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Abstract: A dual autoencoder employing separable convolutional layers for image denoising and
deblurring is represented. Combining two autoencoders is presented to gain higher accuracy and
simultaneously reduce the complexity of neural network parameters by using separable convolutional
layers. In the proposed structure of the dual autoencoder, the first autoencoder aims to denoise
the image, while the second one aims to enhance the quality of the denoised image. The research
includes Gaussian noise (Gaussian blur), Poisson noise, speckle noise, and random impulse noise.
The advantages of the proposed neural network are the number reduction in the trainable parameters
and the increase in the similarity between the denoised or deblurred image and the original one. The
similarity is increased by decreasing the main square error and increasing the structural similarity
index. The advantages of a dual autoencoder network with separable convolutional layers are
demonstrated by a comparison of the proposed network with a convolutional autoencoder and dual
convolutional autoencoder.

Keywords: machine learning; image processing; computer vision; image denoising; autoencoder;
dual autoencoder; convolutional neural network; separable convolutional neural network; deep
learning; non-linear model

1. Introduction

After the invention of the camera in 1816, images became a significant information-
saving and data-saving unit in our lives. The use of images influenced all the fields of
human knowledge, from history and art to medicine and technology and many others.
However, one of the main disadvantages of images in physical and digital forms is their
lack of resistance to noise and impact. In addition, with the development of digital cameras,
new types of noises that can affect an image appeared; therefore, noise reduction in image
processing and computer vision started to get more attention from researchers due to its
importance, and image denoising became a significant area of research. Many models are
built by means of algorithms that identify connections among picture pixels and generate
predictions about the value of an individual pixel based on the attributes of the image [1].
Image denoising is applied in the following:

• In image restoration, which is the methodology of reaching the original image from a
distorted noisy image. Image restoration is accomplished by inverting the process that
blurs or destroys the parts of the original image [2–7].

• In visual tracking, which is the process of tracking objects, animals, or humans using
cameras, the tracking environment could have a lot of noise sources caused by natural
reasons such as weather like heat or by stimulated reasons such as radiation in nuclear
stations [8,9].

• In image registration, which is the technique of overlaying multiple images to be
examined, data from several images have to be combined to gather information using
different sensors and those could be exploited to noise [10,11].
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• In image segmentation, in which noise in pixels can appear when dividing a single
digital image into multiple portions called image segments or image regions to facili-
tate or modify the image presentation into a form, which is more significant and more
comfortable to investigate and analyze [12,13].

Significantly, artificial intelligence and machine learning found origins in image de-
noising because images are one of the main sources of information that can arise from
different origins, including the internet, medical archives, historian archives, social me-
dia, reviews, etc. Since images are not resilient to noise, understanding information from
distorted or noised images would be challenging and difficult, yet after the development
of deep learning, image denoising is developing and allowing us to be able to restore the
original images and to take a piece of meaningful information from it with minimal effort.
Many algorithms and approaches are used to achieve image denoising, such as:

1. Spatial domain filtering is a method for extracting noise by calculating the gray
value for the current pixel, relying on itself and the surrounding pixels in the original picture.
In general, linear and non-linear filters are the two primary classes of
filters [5–7,14–16]. Linear filters in the spatial domain removed noise, but they failed
to maintain image consistencies. For example, the Wiener filter was used for Gaussian
noise (Gaussian blur or Gaussian smoothing) reduction to overcome the disadvantage of
the mean filter because it can overfit the smoothness of an image with high noise [17,18].
However, the Wiener filter sometimes caused the sharp edges in images to be blurred.
Non-linear filters, such as the median filter, weighted median filter, and bilateral filter, can
reduce noise without any unique identification due to their edge-preserving characteris-
tic [19–21]. This characteristic indicates that the intensity value of each pixel is substituted
with a weighted average of the intensity values from nearby pixels rather than a single
intensity value.

2. Total variation is a method founded on the principle that the integral of the absolute
image gradient increases when the images include excessive details; therefore, it has a high
total variation. As a result, reducing a noisy image’s overall variance to a near value to
the original image removes extraneous detail while maintaining critical elements such as
edges. The key benefit of this approach over the previous methods is that it decreases noise
while at the same time maintaining the borders of the picture [22–24].

3. Non-local means, in this technique, the main difference from the previous methods
is that it depends, unlike them, on all the pixels in the image in calculating the mean. After
that, it weights the mean of all the pixels according to their similarity with the target pixel,
resulting in significantly better post-filtering clarity and less image information loss [25–27].

4. Data-adaptive transform, which is a technique to improve artifact removal based
on the transform domain approach using a blend of data-adaptive and non-data-adaptive
transform domains [28]. The removal of artifacts from the scalp electrocardiogram is critical
for both automatic and visual examinations of underlying brainwave activity [29].

5. Non-data-adaptive transform is a technique that may be separated into two domains:
the spatial-frequency domain and wavelet domain, which is a methodology for transform
domain filtering approaches [30]. Low-pass filtering is a spatial-frequency domain filtering
technique that works by producing a frequency-domain filter that allows all frequencies
below a cut-off frequency to pass through while decreasing all frequencies beyond the
cut-off frequency. In contrast, a scale-space representation is created by the use of the
wavelet transform [31].

6. A significant area of research is image denoising where many models are built on
algorithms that identify connections among picture pixels and generate predictions about
the value of an individual pixel based on the attributes of the image. This challenge may be
thought of as a supervised learning problem in which each noisy image represents an input,
and the intended result is the original shape of the image [32]. This supervised learning
model analyzes the observations or input images and provides a solid representation of
the connection between the input and output. Research in image processing and computer
vision with diverse experiences has started using deep neural networks to solve a vast range
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of tasks in these fields, including image classifications, image recognition, face detection,
face recognition, emotion recognition, and now image denoising [33–38]. This breakthrough
made it possible to use deep neural networks to examine the picture denoising problem.
A convolutional neural network (CNN) has the ability to learn noise patterns due to its
property of feature extraction; therefore, by constructing a model of multiple layers of
CNN, this model will be able to learn these patterns and modify its weights through the
training process on big datasets to cancel these noise patterns. Therefore, many researchers
in image denoising used convolution neural networks as a base for their models. The main
modification for convolution layers is to connect them with other layers such as batch
normalization, Relu layers, and Tanh layers to build enhancement blocks, sparse blocks,
and restoration blocks in the models, which achieve the denoising process but with a high
computational cost. In [39], a feedforward architecture of four stages of filtering to denoise
mixed Gaussian-impulse noise was represented. The first stage was a rank order filter
formed from existing filters and the adaptive switching weight mean filter, then three stages
of the CNN layers for the rest of the filtering process. In [40], two modifications to the use of
convolution neural networks were proposed. The first modification combined convolution
neural networks, batch normalization, and Relu layers to build a denoise model of four
blocks: sparse block, feature enhancement block, attention block, and reconstruction block.
The second modification was the feedforward model of five layers of convolution neural
networks with Relu layers to get a denoised image and then enhance it using a pretrained
semantic segmentation model (SegNet). In [41], a pseudo convolutional neural network
model was used to preprocess the image before denoising. The pseudo convolutional
neural network model consisted of three layers (a convolution layer, a pooling layer, and a
filter layer) to get a preprocessed image. After getting the preprocessed image, the model
that combined convolution layers, Relu layers, and batch normalization was used to get
the noise from the noisy image and then subtract it from the preprocessed image to get the
denoised image.

7. Many researchers have lately started to use autoencoders built with convolutional
neural networks (CNNs) to reduce the noise in images [42–46]. Deep neural networks
are increasingly being used to handle a wide range of problems in image processing and
computer vision research, including picture classifications, image identification, face detec-
tion, face recognition, emotion recognition, and even image denoising. This breakthrough
made it possible to examine the topic of picture denoising using deep neural networks. To
minimize picture noise, several researchers have recently begun to employ autoencoders
constructed using convolutional neural networks. Autoencoders with convolution layers
were developed from the previous use of autoencoders with fully connected layers. Since
this development, the main modifications for using the autoencoder are to connect its out-
put with other outputs from blocks of convolution neural networks or other types of neural
networks, then sum these different outputs to get the final output to enhance the output of
the autoencoder. In [42], two models were presented to achieve the denoise process. The
first model was a combination of convolution neural layers with max-pooling followed
by multiple layers of fully connected layers. The second model was an autoencoder with
convolution neural networks and pooling layers, where their results showed the benefits of
using an autoencoder in image denoising over convolution neural networks and fully con-
nected layers without autoencoders. In [43], three separated structures were suggested that
combine autoencoders with feedforward convolution neural networks, pooling layers, and
fully connected layers. Each structure was trained independently, and the final output was
a sum of the three outputs of each structure. In [44], two structures of deep neural networks
were proposed; the first structure was convolution layers to extract global and local noise.
In comparison, the second structure was an autoencoder with pixel up-sampling convolu-
tion layers to remove the noise features from the image. This dual structure was used to
denoise hyperspectral images and work on wavelet transformed bands. In [45], the system
consisted of four blocks: a preprocessing block, preparing synthetic image block, stacked
convolutional autoencoder block, and validation measure block. Therefore, after the image
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was preprocessed and prepared, it entered the stacked convolutional autoencoder (SCAE)
block, where the learning process took place to remove the noise, and then it was validated
in the validation measure block. In [46], the denoising system consisted of two stages.
The first stage was the fast region-based convolutional neural networks (fast R-CNNs) to
restrict the areas in the images that contained the noise. The second stage was denoising
the images using a model of shared layers of convolution neural networks followed by two
structures of deep denoised autoencoder (DDAE) and deep material classifier (DMC). The
DMC consisted of two convolution layers followed by fully connected layers and shared
the first two convolution layers with the autoencoder DDAE, where the DDAE consisted of
fully connected layers followed by three deconvolution layers.

In general, these modifications gave the use of the autoencoder the ability to extract fea-
tures from non-linear processes and perform non-linear transformations image denoising.
However, the main disadvantage was an increase in the computational cost and the time of
training and performing. In this study, the first modification to the use of an autoencoder is
to build a dual autoencoder. The second modification is to use separable convolution neural
networks instead of convolution neural networks. These modifications give our model
the additional advantages of increasing the accuracy of the image restoration, reducing
the training parameters, decreasing the training and performing time of the autoencoder’s
network, and saving memory.

Thus, we can emphasize the following pros for the proposed methodology. First, we
use a special type of neural network, namely, an autoencoder network, which extracts
features from non-linear processes and transformations by means of dimensionality reduc-
tion when compressing the data and information retrievals when decompressing the data.
Second, the dual autoencoder network ensures a higher accuracy of denoising images in
comparison with one autoencoder network. Third, the use of separable convolution neural
networks in dual autoencoders results in decreasing the number of networks parameters
and, consequently, the amounts of the calculation time and occupied memory. The con for
methodology, which is characteristic of autoencoders, consists in the difficulty to reach the
high image restoration quality under a large number of small features.

The paper contains six sections. The significance of image denoising and its applica-
tion fields, the main algorithms, and approaches are used to achieve the image denoising
mentioned in the introduction. The main noise that can affect an image is described in
Section 2. The mathematical model of autoencoder and dual autoencoder using convolu-
tional neural networks and separable convolutional neural networks (SCNNs) is repre-
sented in Section 3. The results of image denoising, their comparison, and corresponding
conclusions are described in Sections 4–6.

2. Basic Types of Noise on Images

Noise is generally described as an accidental variation in brightness or pixel infor-
mation, and it is often created by accident or by the limitations of the image sensor or
camera. Improper environmental circumstances can also create noise. These problems are
repeatedly unavoidable in real systems, which increases the importance of image denoising
in image processing and computer vision. Gaussian noise (Gaussian blur), Poisson noise,
Speckle noise, and impulse noise are considered the main noises that can affect an image.

2.1. Gaussian Noise

The term “Gaussian noise,” anointed after Carl Friedrich Gauss, refers to a sort of
signal noise with a probability density function equivalent to that of the normal distribution
(Gaussian distribution) [47], which means the potential values of the noise are dispersed
according to the Gaussian distribution depending on Equation (1). The normal distribution
formula is given as the following:

G(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (1)
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where G(x) is the normal distribution function; x is the input pixel value; σ is the standard
deviation; and µ is the mean of the values of the input pixels surrounding a current pixel.
Sensor noise caused by low light or extreme temperature, as well as transmission noise
such as electrical circuit noise, are the main origins of Gaussian noise in digital photographs.
Gaussian noise may be minimized using a spatial filter in digital image processing; however,
when smoothing a picture, an unwanted byproduct may be the blurring of fine-scaled
image edges and features, which correspond to blocked high frequencies [48]. Mean
filtering, median filtering, and Gaussian smoothing are three common spatial filtering
techniques for noise reduction [49].

2.2. Poisson Noise

The quantized character of light and the independence of photon detections make
Poisson noise a primary kind of uncertainty related to light measurement. Except in low-
light settings, its predicted magnitude is signal-dependent, and it is the most common
cause of picture noise [50]. The discrete character of electric charge causes shot noise in
electronics. Shot noise may also be seen in photon counting in optical systems, where it is
linked to light’s particle nature [51]. Each photon observation can be considered a separate
event with a randomized distribution pattern. The discrete probability distribution can
define the Poisson process:

P(x) =
e−λt(λt)x

x!
, (2)

where P(x) is the discrete probability distribution; x is the total number of photons detected
by a sensor element during a period of time t; λ is the amount of photons anticipated per
unit time period; and t is the time interval.

Equation (2) is a typical Poisson distribution with the anticipated photoelectric effect
number as the rate parameter λt. Poisson noise is the uncertainty indicated by this distri-
bution. Typically, this estimate is highly accurate. Poisson noise is usually controlled by
other signal-independent forms of noise for lower photon counts. Photon noise is a low
constraint on the uncertainty of measuring light since it is generated from the nature of the
signal. Any test would be prone to Poisson noise even under perfect imaging circumstances,
devoid of all other sensor-based causes of noise [52]. Imaging is considered photon-limited
when Poisson noise is the only substantial source of uncertainty, which is frequent in bright
photon-rich situations.

2.3. Speckle Noise

Speckle is a particulate disturbance that occurs naturally in radars, synthetic aperture
radar, medical ultrasonography, and optical coherent tomography pictures and decreases
their clarity. On the frequency scale, most artificial and natural surfaces are highly harsh.
The common interference phenomena of speckle affect images acquired from these surfaces
by coherent imaging methods such as laser, synthetic aperture radar, and ultrasound. If
we describe our reflectivity function as an array of scatterers, we can understand where
this behavior comes from. Because of the finite resolution, it is transmitted at any given
moment from a large number of potential distributions inside the resolution cell. These
dispersed signals add coherency. Depending on the relative phases of each distributed
signal, they add positively or harmfully. These constructive and destructive interference
patterns, depicted as bright and dark spots in the picture, cause speckles. Whenever the
diffuser’s radiation pattern is considered the primary important parameter for producing
an image during the imaging process, and the change in Radom light phases during the
reflection process is not taken into account, speckles in pictures can be treated completely as
noise [53,54]. The phase function of diffused lights may be thought of as a non-correlation
random field with an equal distribution between 0 and π where the optically surface may
be thought of as a collection of several random diffused patches described in Equation (3).
Evaluating the features of a true speckle pattern reveals that it invariably comprises signal-
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dependent disturbances such as speckle noise. The speckle pattern mathematical model
can be described as the following [55]:

g(x, y) = f (x, y) + r[ f (x, y)]× [n1(x, y) + n2(x, y)] + n3(x, y) + p(x, y), (3)

where g(x, y) is the speckle pattern; x, y is the dimension of the image; f (x, n) is the
intensity of the original image; n2(x, y) and n3(x, y) are statistically independent and
signal-independent from one another, random Gauss distribution noise with zero mean;
n1(x, y) is a random noise that has some spatial correlation, the degree of which is directly
related to the amplitude of the imaging system’s incoherent point spread function; p(x, y)
is the pulse noise whose amplitude probabilistic density is evenly distributed over the
image’s dynamic range; and r[ f (x, y)] is the original image pattern’s compound function.

2.4. Impulse Noise

Salt and pepper noise is another name for impulse noise where sharp and rapid
disruptions in the visual signal might create this noise. It manifests as a scattering of
white and black pixels [5–7,56–58]. Transmitting data faults, memory cell failures, and
analog-to-digital converter flaws can all produce this issue. It takes the shape of white and
black pixels that appear at random and can drastically degrade image quality. Noisy pixels
in photos degraded by salt and pepper noise are alternately adjusted to the minimum and
highest intensity values, giving the image a “salt and pepper” look described in Equation (4).
Unaffected pixels, however, are never affected [59,60]. The following mathematical equation
may be used to express the impulse noise:

F(x, y) =


smin with probability p
smax with probability q
I(x, y) with probability 1− p− q

, (4)

where F(x, y) is the noisy image matrix with impulse noise with dimensions (x, y); smin is
the minimum value of the pixels in the original image I(x, y); smax is the maximum value
of the pixels in the original image I(x, y); and I(x, y) is the original image matrix without
the impulse noise.

3. Dual Autoencoder with Convolutional and Separable Convolutional
Neural Networks

Autoencoders are a kind of artificial neural network design utilized to develop efficient
coding for unlabeled input. In the unsupervised learning process, the architecture of neural
networks is such that we may place a bottleneck in the network, which pushes the network
to represent the original input in a compressed manner [61]. Assuming that each of the input
attributes is completely independent of the others, this compression and reconstruction
operation will be quite challenging. In the case of some structure in the data such as
the correlations between input characteristics, this structure may be learned and used to
the advantage of the user when driving the input through the bottleneck in the network.
Autoencoders are primarily dimensionality reduction (or compression) algorithms with
several critical characteristics, including the following:

1- They are data-specific. Autoencoders can only significantly compress data similar to
the data on which they were previously trained. Because they learn characteristics particular
to the training data, they differ from a basic data compression technique such as zip in that
they learn features specific to the training data [62]. This means that a landscape photo
cannot be compressed by an autoencoder that has been trained on handwritten numbers.

2- They are loosely encoding. The output of the autoencoder will not be an exact
replica of the input; rather, it will be a close but degraded copy of the original [63].

3- They are an unsupervised learning technique. Autoencoders are classified as an
unsupervised learning technique because they do not require explicit labels to be trained
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on to be effective [60]. To be more specific, they are self-supervised in the sense that they
use the training data they are given to make their own labels.

In order to construct an autoencoder, three components are required: an encod-
ing method, a decoding method, and a loss function for comparing the output to the
target signal.

The autoencoder model achieves a balance between the properties and characteristics
listed previously. To properly rebuild the scene, it must pay close attention to the input
signals. A bottleneck (in Figure 1) restricts the amount of information that can be transferred
throughout the whole network due to congestion. By punishing the network depending
on the reconstruction error, our model may learn how to restore the original input from
an “encoded” state in the most efficient manner feasible [64]. The autoencoder structure is
shown in Figure 1 and the model is described as Equation (5):

Φ : X + N → F
Ψ : F → X′ ,
Loss = argmin

Φ,Ψ
||X−Y||

(5)

where Φ is the encoder function that maps the noisy image into the space F that represents
the bottleneck; X is the matrix of the original image; N is the noise matrix added to
the original image; F describes the space of matrices in the bottleneck; Ψ is the decoder
function that maps the space F of the bottleneck into the output; X′ is the output matrix of
the autoencoder; and Loss represents the loss function that aims at minimizing the error
between the desired output X and the current output X′.
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Based on the autoencoder structure, a dual autoencoder is proposed to denoise images.
The dual autoencoder structure is shown in Figure 2.
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As can be seen from Figure 2, there are four kinds of mapping: two for denoising the
image and two for enhancing the quality of the denoised image. The model of the dual
autoencoder is described as the following:

Φ : X + N → F
Ψ : F → X′

Θ : X′ → F′ ,
Ω : F′ → Y
Loss = argmin

Φ,Ψ,Θ,Ω
||X−Y||

(6)

where X is the matrix of the original image; N is the noise matrix added to the original
image; X′ is the output matrix of the first autoencoder; Y is the output matrix of the second
autoencoder; Φ and Θ are the encoder functions of the first and second autoencoders, which
map the matrix (X + N) into the space F of matrices and the matrix X′ into the space F′,
correspondingly; Ψ and Ω are the decoder functions of the first and second autoencoders,
which map the space F into the matrix X′ and the space F′ into the output Y, accordingly;
and Loss represents the loss function that aims at minimizing the error between the desired
output X and the current output Y.

In the case of deep autoencoders, we must additionally consider the capabilities of
our encoder and decoder models, respectively. Ensuring that the autoencoder model is not
just learning an effective technique to remember the training data is critical. Otherwise, the
model will fail. Similarly, to supervised learning concerns, we may use various regular-
ization techniques in the network to promote excellent generalization properties. Because
of the input data, a sparse autoencoder is constrained to activate sections of the network
selectively. In contrast, a complete autoencoder is forced to employ the whole network for
every observation. This implies that we may pick a latent state representation (i.e., encoding
dimensionality) that makes sense in the data context while still enforcing regularization via
the sparsity restriction on the latent state representation. One consequence is that we can
allow our network to sensitize certain hidden layer nodes to specific properties of the raw
data as a result [65].

Autoencoders can be built from different kinds of neural networks, but since the aim
of this research is image denoise, they were built using separable convolutional neural
networks and later with a convolutional neural network (see Figures 3 and 4). The neural
architecture of the autoencoder depicted in Figure 3 corresponds to the structure in Figure 1,
and the neural architecture of the dual autoencoder in Figure 4 corresponds to the structure
in Figure 2.
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As shown in Figures 3 and 4, the number of kernels in the last layer gives the ability of
this model of autoencoder to denoise colored images or gray images. In our experiment, we
used a transpose convolution layer with 100 × 100 × 1; therefore, the denoise process is on
gray scale images. However, when changing the parameters in the last layer to three kernels
instead of one, the same model will be able to denoise colored images. The noisy image of
size 100 × 100 × 1 is the input of the autoencoder illustrated in orange. Then, the encoding
presented in blue takes place by reducing the input size 100 × 100 to 23 × 23. The encoder
marked in blue comprises three layers, and every of them is a separable convolutional
neural network. These networks have filters 3 × 3 × 50, 3 × 3 × 35, and 3 × 3 × 25 with
50, 35, and 25 kernels, correspondingly. Then, the decoding process is shown in green;
this process raises the output of each layer to reach the 100 × 100 × 1 image similar to the
input one but with noise reduction. Like Figure 2, the autoencoder in Figure 3 is added
to another autoencoder with the same architecture but with the softer size decreased to
enhance and denoise. The encoding process is described in Equations (7)–(10), whereas
the decoding process is described in Equations (11)–(14) for using both convolutional and
separable convolutional neural networks. The purpose of building the autoencoder and
dual autoencoder using separable convolutional neural networks and convolutional neural
networks is to compare between the performance of the two types of neural network
knowing that separable convolutional neural networks achieve a convolution product with
a smaller number of learnable parameters. The capability of the convolution layer to extract
data with local characteristics is directly connected to the complexity of this layer. Because
of its consistent structure, it is more analogous to the neural networks seen in the human
brain. It also makes the model easier to understand because it reduces the total number
of weights. Padding is added to the input matrix right before the product is finished so
that it can accommodate all of the inputs. Padding parameters can have two values, zero
or one. The primary use of the padding parameter is to resolve how many elements to
add to the original image or matrix to increase its size in a way that makes all its pixels
reachable from all edges. This allows the output to have a smaller size or a bigger size with
the deconvolution product. The “stride” is the step taken by the kernel or the filter to make
the product. The term “stride” refers to the stage in the convolution product process. When
performing a convolution layer on two matrices, the kernel or filter is used to operate and
update the learnable parameters for the layer. Separable convolution layers, however, are
fully associated with dimensions since the kernel matrix is split into a product between a
row and a column that produces this matrix, which reduces the trainable parameters in
such a way that a kernel matrix K with the size of ( f × f ) can be represented with two
partial kernels K1 and K2 with the size of ( f × 1) and (1× f ). In this way, for example, the
learnable parameters of a kernel with size 3× 3 will be reduced to six parameters instead



J. Imaging 2022, 8, 250 10 of 22

of nine [66]. The main equation that describes the convolution product of the ordinary
convolution layer is described in the following equation:

Conv(X, K) = ϕ(
nh

∑
i=1

nw

∑
j=1

Xi,jK + b), (7)

Dim(Conv(X, K)) =

(
nh + 2p− f

s
+ 1,

nw + 2p− f
s

+ 1
)

, (8)

where Conv(X, K) represents the convolution product of matrix X of size (nh × nw) with a
kernal matrix K of size ( f × f ); ϕ is the sigmoid activation function; i and j are counters;
Xi,j is a sub-matrix of size ( f × f ) of the input matrix with its padding; b is the bias;
Dim(Conv(X, K)) is the dimension of the results of the convolution product; nh and nw
are the elements of the matrix X dimension; p is the padding parameter; s is the number of
strides; and f is the kernel size.

When using the separable convolution, Equation (7) is represented in two convolution
products: one is with the partial kernel K1 of size ( f × 1) and the second is with the partial
kernel K2 of size (1× f ). In this way, the computational cost represented by the learning
parameters and the time of learning will be reduced while getting the same and sometimes
enhanced results. The equation describing the separable convolution product is described
as the following:

–
X = Conv(X, K1) =

nh

∑
i=1

nw

∑
j=1

Xi,jK1, (9)

Conv(
–
X, K2) =

(nh+2p− f )/s+1

∑
i=1

nw

∑
j=1

K2
–
Xi,j, (10)

where
–
X is the output of the convolution product Conv(X, K1) of the input matrix X with

the kernel K1 of size ( f × 1), giving a matrix of size (((nh + 2p− f )/s + 1)× nw); p is the
padding parameter; s is the number of strides; Xi,j is a column from the input matrix in the

position (i, j); Conv(
–
X, K2) is the convolution product between matrix

–
X and the kernel K2

of size (1× f ); and
–
Xi,j is a row from the matrix

–
X in the position (i, j).

When we use a separable convolutional neural network, Equation number (7) is
represented by Equations (9) and (10). In contrast, Equation (8), which illustrates the size of
the output of the convolution product, will stay the same. The encoding process is described
with the Equations (7), (9) and (10), whereas the decoding process is understood to be the
transpose of the convolution product, which means we took the transpose of Equations (7),
(9) and (10) to achieve the decoding process of the autoencoder. Mathematically, instead
of multiplying a partial part from the input matrix X of size (nh × nw) by the K of size
( f × f ) in Equation (7) or by two sub-kernels K1 of size ( f × 1) and K2 of size (1× f ) in
Equation (9) and (10), we multiply each value in the input matrix of size (nh × nw) by the
kernel of size ( f × f ) to produce a ( f × f ) matrix or by K1 and K2 to produce a column of
size ( f × 1) or a row of size (1× f ). Then, we combine all the resulting matrices or vectors
according to the initial positions in the input layer and add the overlaid values together
with an output padding parameter po [67]. Therefore, we can describe the transpose of
Equation (7) as the following:

TransConv(X, K) = ϕ(
nh

∑
i=1

nw

∑
j=1

xi,jK + b), (11)

Dim(TransConv(X, K)) = ((nh − 1)× s + f − 2p + po, (nw − 1)× s + f − 2p + po), (12)

where TransConv(X, K) represents the transpose convolution product of matrix X of size
(nh× nw) with a kernel matrix K of size ( f × f ); ϕ is the activation function; i and j are coun-
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ters; xi,j is the pixel in matrix X, after we add padding and bias b; Dim(TransConv(X, K))
is the dimension of the results of the transpose convolution product; nh and nw are the
elements of the dimension of the matrix X; p is the padding parameter; s is the number of
strides; po is the output padding parameter; and f is the kernel size.

In the same way, the transpose of the separable convolution product in Equations (9)
and (10) can be represented as the following:

–
X = TransConv(X, K1) =

nh

∑
i=1

nw

∑
j=1

xi,jK1, (13)

TransConv(
–
X, K2) =

(nh−1)×s+ f−2p+po

∑
i=1

nw

∑
j=1

K2xi,j, (14)

where
–
X is the output of the transpose convolution product TransConv(X, K1) of the input

pixel in the position (i, j) in the matrix X with the kernel K1 of size ( f × 1), the output is
a matrix of size (((nh − 1)× s + f − 2p + po)× nw); p is the padding parameter; po is the
output padding parameter; s is the number of strides; xi,j is the pixel from the input matrix

in the position (i, j); Conv(
–
X, K2) is the convolution product between matrix

–
X and the

kernel K2 of size (1× f ); and xi,j is the pixel of matrix
–
X in the position (i, j).

From Equations (7)–(10), we can understand the encoding process where the size of the
input image has been reduced; from Equations (11)–(14), we can understand the decoding
process, where the size of the resulting output is increased till it matches the original size
of the input image. This process of reducing the size in the encoding allows us to remove
pixels from the input noisy image and later restore those pixels in the decoding process
in a way that cancels the noise and predicts the original image pixels before adding the
different noises.

4. Results of Image Denoising

In our practical experiment, we used Python 3.9.7 and Tensorflow 2.6.0 with a Py-
charm.3.1 2019 environment on an Asus ZenBook Core i7 2.8 GHz 32 G RAM.

The used dataset was 99,534 images of size 100 × 100 from a combination of famous
datasets of people’s faces: IMDB-WIKI, FER-2013, KDEF, and AffectNet [68–71]. We chose
these datasets because face images easily get affected by different types of noises, and
many technologies have started to rely on face recognition and face detection, adding
more importance to this type of image in the present and future [72]. Additionally, this
combination of the dataset has various races, ages, and genders. In the training process,
the combined dataset was divided into 80,000 images for training and the rest for testing.
We started by adding the four kinds of noise using the scikit-image library in Python. The
amount of Gaussian noise (Gaussian blur) was between medium and high with a standard
deviation of 40, Poisson noise was generated from each image value using the scikit-image
library, the speckles’ noise amount was 20%, and the amount of salt and pepper noise
was 30%. After adding these noises to the combined dataset, we got four datasets, one for
each of the previous noise types. These datasets were used as an input to the autoencoder
and dual autoencoder, and the outputs of the autoencoder and dual autoencoder were
compared with the original dataset without the noise using the structural similarity index,
which is known as an estimation to compare the similarity of two images and is described
by the following Equation [73]:

SSIM(X, Y) =
(2µXµY + (0.01l)2) + (2σXY + (0.03l)2)

(µX
2 + µY

2 + (0.01l)2)(σX
2 + σY

2 + (0.03l)2)
, (15)

where SSIM(X, Y) is the structural similarity index between matrix X and matrix Y repre-
senting two images; µX is the average mean of the pixels of image X; µY is the average mean
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of the pixels of image Y; l is the dynamic range of the pixel values; σXY is the covariance of
image X and image Y; σX is the variance of image X; and σY is the variance of image Y.

Moreover, to estimate the quality of the image restoration, we used the peak signal-to-
noise ratio (PSNR), described by the following equation [74]:

PSNR = 10 log10

 (2a − 1)2

1
h×w

h
∑

i=1

w
∑

j=1

∣∣ŷi,j − yi,j
∣∣2
, (16)

where a is the bit per pixel; h is the height of the image; w is the width of the image; i and j
are counters; ŷi,j is the pixel value in the position i and j of the original image; and yi,j is the
pixel value in the position i and j of the denoised image. In our investigation, Equation (16)
includes a = 8, h = 100, w = 100. The higher the PSNR, the lower the distortion level.

In our study, we compared the performance of the suggested model of the dual
autoencoder with the performance of one autoencoder; these models were built with
separable convolutional neural networks and convolutional neural networks. The aim
of comparing the separable convolutional neural network with the convolutional neural
network is to prove that the separable convolution performs as good as convolutional
neural networks in both a dual autoencoder and one autoencoder, and that researchers
could rely on them in this field of study where they give the same results or even better
results with less computational cost and less trainable parameters, which saves time and
memory. When using separable convolutional neural networks and convolutional neural
networks, the autoencoder shown in Figure 3 takes a noisy image as an input of size
100 × 100 and contains six layers. The size of filters in the layers except the last layer equals
3 × 3. The first layer contains 50 kernels of filters and one stride, giving an output of
the size 98 × 98 × 50; the second layer consists of 25 kernels and two strides, giving an
output with a size of 48 × 48 × 25; the third layer consists of 25 kernels and two strides,
giving an output of size 23 × 23 × 25. The fourth layer is a transpose layer with 25 kernels
and two strides, giving an output of the size 47 × 47 × 25. The fifth layer is a transpose
layer with 25 kernels and two strides, giving an output of size 95 × 95 × 25 and the last
layer is a transpose layer with one kernel of the size 6x6 and one stride giving the final
output as 100 × 100 to match the input size. For the use of separable convolutional neural
networks and convolutional neural networks, the dual autoencoder shown in Figure 4
takes a noisy image as an input of size 100 × 100 and consists of twelve layers, six layers
for the first encoder and six for the second encoder. The first six layers are described above.
The seventh layer consists of 25 kernels with a size of 3× 3 with one stride giving an output
of 98 × 98 × 25. The eighth layer consists of 25 kernels with a size of 3 × 3 and one stride,
giving an output with a size of 96 × 96 × 25; the ninth layer consists of 50 kernels of the
size of 3 × 3 and two strides, giving an output of size 47 × 47 × 50. The tenth layer is a
transpose layer with 50 kernels with a size of 3 × 3 and two strides, giving an output of the
size 95 × 95 × 50. The eleventh layer is a transpose layer with 25 kernels with the size of
3 × 3 and one stride, giving an output of size 97 × 97× 25. The last layer is a transpose
layer with one kernel of the size 4x4 and one stride, giving the final output as 100 × 100.

The learning process was supervised learning, where the input for each model was
the training noised dataset, and the targeted output was the original images’ training
dataset. For each model, the training process consisted of 40 epochs with a batch size of
200, and for the backpropagation in the training process, we used a binary cross entropy
loss function, and an Adam optimizer with 0.001 as a learning rate. The evaluation was
on the testing dataset, and the denoised output of the model after training was compared
with the original images’ testing dataset using the structural similarity index (SSIM) and
the peak signal-to-noise ratio (PSNR).

We achieved image denoising for the testing dataset using the trained model; then,
the images predicted by the model were compared with the original images before adding
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noise using the structural similarity index (15). We presented the results as a histogram
of the structural similarity index (15) for the testing data, which shows the accuracy of
our noise canceling as a percentage of the similarity knowing that the similarity of noisy
images with the original images was zero percent., The histograms of similarity for one
autoencoder and a dual autoencoder based on a convolutional neural network (Figure 5a,b)
and separable convolutional neural network (Figure 6a,b) when canceling Gaussian noise
(Gaussian blur) are depicted below. Corresponding histograms of similarity are shown in
Figures 7 and 8, when canceling Poisson noise, in Figures 9 and 10, when canceling speckle
noise, and in Figures 11 and 12, when canceling impulse noise.
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The examples of the original image [8,68], the noisy image, and the images restored by
one autoencoder (OA) and dual autoencoder (DA) with separable convolutional neural
networks are shown in Figure 13a–d under Gaussian noise, Poisson noise, speckle noise,
and impulse noise, respectively.
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For one autoencoder and a dual autoencoder, the parameter numbers of the con-
volutions and separable convolutions, the total time of training 80,000 images during
40 epochs, the time of denoising of 19,538 images, the mode M of similarities, and the aver-
age PSNR after 40 epochs of training for the 19,538 testing images are noted in Tables 1–4
in the cases of Gaussian noise, Poisson noise, speckle noise, and impulse noise, respectively.
In the tables, the statistical mode M (%) was the most frequent value of the similarity index
percentage between the 19,538 denoised images and the original.
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Table 1. Gaussian noise reduction.

Device of Image
Denoising Neural Network Number of

Parameters
Total Time of
Training (s)

Time of
Denoising(s) M (%) Average PSNR

(dB)

Autoencoder
CNN 29,626 24,085 446 76 24.52

SCNN 14,910 20,804 167 80 25.53

Dual Autoencoder
CNN 81,052 54,757 440 81 32.79

SCNN 51,595 43,038 374 89 34.60

Table 2. Poisson noise reduction.

Device of Image
Denoising Neural Network Number of

Parameters
Total Time of
Training (s)

Time of
Denoising(s) M (%) Average PSNR

(dB)

Autoencoder
CNN 29,626 22,001 60 71 27.38

SCNN 14,910 19,412 58 71 27.77

Dual Autoencoder
CNN 81,052 56,324 55 76 30.59

SCNN 51,595 41,207 49 77 31.11

Table 3. Speckle noise reduction.

Device of Image
Denoising Neural Network Number of

Parameters
Total Time of
Training (s)

Time of
Denoising(s) M (%) Average PSNR

(dB)

Autoencoder
CNN 29,626 22,348 209 84 54.48

SCNN 14,910 19,360 161 84 54.62

Dual Autoencoder
CNN 81,052 53,964 457 89 56.02

SCNN 51,595 40,912 398 90 58.93

Table 4. Impulse noise reduction.

Device of Image
Denoising Neural Network Number of

Parameters
Total Time of
Training (s)

Time of
Denoising(s) M (%) Average PSNR

(dB)

Autoencoder
CNN 29,626 24,052 184 78 54.93

SCNN 14,910 20,293 173 79 55.07

Dual Autoencoder
CNN 81,052 55,708 480 85 58.34

SCNN 51,595 42,007 460 85 58.03

As follows from the analysis of Figures 5–12 and Tables 1–4, the use of a dual au-
toencoder with separable convolutional neural networks for image denoising gave the
following results:

• Image denoising for Gaussian noise (Gaussian blur) with a dual autoencoder achieved
better results with both convolutional and separable convolutional neural networks
where it raised the mode of the similarities of the testing dataset with the original
by approximately 5% for convolution layers and 9% for separable convolution layers
and the average PSNR by approximately 8 dB for convolution layers and 9 dB for
separable convolution layers. A dual autoencoder with separable convolution layers
achieved the higher accuracy with a value of 89% and with a high rate of performance,
spending 0.019 s to denoise each image.

• Image denoising for Poisson noise with a dual autoencoder achieved better results for
both the use of a convolutional neural network and separable convolutional neural
network. Both kinds of neural networks achieved similar accuracy. However, the
separable convolution layers enabled it faster with a lower number of parameters.

• Image denoising for speckle noise with a dual autoencoder raised the mode of the
accuracies by approximately 6%, where a separable convolutional neural network and
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convolutional neural network achieved the same results, but the performance of the
separable neural network was faster. The average PSNR increased by approximately
2 dB for convolution layers and 4 dB for separable convolution layers. In the dual
autoencoder, it took 0.02 s to denoise each image.

• Image denoising for impulse noise due to a dual autoencoder with both a convolutional
neural network and separable convolutional neural network raised the M by 6% and
the average PSNR by approximately 3 dB. Both kinds of neural networks achieved
the same accuracy, but the separable convolutional neural network performed faster,
where it took 0.023 s to denoise each image.

The research results in the following:

- A dual autoencoder ensures higher accuracy on increasing the total time of training
and the time of denoising in comparison with one autoencoder. Thus, to reach a high
accuracy of image denoising, we should use a more complicated device and spend a
higher computational cost;

- In the mentioned situation, it would be better to have the approach that decreases
computational cost without reducing the accuracy of restoring images. This way is
a separable convolution in neural networks. In the cases of Poisson noise, speckle
noise, and impulse noise, we kept the accuracy gained by the dual autoencoder and
got a higher performance of this device by means of separable convolutional neural
networks. In the case of Gaussian noise (Gaussian blur), we obtained both a higher
accuracy and performance of the device, which is built on the basis of separable
convolutional neural networks.

5. Discussion

Images frequently symbolize and say something of significance. They hold consider-
able information and are used for vast applications in security, scientific research, medicine,
control, and other fields. In order for images to be beneficial data for these applications,
they should be clear and clean from any noise. Therefore, our aim in this study was to
solve this fundamental problem, which is image denoise and the restoration of the original
images. In image processing and computer vision, we achieved a cancelation of Gaussian
noise (Gaussian blur), Poisson noise, speckle noise, and impulse (salt and pepper) noise.
To fulfill denoising, we proposed combining two autoencoders together to build a dual
autoencoder, where the first autoencoder compresses the input image to approximately 23%
of its original size and restores it while training to cancel the different noises, and the second
autoencoder works as an enhancer that compresses the image to approximately 50% of its
original size and restores it as the final output. Moreover, we used separable convolution
layers to build the autoencoders for solving the denoising problem and compared them
with the convolutional neural network to prove the ability of the separable convolutional
neural network to maintain the same performance as the convolutional neural network
and achieve better results while decreasing the number of learnable parameters and the
processing time. From comparison with other types of neural networks, we highlight the
following advantages of an autoencoder network:

• The ability of feature extraction from non-linear processes and performing non-linear
transformations, for instance, image denoising.

• The ability of dimensionality reduction in the autoencoder network process of com-
pressing the data and the feature of information retrievals in the autoencoder network
process of decompressing the data.

• Reducing the training parameters decreases the training and performing time of the
autoencoder’s network and saves more memory on the user device.

The study’s results show how the use of separable convolution layers in building au-
toencoders in the field of image processing and image denoising extends the opportunities
for better quality performance, presented with the high similarity between the denoised
images and the original images, lower complexness, and fast processing. At the same
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time, a dual autoencoder with separable convolutional neural networks has a relationship
design created as a grid of nodes where each pixel in the layer is associated with all the
surrounding pixels. This design delivers feature extraction capability, permitting the pixels
in the image to be defined as spatial with the locally and equally likely to occur extracted
features at any position in the noisy input image. With the proceeds in the advancement
of deep learning and the utilization of autoencoders as a model for finding distinctive
solutions for specialized issues in image processing and computer vision, in addition to
the need to decrease the processing time and memory utilization in numerous gadgets and
devices such as microprocessors, phones, or pads, the utilization of separable convolutional
neural networks in dual autoencoders will be extraordinary. Indeed, a dual autoencoder
increases the accuracy of restoring images; however, it makes the process of encoding
and decoding take twice the time of ordinary autoencoders. The separable convolutional
neural network decreases the sum of learnable parameters and processing time to adjust
the computation cost while achieving high quality and stability in a dual autoencoder.

6. Conclusions

In this study we used dual autoencoders for image denoising, which enhance the
quality of the denoise where the first autoencoder works as a main image denoiser and
the second completes the denoising process and enhances the quality of the denoised
images. The use of a separable convolutional neural network in the field of building
autoencoders for image processing and image denoising gives a higher performance
of devices in comparison with a convolutional neural network. Moreover, for images
affected by Poisson noise, speckle noise, and impulse noise, separable convolutional neural
networks give the same accuracy of denoising as ordinary convolutional neural networks
and better results in the case of Gaussian noise. With the continuous development of
deep learning and the use of autoencoders as a tool for finding different solutions for
technical problems in image processing and computer vision, and with the need to reduce
processing time and memory usage in different devices such as processors, telephones, or
pads, the use of a separable convolutional neural network will be signifiable, especially
with dual autoencoders, since a dual autoencoder duplicates the process of encoding and
decoding. Moreover, separable convolutional neural networks decrease the amount of
learnable parameters and processing time to balance the computation cost while achieving
high quality results.
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