artifacts are instances of blocking objects in these methods [7].

To match the high-frequency images, the Laplacian re-decomposition (LRD) method
offered a way to inverse LRD fusion-based rule by producing pixels surrounding the
overlapped domains [20]. Deep learning and MMIF are also created for disease diagnostics
in medicine. Deep learning is combined with MDT and actual analysis to characterize the
MMIF. It can successfully overcome the difficulty of only one-page processing and make
up for the lack of image fusion. It can also be created to address many types of MMIF
challenges in batch processing mode [21]. To improve the execution of various methods of
image processing, algorithms perform optimization and give an optimal solution for image
fusion; various global optimization techniques are imposing procedures that can convey
better clarifications for various issues [22].

Positron Emission Tomography (PET) images are also enhanced in terms of spatial res-
olution and given acceptable color [23]. MRI images also have improved spatial resolution
and provide decent color. Using a CNN-based technique, weight maps are created from
input medical images. Following that, the weight maps formed are subjected to gaussian
pyramid decomposition, and a multi-scale high-resolution image is obtained using the
contrast pyramid decomposition approach [24]. To break down the image into sub-band
categories, the Non-Subsampled Contourlet Transform (NSCT) is utilized [25]. The pre-
sentation of an image fusion framework based on two CNP models using nonsubsampled
shearlet transforms (NSST) is made. These two CNP models were used to constrain the
fusion of the NSST domain, which operates at lower frequencies. Applying the encoder
network to the encoded image, its features are extracted and fused using Lmax norms [10].

Additional segmentation methods include a fast level set based CNN [26], bayesian
fuzzy clustering with hybrid deep auto-encoder (BFC-HAD) [27], and symmetric-driven
adversarial network (SDAN) [28]. However, the precision and accuracy of these tech-
niques are compromised. The categorization of brain tumor segmentation, synthetic data
augmentation using multiscale CNN [29] as well as deep learning [30] are also designed.
Meningioma from non-meningioma brain images is distinguished using a learning-based
fine-tuning transfer [31] and dice coefficient index [32]. Three forms of brain tumors
were distinguished by the authors of [33] using the transfer learning CNN model. An
already-built pre-trained network was modified by expanding the tumor, ring-dividing
it, and using T1-weighted contrast-enhanced MRI [34]. Hybridization of two methods
entropy-based controlling and Multiclass Vector machine (M-SVM) is used for optimal
feature extraction [35–37]. The differential deep-CNN model for detecting brain cancers in
MRI images was put to the test by the authors in [38]. Here, CNN-multi-scale analysis was
used to create 3D-CNN [39] utilizing MRI images of pituitary tumors. The classification
procedure was made to perform better in [36,40,41] by using variational auto-encoders
with generative adversarial networks and a hybrid model. These conventions still need to
be refined because they do not produce adequate classification and segmentation results.

As dataset sizes grow, the high computational complexity has a negative impact on
traditional models. Before their implementation in hardware, neural networks (NNs) must
first be evaluated for computational complexity, which uses the majority of the CPU and
GPU resources [42–44]. The difficulty, however, is dependent on the specific deep learning-
probabilistic neural network (DLPNN) design and can be decreased if we can accept a
more accurate trade-off: changing the values of the hyper-parameters can have an impact
on the accuracy while also working to lower the computational complexity. In addition,
the performance of conventional approaches for segmentation, classification, and fusion
needs to be improved. The main contributions of the paper are listed below to help solve
these issues:

• Preprocessing, fusion, segmentation, and classification steps were combined to create
a brand-new BTFSC-Net model that no other authors have yet created.

• The original purpose of HPWF was to improve the contrast, brightness, and color
qualities of MRI and CT medical images by removing various noises from them.
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• The REA analysis is combined with the input data MRI and CT images using DLCNN-
based fusion network, which identified the tumor region.

• For the separation of a tumor region from a fused image, the HFCMIK method is used
to further characterize the major region of the brain tumor.

• Using the gray-level cooccurrence matrix (GLCM), redundant discrete wavelet trans-
form (RDWT) trained features, the classification of benign and malignant tumors is
achieved using DLPNN.

• Data from simulations illustrate that the designed approach outperformed state-of-
the-art methodology.

2. Proposed Methodology

The classification techniques for brain tumors are thoroughly examined in this section.
Both Figure 1 and Table 1 present the proposed algorithm for the BTFSC-Net technique.
Medical images are put through an HPWF before being processed further to remove any
noise. To fuse MRI and CT medical images while retaining REA capabilities a new method
is designed. Since it is essential to obtain the slopes and boundaries of the image, REA
is utilized.
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Figure 1. Segmentation and classification model for a proposed brain tumor fusion (MRI: magnetic
resonance imaging, CT: computed tomography, PET: positron emission tomography, SPECT: single
photon emission computed tomography, REA: robust edge analysis, HPWF: hybrid probabilistic
wiener filter, DLCNN: deep learning convolutional neural networks, HFCMIK: hybrid fuzzy C-means
integrated K-means, RDWT: redundant discrete wavelet transform, GLCM: gray-level cooccurrence
matrix, DLPNN: deep learning probabilistic neural network).
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Table 1. Fusion of a proposed segmentation and classification system for brain tumors.

Input: MRI and CT brain images
Output: Classified outcome
Intermediate outcomes: Fused and Segmented outcomes
Objective Evaluation-Set 1: Entropy, MI, UQI, STD, PSNR.
Objective Evaluation-Set 2: SACC, SSEN, SPEC, SPR, SNPV, SFPR, SFDR, SFNR, SF1, SMCC.
Objective Evaluation-Set 3: CACC, CSEN, CPEC, CPR, CNPV, CFPR, CFDR, CFNR, CF1, CMCC

Step 1: Perform preprocessing operations using HPWF for the removal of various noises from
MRI and CT medical images, which also enhances the contrast, brightness, and
color properties.

Step 2: Then, DLCNN-based Fusion-Net is used to fuse the preprocessed MRI, and CT images
with the REA analysis, which improves the region of the tumor.

Step 3: In addition, HFCMIK is used to segment the tumor region from the fused outcome, so an
accurate area of the brain tumor is detected.

Step 4: Finally, DLPNN is used to classify the benign and malignant tumors from the GLCM,
RDWT-trained features.

Step 5: Calculate objective and subjective performance.

• The objective evaluation of set-1 is measured from Fusion-Net.
• The objective evaluation of set-2 is measured from HFCMIK.
• The objective evaluation of set-3 is measured from DLPNN.

HFCMIK clustering is utilized to separate the diseased region from the fused image.
Furthermore, the fused image is utilized to integrate empirical color features, low-level
features based on the RDWT, and texture characteristics based on the GLCM to form hybrid
features [37,45]. The distinction between benign and malignant tumors is made using
a DLPNN.

2.1. Hybrid Probabilistic Wiener Filter Method (HPWF)

With the use of Gaussian mask kernels, the HPWF successfully improves and elim-
inates noise from images. The HPWF algorithm may be found in Table 2, and pixels
comprise images. Many groups of the image have been divided. After the pixel cluster is
implemented to HPWF in one of these ways, the resultant pixel is an improved version of
the primary pixel. Each image pixel is contaminated by a variety of noise sources. Consider
the original image Oij and Gij is the noise term with ith row, jth column pixel values. Here
is the produced image with noise Xij:

Xij = Oij + Gij (1)

To estimate the gaussian noise variance, the Gaussian mask is convolved with a noisy
image Xij of size M × N. We describe the use of eigenvalues as a threshold parameter for
denoising Gaussian noise in images. Gaussian noise is removed through thresholding in the
transform domain rather than the spatial domain. Using spatial coefficients, thresholding
is performed to estimate great pixels. The noisy image of size M × N is then mean filtered
and stored in X̃i,j. By subtracting the noisy image from the mean filtered image, the
difference mask (Di,j) is created. This difference mask is then used to keep only uniformly
distributed pixels (V) of an image based on whether (Di,j) is less or greater than the mean
(µ). The denoised (Yi,j) image is created by adjusting the mean filtered image based on the
threshold setting.

The noisy image of size M × N is then mean filtered. By subtracting the noisy image
from the mean filtered image, the difference mask is created. The denoised image is created
by adjusting the mean filtered image based on the threshold setting.
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Table 2. HPWF Approach.

Input: Noisy image Xij
Output: Denoised image Yij

Step 1: Consider Xij image with M × N sizes.

Step 2: Estimate σGN of Xij as follows:

σGN =
1

MN ∑M
i=1 ∑N

j=1|X ∗MASK|i,j (2)

Here, ∗ denotes the convolution operation, σGN is noise deviation.

Step 3: Change the size of the mask based on σGN factor as follows:

w =

{
3× 3, σGN < 20
5× 5, σGN ≥ 20 (3)

Step 4: Apply Xij input to the mean filtering for low-level noise removal.

X̃i,j =
1
R ∑R

i=1 ∑R
j=1 Xi,j ∗ wi,j (4)

Here, R is a range of pixels in the mask, which is either 9 or 25.

Step 5: Calculate the absolute difference between the mean filtered outcome to Xij.

Di,j =
∣∣∣Xi,j − X̃i,j

∣∣∣ (5)

Step 6: Eliminate pixels more than the mean value (µ). Choose the pixels in X̃i,j or Dij
as follows:

V =


{

D(1), D(2), D(3) . . . D(n)

}
, Dij < µ{

X̃1, X̃2, X̃3, . . . , X̃n

}
, Dij ≥ µ

(6)

Step 7: Apply the weighted average on V, and it generates the denoised outcome (Yij).

Yij = mean(V) (7)

2.2. Proposed Fusion Strategy

The new technique may combine images from a variety of imaging methods, e.g.,
MRI-SPECT, MRI-CT, and MRI-PET combinations, by using two distinct structures. The
hybrid DLCNN for fusing MRI-CT/PET/SPECT images is shown in Figure 2. To enhance
slope analysis in the event of misalignment, image decomposition is performed using the
REA technique. This removes the edges and slopes from the primary input image. Medical
images typically have piecewise smooth slopes, with Analysis indicating the edges. The
edge positions on these images should line up with the CT image when they are aligned.
This highlights how the analytical feature is dynamic and changing using the given medical
images. Analysis literature has not looked at this property. Active slope analysis images
and signals are the names given to this type of image or signal today.

By subtracting the blurred input photos from the represented input images using
HPWF, crisp images are produced. The fused output is then produced by combining the
results from the HPWF and REA. The operational technique of the recommended method
is shown in Table 3.
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Figure 2. Hybrid DLCNN for MRI-CT/PET/SPECT image fusion.

Table 3. Proposed Fusion algorithm.

INPUT
OUTPUT

MRI Medical Images, PET/SPECT/CT Image Types
Fused Image

Step 1 XCT ← MRI CT Images
XPET ← MRI PET Images
XSPECT ← MRI SPECT Images
//Input MRI Greyscale medical images

Step 2 if (XCT) then //compare image type
EedgeSlopeImg ← REA (XCT)
//apply Robust Edge Analysis (REA) to generate edge-slope-analysed images
Else if (XPETORXSPECT) then
Cb, Y, Cr ← RGB2YCbCrColorCon (XPET, XSPECT)
//the above function converts
EedgeSlopeImg ← REA (XCT)
//Convert all the images I into data vectors

Step 3 Ffeatures ← HPWF (EedgeSlopeImg)
//calculate weighted data points of the image vector I

Step 4 if (XCT) then
XFO ← FusionNetFeatureFusion (Ffeatures)
Else if (XPET ORXSPECT) then
FOfusedOutcome ← FusionNetFeatureFusion (Ffeatures)

XF ← YCbCr2RGBColorCon (FOfusedOutcome)

2.2.1. Robust Edge Analysis

During the fusion process, contemporaneous registration of the raw medical images
is accomplished using an REA approach shown in Table 4. Because misalignment is
challenging to correct, accurate registration is necessary when combining MR and CT
images. To increase resolution and enable precise image registration, the MR image is
first focalized.
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Table 4. REA algorithm.

INPUT:
OUTPUT:

Medical Images (I)
Edge Based slope analyzed images

Phase 1: X ← Medical Images
//input of medical images
XTest ← TrainTest (X)
//extract the test images from the medical images X

Phase 2: YNoiseFree ← GaussianFiltering (XTest)
//Noise-free medical images using the gaussian approach

Phase 3: DDecomposedImages ← CannyEdgeDetection (YNoiseFree)
//decomposed images, extracted with perfect shapes, edges, textures,
and spatial regions

Phase 4: IFinedImages ← EdgeRemovalAverageThresholdWeight (DDecomposedImages)
//This removes unnecessary edges & detailed layers of each image are
generated using the above method

Phase 5: EEnergyDetails ← LayerWiseEnergyCal (IFinedImages)
//The above function will calculate & generate energy details with Equation (1),
& variations present in the energy level of an image then subproblems of test
images will be developed

Phase 6: EPerfectEnergyLevels ← ξ(PerfectEnergyCal (EEnergyDetails))
//The above function develops the perfect energy levels using slope parameter ε

Phase 7: IEnergyOptimizedImage ← EnergyOptimizedImages (EPerfectEnergyLevels)

//Apply σGN = 1
MN

(
∑m

i=1 ∑n
j=1|X ∗MASK|i j

)
formula to remove irrelevant

energy levels for smooth and non-smooth regions

Phase 7:

if (IenergyOptimizedImage = smooth) then
IOptimizedImage = EdgeBasedSlopeImage (IenergyOptimizedImage)
else if (IenergyOptimizedImage = non-smooth) then
IOptimizedImage = EnergyMap (IenergyOptimizedImage)

Phase 8: Output the IoptimizedImage for further image analysis

Similarly, a gradual mismatch reduction enables precise image fusion. Until conver-
gence is reached, these two processes are repeated. Additionally, it takes into account the
hitherto ignored intrinsic correlation of various bands. A novel active slope methodology
has been devised to optimize the total energy value in these bands. Backtracking is em-
ployed to extract the slope while quick REA iterations are used to effectively solve the
subproblems. The REA contains just one non-sensitive argument, unlike conventional
variation techniques. Medical image fusion begins with input medical image registration.
Without increasing processing complexity, large medical images require trustworthy sim-
ilarity evaluation. Data is therefore kept in space via REA. A mismatch in the medical
imaging would also make slopes analysis worse. As a result, REA is employed in nature
to establish similarity [44]. Energy has a role in the simultaneous registration and fusion
of molecules.

E =
1
2

∣∣ψR−M− C
∣∣2 (8)

The terms R, down-sampling process, and E stand for the image energy and energy
function optimization of the subproblem image, respectively. The low resolution would
cause a significant shift and image blurring because Equation (8) obtains the per-pixel
energy cost utilization [46]. The slope extraction method is employed to prevent such a
simple fix. Iteratively moving a image in the wrong direction could be effectively avoided
by doing this. Equation (9) demonstrates that the objective of this method is to optimize
energy. To begin with, the issue is resolved for R as follows:

E = ξ

(∣∣∣ψR− (M− C)
′ ∣∣∣2 + ∣∣∣ψR− (M + C)

′ ∣∣∣2) (9)
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Here, the term in Equation (2)’s first part is smooth, however, the second part is not;
ξ is an ideal slope parameter.

2.2.2. DLCNN-based Fusion Network

Applications for segmenting, classifying, and fusing images typically use deep learn-
ing. A Fusion-Net architecture based on DLCNN is shown in Figure 3 for fusing several
image modalities according to characteristics. The proposed Fusion-Net architecture makes
use of convolutional layers: max layering concatenation and two-way SoftMax. Convo-
lution layers are used to extract fine details, and their main job is to perform convolution
between the kernel-based weight fusion and the input image patch. Convolution layers
applied to MR and CT images are shown in Equations (10) and (11), respectively.

F1 = max(0, W1 ∗ (XMR) + B1) (10)

F2 = max(0, W1 ∗ (XCT) + B1) (11)
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Here, the Bias function is denoted by B1 which depends on the rectifier linear unit
(ReLU), and W1 is a matrix based on the kernel containing the most recent weight values.
Primarily, the neural network includes 64 feature maps of 16 × 16 size, whereas the
convolutional layer kernel consists of 3 × 3 size features. Equation (12) depicts how the
ReLU works.

ReLU = max(0, x) (12)

Additionally, the MaxPooling layer receives the information from the convolutional
layers as input and precisely extracts each type of feature. The primary objective of the
MaxPooling layer is to extract the inter and intra dependencies between MR and CT
features. By using both inter and intra dependencies, it is possible to determine how CT
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affects MRI and vice-versa [46]. Equations (19) and (20) illustrate how the MaxPooling
layer operates.

F3 = max(0, W2 ∗ (F1 + F2) + B2) (13)

F4 = max(0, W2 ∗ (F2 + F1) + B2) (14)

Here, W2 denotes the matrix based on the kernel containing the recent weight pa-
rameters and B2 denotes a bias function built using a ReLU, respectively. The combined
MR and CT features are produced as MaxPooling layer outputs with the letters F3 and
F4, respectively. Additionally, the kernel in the MaxPooling layer in the second stage has
128 feature maps with a 16 × 16 size, and vice versa.

FR = max(0, W3 ∗ {F3, F4}+ B3) (15)

Here, fused feature maps are represented with FR created by the neural network, The
kernel matrix with the most recent weight values is known as W3, B3 stands for the bias
function based on ReLU, and W3 stands for the kernel matrix.

In Figure 3a, Convolution layers are used in the developed model to analyse the
two-channel image and produce feature maps with change information. The final feature
vector for these feature maps is derived using the global average pooling, which helps to
lessen the fitting problem. The fully connected layer (FC) then outputs the change category.
In Figure 3b, Within the designed model, each branch employs several convolutional
layers and global average pooling. The top network, which is made up of FC, receives the
two branch outputs after being concatenated. With the top network acting as a classifier
and the two branches acting as two feature extractors.

2.3. Proposed Hybrid Fuzzy Segmentation Model

The analysis and segmentation of tumors depend heavily on brain imaging. The
intended method for segmenting tumors using HFCMIK is shown in Figure 4. Adap-
tive cluster index localization, which also introduces similarity matching and the mean
characteristic of cluster centers, addresses the problem and maximizes the limitations of
conventional k-means clustering. Adaptive k-means clustering (AKMC) is a new technique
for adaptive segmentation and cluster will be addressed by fuzzy kernel c means (FKCM)
clustering approach.
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Two stages make up the HFCMIK algorithm. In the first step, initial centroids are
selected using the AKMC approach. Therefore, initial centroids are set for the duration
of the process. It lowers the number of iterations required to combine similar things. By
choosing a distinct starting centroid, the AKMC algorithm offers local optimum results
in the end. This results in the global optimum solution of the AKMC algorithm. For the
second phase, On employs the weighted FKCM approach based on Euclidean distance
and segments deal with the weights related to each feature value range in the collection of
data [46]. A weighted ranking method is used by the upgraded proposed algorithm. Each
piece of data’s distance from the origin to the weighted attribute is calculated using the
weighted ranking approach. Equation (16) calculates weighted data points.

∪n
j=1 = ∑n

i=1 WiXi (16)

where the weightage of input is indicated by Wi. Equation (18) shows the format for
calculating n numbers of U values for n data points.

∪n
j=1

U1
U2
Un

 (17)

The weighted data points (Ui) are subsequently sorted by their distances. This data is
then separated into pixel block sets, where k is the whole quantity of clusters. The center
points or the mean value of each group serve as the initial centroids. Consistency among
cluster members is caused by the initial centroids of this technique. The proposed weighted
ranking method selects beginning centroids using the distance formula since HFCMIK
selects group members using distance measurements. The recommended weighted ranking
notion is therefore helpful for maximizing the choice of initial centroids. The method’s
first phase includes two key components: the distinct initial centroid selection and the
processing weights based on attribute values. An image is divided into clusters via the
clustering method known as the HFCMIK and the proposed hybrid fuzzy segmentation
model is shown in Table 5. It re-estimates the segmented output while using centroids to
represent its artificially created cluster.

Table 5. Proposed hybrid fuzzy segmentation model.

INPUT
OUTPUT

Fused Medical Images(I)
Segmented Medical Image(S)

Step 1 I ← FusedImages
//Initialize the I variable with fused medical images

Step 2 X[I] ← ImgToVectorConvert (I)
//Convert all the images I into data vectors

Step 3 U[i] ← W[i]*X[i]
//calculate weighted data points of the image vector I

Step 4 Repeat step 2,3 until all the images are converted to vectors and weighted data
points calculated

Step 5 Ccentroid ← AKMC (U,K)
//calculated and identify the initial centroids(cluster centers) with k data points
by//Adaptive k-Means Clustering (AKMC)

Step 6 Ssort ← WeightedSorting (U)
//perform the sorting operation on weighted data points U

Step 7 D ← FKMC (U, Ccentroid)
//calculate the Euclidian distance from weighted data points (U) to the
centroids Ccentroid using fuzzy Kernel c-Means (FKMC) & initialize to distance D

Step 8 CSClusterSegment ← FindOptimalCentroid (MIN (D))
//fetches the optimal centroid with minimum distance and assigned as cluster
segment CS

Step 9 Repeat steps 5 to 7 until all clusters traversed
Step 10 S ← CombineAllSegments (CS)

//combine all the cluster segments and produce the calculated segment output S
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2.4. Proposed Hybrid Feature Extraction

The different lesions can be categorized using a number of the brain tumor’s features
that can be retrieved. Several crucial traits, such as low-level features based on RDWT and
texture characteristics based on GLCM, features of matrix color, and others, that support the
differentiating of brain tumors have been extracted. The spatial relationship between the
pixels representing the brain tumors is taken into account using the texture analysis method
known as GLCM. The GLCM method computes the texture of the tumor and uses that data
to characterize the texture using repeated frequently occurring image combinations with
measured value and frequency characteristics that exist in the brain tumor. The approach
outlined above can be used to get statistical texture features from the GLCM matrix once it
has been created. This probability measure describes the probability that a particular grey
level is present near another grey level [46].

Contrast = ∑N−1
a,b=0 Sa,b(a− b)2 (18)

Homogeneity = ∑N−1
a,b=0

Sa,b

1 + (a− b)2 (19)

Correlation = ∑N−1
a,b=0 Sa,b

[
(a− µa)(b− µb)√

(σa2)(σb
2)

]
(20)

Angular Second Moment (ASM) = ∑N−1
a,b=0 S2

a,b (21)

Energy =
√

ASM (22)

Following that, a two-level RDWT is used to extract the low-level features.
The LL1, LH1, HL1, and HH1 bands will be represented by the segmented result

when RDWT is initially applied to the outcome. The entropy, energy, as well as correlation
parameters, are calculated using the LL band. The result is then effectively obtained as
LL2, LH2, HL2, and HH2 while applying RDWT one more time to the LL output band. As
illustrated in Figure 5, the LL2 band used to be once more utilized to evaluate the entropy,
energy, and correlation characteristics.
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The segmented image is then used to obtain statistical color data based on the mean
and standard deviation.

Mean (µ) =
1

N2 ∑N
i,j=1 I(i, j) (23)

Standard Deviation (σ) =

√
∑N

i,j=1[I(i, j)− µ]2

N2 (24)

Following that, all of these features are integrated using array concatenation, produc-
ing a hybrid feature matrix as the output.
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2.5. Proposed DLPNN Classification

Deep learning models are playing an increasingly significant role in feature extraction
and classification operation. Deep learning-based probabilistic neural network (DLPNN)
models may be utilized to extract highly correlated detailed features from the segmented
images. The segmented image links between various segments can be identified by this
model, and the links can then be extracted as features. Finally, the DLPNN models that
used these features during training perform the classification task. Using distinguishing
features from upper-level inputs, DLPNN derives more complex features at earlier stages.
The DLPNN method for feature classification and extraction is shown in Figure 6. Each
layer is closely examined, and statistics on the layer’s size, number of iterations (or kernel
size), number of filters, and characteristics are as follows: training samples are 369, the
batch size is 90, the number of epochs: 300, number of iterations: 25,000, learning rate: 0.02,
Conv2D layer: 2, activation Layer: ReLU activation with frame size: Layer1 {62, 3 × 3,
32}, Layer2 {29, 3 × 3, 64}, MaxPooling 2D layer: 2 with frame size: Layer1 {31, 2 × 2, 32},
Layer2 {14, 2 × 2, 64}, flatten layer: 1 with frame size: Layer1 {1 × 12,544}, dense layer: 2
for activation layer: ReLU activation with frame size: Layer1 {1 × 128}, Layer2 {1 × 21}.
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Each layer is closely examined, and statistics on the layer’s size, number of iterations
(or kernel size), number of filters, and characteristics are presented. The DLPNN model,
which executes the joint classification and feature extraction of brain tumors, is constructed
by integrating all of the layers.

3. Results and Discussion

The extensive simulation model of the Fusion-Net deep learning model used for image
fusion, which is performed by using the simulation environment of MATLAB R2019a, is
presented in this section. The simulations also make use of datasets, and objective and
statistical efficiency is evaluated.

3.1. Data Set

The BraTS 2020 dataset (https://www.kaggle.com/datasets/awsaf49/brats20-dataset-
training-validation (accessed on 1 July 2022) and the CBICA Image Processing Portal
(https://ipp.cbica.upenn.edu/ (accessed on 1 July 2022) is applied to study the efficiency
of the designed model. Multimodal brain MR analyses include 369 training, 125 valida-
tions, 169 tests, and T1-weighted (T1), T1ce-weighted (T1ce), T2-weighted (T2), and flair
sequences. All MR images are 240, 240, 155 pixels. Results showed evaluated each study’s
enhancing tumor (ET), peritumoral edema (ED), necrotic, and non-enhancing tumor core
(NET). The training sets are annotated for online evaluation and the best classification
challenge, but the validation, as well as test sets, are not.

https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation
https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation
https://ipp.cbica.upenn.edu/
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3.2. Fusion Process’s Performance Measurement

MR-CT Fusion approach: the effectiveness of the proposed method for integrating MR
and CT medical images is shown, both objectively and as well as subjectively. Additionally,
the performance of other standard techniques was compared shown in Tables 6 and 7.
Entropy, standard deviation (STD), structural similarity index metric (SSIM), peak signal-to-
noise ratio (PSNR), and mutual information (MI) metrics are used to compare performance.

Table 6. MR-CT image fusion approaches performance analysis.

MCA-CS [14] LTEM [15] DB-CNN [17] GF-SDL [18] LDNSD [19] Proposed

Entropy 5.394 5.847 6.7983 7.397 7.0488 11.4936
MI 0.4747 0.7973 0.8875 0.936 1.283 1.704

PSNR 24.377 34.394 37.894 40.458 43.569 47.390
SSIM 0.837 0.874 0.896 0.942 0.968 0.997
STD 0.2873 0.138 0.10327 0.0837 0.0675 0.0437

Table 7. MR-PET image fusion approaches performance analysis.

Metric MCA-CS [14] LTEM [15] DB-CNN [17] GF-SDL [18] LDNSD [19] Proposed

Entropy 8.191 7.976 8.884 10.365 10.0489 14.4187
MI 1.5672 1.6821 1.9563 2.66 3.28 6.04

PSNR 25.377 31.394 34.894 43.458 46.569 51.39
SSIM 0.87 0.884 0.916 0.942 0.968 1.097
STD 0.3902 0.4188 0.5109 0.683 0.775 0.8437

Figure 7a,b show the source CT and MR images, and Figure 7c–h shows the results of
various fusion techniques. Figure 7 demonstrates how the Fusion-Net performed better
than more traditional methods. The usual approaches struggle to produce superior visual
outcomes in this situation due to issues with brightness and saturation. For all quality
measures, it can be seen from Table 6 that the proposed approach produced superior
quantitative analysis than the conventional approaches, as shown in Figure 8.
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Figure 8. Percentage-based visual display of MR-CT image fusion methods (MCA-CS [14], LTEM [15],
DB-CNN [17], GF-SDL [18], LDNSD [19]).

MR-PET Fusion approach: the efficiency of the designed approach for fusing MR and
PET medical images is shown in this section, both subjectively and objectively. Additionally,
the performance of many standard techniques was compared, including MCA-CS [14],
LTEM [15], DB-CNN [17], GF-SDL [18], and LDNSD [19], respectively.

Figure 9a,b show the original MR and PET images, and Figure 9c–h show the results
of various fusion techniques. Figure 9 demonstrates that when compared to traditional
methods the proposed fused output produced the best subjective performance. The various
sorts of noise in this situation prevent the standard procedures from producing better visual
outcomes. Table 7 shows that for all of the quality measures for color PET images, the
proposed approach produced better objective analysis when compared to conventional
approaches. MR-PET image fusion techniques for all metrics are shown in Figure 10.
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3.3. Proposed Segmentation Method

Figure 11 illustrates how the suggested HFCMIK segmentation strategy enhanced
the localization of the tumor tissue in MR, CT, and fused images analyzed with current
methodologies. All of the traditional methods localize the tumor region incorrectly. To
evaluate different techniques’ performance and analyzed with a proposed method as well
as compared in Table 8 to cutting-edge. The suggested HFCMIK technique produced higher
objective performance, as seen in Table 8. Figure 12 displays a graphic depiction of Table 8.
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Table 8. Performance evaluation of various methodologies for segmentation in percentage.

Method SACC SSEN SPEC SPR SNPV SFPR SFDR SFNR SF1 SMCC

U-NET [20] 90.17 90.39 90.53 93.03 90.81 90.64 90.51 94.19 91.38 94.17
CMDFL [22] 91.2 90.67 91.94 93.41 92.53 92.62 90.86 94.82 93.12 95.51

ERV-NET [23] 93.33 94.12 92.59 94.04 93.33 95.93 92.53 97.11 94.97 97.56
BFC-HDA [27] 96.45 98.32 96.65 95.15 95.88 98.78 96.14 98.13 97.9 97.99

HFCMIK 99.76 99.11 98.19 99.59 98.88 98.89 98.99 99.92 99.43 99.93
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3.4. Proposed Classification Methodology

Comparison is made with the designed DLPNN classification strategy with existing
techniques. Several metrics evaluation parameters are used in this article to compare the
performance of various methods. Table 9 compares the proposed DLPNN approach’s
classification performance to cutting-edge approaches. Table 9 illustrates that the designed
DLPNN method exceeded state-of-the-art techniques with there better results. Figure 13
shows a graphical representation of tables.

Table 9. Comparison of different methods’ classification performance in percentage.

Method CACC CSEN CPEC CPR CNPV CFPR CFDR CFNR CF1 CMCC

TL-CNN [33] 93.54 91.45 91.23 92.81 93.67 94.98 90.78 94.87 93.31 91.22
TL-CNN [38] 95.64 95.14 94.36 95.76 96.79 96.42 94.72 95.48 94.45 93.62

FTTL [31] 96.84 96.73 95.44 96.86 97.89 97.84 96.71 96.59 95.26 96.38
GAN-VE [36] 98.96 97.94 97.55 97.73 98.88 98.83 96.99 97.48 97.74 98.81

VGG19 + GRU [46] 97.08 97.77 96.55 95.63 98.25 96.35 97.35 96.89 96.69 98.38
DLPNN 99.91 99.95 98.91 99.57 99.77 99.94 98.86 98.47 98.92 99.91
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4. Discussion

Traditionally used models experience considerable computational complexity as
dataset sizes increase. It is also necessary to improve the efficiency of traditional tech-
niques in terms of fusion, segmentation, and classification. In the related work, various
deep learning models are designed with a great level of complexity. Therefore, in the
present study specific models with a distinctive selection of filters, filter widths, stride
factor, and layers is proposed. Each of these arrangements results in a distinct framework
in the proposed fusion classification model.

Additionally, at present, there is no standard approach for feature extraction, segmen-
tation, fusion, or classification. Additionally, none of these hybrid method combinations
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are documented in the literature. As a result, a unique BTFSC-Net model including steps
for pre-processing, image fusion, image segmentation, and image classification has been
designed in this presented research. Regarding the limitations of the proposed method,
small medical datasets could be partially or fully overcome by MRI and CT images, which
would also aid deep learning models in producing passable results.

5. Conclusions

A segmentation and classification model was constructed in this study along with a
hybrid fusion. This model efficiently helps radiologists and medical professionals locate
brain tumors more accurately. This technique is effective for computer-assisted brain
tumor categorization. This study first used the HPWF filtering method to preprocess the
original photos and remove noise. Additionally, a Fusion-Net based on DLCNN was
used to combine the two source images with various modalities. The location of the brain
tumor was then determined using enhanced segmentation based on HFCMIK. Additionally,
using GLCM and RDWT techniques, hybrid features were recovered from the segmented
image. The trained characteristics were then utilized to classify benign and malignant
tumors using DLPNN. The simulation-based research results showed that the proposed
fusion, segmentation, and classification approaches showed an improved performance.
The research results also demonstrated that the suggested strategy can be used in real-time
applications to classify brain tumors. The outcomes of the present study in comparison to
the findings from previous studies demonstrated the potential capability of the proposed
framework. The designed approach may be utilized to produce medical images for a variety
of medical conditions in addition to brain tumors. Additionally, this study can be expanded
to build a categorization system for brain tumors using bio-optimization techniques.
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Abbreviation

Abbreviations Specification Abbreviations Specification

BTFSC-Net
Brain Tumor Fusion-Based
Segments and Classification–Non-
Enhancing Tumor

FTTL Fine-Tuning-Based Transfer Learning

HPWF Hybrid Probabilistic Wiener Filter GAN-VE
Generative Adversarial Networks Based
on Variational Autoencoders

REA Robust Edge Analysis HDNN Hybrid Deep Neural Network

DLCNN
Deep Learning Convolutional
Neural Networks

AKMC Adaptive k-means Clustering

HFCMIK Hybrid Fuzzy C-Means Integrated K-Means FKCM Fuzzy Kernel C Means
RDWT Redundant Discrete Wavelet Transform MRI-MRA Magnetic Resonance Angiography
GLCM Gray-Level Cooccurrence Matrix SACC Segmentation Accuracy

https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation
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DLPNN
Deep Learning Probabilistic
Neural Network

SSEN Sensitivity

MIF Medical Image Fusion SPEC Specificity
MRI Magnetic Resonance Imaging SPR Precision
CT Computed Tomography SNPV Negative Predictive Value
PSO Particle Swarm Optimization SPVR Segmentation False Positive Rate
MSD Multi-Scale Decomposition SFDR Segmentation False Discovery Rate
MMIF Multimodal Medical Images Fusion SFNR Segmentation False Negative Rate

MRI-SPECT
Single Photon Emission
Computed Tomography

SF1 Segmentation F1-Score

MRI-PET Positron Emission Tomography SMCC
Segmentation Matthew’s
Correlation Coefficient

NSST
Nonsubsampled Shearlet
Transform Domain

CACC Classification Accuracy

MCA-CS
Morphological Component Analysis-Based
Convolutional Sparsity

CSEN Sensitivity

LTEM Laws Of Texture Energy Measures CPEC Specificity

GFSR
Raph Filter And Sparse
Representation

CPR Precision

PCA Principal Component Analysis CNPV Negative Predictive Value
NSCT Non-Subsampled Contourlet Transform CPVR False Positive Rate
CNP Coupled Neural P CFDR False Discovery Rate
FLS-CNN Fast Level Set-Based CNN CFNR False Negative Rate

BFC-HDA
Bayesian Fuzzy Clustering With Hybrid
Deep Autoencoder

CF1 Classification F1-Score

SDAN Symmetric-Driven Adversarial Network CMCC
Classification Matthew’s
Correlation Coefficient

DLSDA
Deep Learning With Synthetic
Data Augmentation
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