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Abstract: Fuzzy gray-level aura matrices have been developed from fuzzy set theory and the aura
concept to characterize texture images. They have proven to be powerful descriptors for color texture
classification. However, using them for color texture segmentation is difficult because of their high
memory and computation requirements. To overcome this problem, we propose to extend fuzzy
gray-level aura matrices to fuzzy color aura matrices, which would allow us to apply them to color
texture image segmentation. Unlike the marginal approach that requires one fuzzy gray-level aura
matrix for each color channel, a single fuzzy color aura matrix is required to locally characterize the
interactions between colors of neighboring pixels. Furthermore, all works about fuzzy gray-level
aura matrices consider the same neighborhood function for each site. Another contribution of this
paper is to define an adaptive neighborhood function based on information about neighboring sites
provided by a pre-segmentation method. For this purpose, we propose a modified simple linear
iterative clustering algorithm that incorporates a regional feature in order to partition the image into
superpixels. All in all, the proposed color texture image segmentation boils down to a superpixel
classification using a simple supervised classifier, each superpixel being characterized by a fuzzy
color aura matrix. Experimental results on the Prague texture segmentation benchmark show that our
method outperforms the classical state-of-the-art supervised segmentation methods and is similar to
recent methods based on deep learning.

Keywords: color texture segmentation; aura matrices; fuzzy color aura matrix; SLIC superpixel;
regional feature

1. Introduction

Color texture segmentation consists of partitioning an image into homogeneous re-
gions with respect to color and texture properties. It is involved in various fields, such
as medical image analysis [1], remote sensing [2], synthetic aperture radar [3], and fruit
detection [4]. Although a wide variety of techniques have been developed, color texture
segmentation remains an open and challenging problem due to the high variability of tex-
tures, combined with the great diversity of colors. Most approaches characterize each pixel
by a set of texture and color features, and use them to assign one color texture class to each
pixel thanks to classification algorithms [5,6]. Sections 1.1 and 1.2 discuss the state of the art
of color texture features and classification algorithms used for color texture segmentation.

1.1. Color Texture Features

The characterization of color textures is a fundamental problem in computer vision,
where a texture is generally described by some visual cues represented by statistical
structures, hereafter called texture features. Pixel colors are often represented by the values
or by statistic measures of color components (R, G, B) or by those derived from color spaces
such as HSV, L∗u∗v∗, or L∗a∗b∗ [7]. Various texture features are designed to characterize
texture appearance. Widely used ones are based on Gabor filters, wavelet transform,
Markov random field model, local binary patterns, and co-occurrence matrices [8–10].
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Color texture classification/segmentation techniques can be broadly classified into
two approaches according to how they combine color texture and color features [5,8]. In the
first approach, color and texture features are computed separately and are then combined
by the clustering or classification process. For example, in [11], L∗, u∗, and v∗ components
were used as color features and the output of Gabor filters as texture features. In [12],
the authors used the mean, standard deviation, and skewness of each color channel, H, S,
and V, as color features, and the co-occurrence matrices computed on the intensity image
were considered as texture features.

In the second approach, color and texture features are assumed to be mutually depen-
dent. With this approach, marginal, opponent, and vector strategies have been developed
to compute color texture features [5,8]. The marginal strategy assumes that texture can be
separately described within each color channel, where pixels are characterized by only one
color component. Texture features designed for gray-level images are then computed for
each color channel and aggregated into a global feature representation. In [13], for instance,
texture features were extracted from wavelet transform and co-occurrence matrices for each
color channel. In [14], Leung–Malik filter banks were applied on each color channel for
color texture feature extraction. The opponent strategy extends texture feature extraction to
color images thanks to both within- and between-channel analyses. The within-channel
part consists of computing features from each color channel separately (as in the marginal
strategy), whereas between-channel (opponent) features are obtained by processing pairs
of color channels jointly. This strategy was adopted by Panjwani et al. [15], who used
Markov random field models to characterize a texture in terms of spatial interaction within
each color channel and interaction between different color channels. The vector strategy
takes advantage of color vector information. It makes it possible to analyze relationships
between colors of neighboring pixels, as in the case of gray-level images. Examples of this
strategy can be found in [9,16] where local binary patterns were computed from a color
image. It should be noted that the vector strategy is more suitable to characterizing color
texture because it is less memory-consuming and fully takes correlation between colors of
neighboring pixels into account.

1.2. Color Texture Image Segmentation by Pixel Classification

Color texture segmentation methods can also be categorized into three ways, de-
pending on whether the pixel classification is performed in a supervised, unsupervised,
or semi-supervised manner [1,11,17]. In supervised segmentation, prior knowledge about
the training samples and their class labels is needed to classify the input image pixels. Some
classical supervised classifiers are used for texture segmentation [1,4,17]. Among them are
the K-nearest neighbor (KNN) [18] and the Bayesian [19] classifiers, the support vector ma-
chine (SVM) [20], random forest [12], Markov random field [11], and neural networks [14].
Supervised color texture segmentation based on deep learning has been developed in the
last decade [21–23]. These efficient methods generally use convolutional neural networks
(CNN), such as the U-Net [24], deep visual model (DA) [25], pyramid scene parsing network
(PSP-Net) [26], supervised fully convolutional network for texture (FCNT) [21], and empiri-
cal wavelet transform-based fully convolutional network for texture (EWT-FCNT) [23].

Unsupervised segmentation does not require prior knowledge and discovers different
classes by clustering pixels from their features only [5,6]. For example, the popular K-means
clustering algorithm is mainly employed to perform the classification of pixels [6,27].

Other color texture segmentation methods rely on graph cut techniques [28], mean
shift clustering [29], estimation–maximization [1], the random Markov model [11], dictio-
nary learning and sparse representation-based classification (DLSRC) [13], and spectral
clustering [3].

Semi-supervised segmentation is suitable where only partial prior knowledge about
the training samples and their class labels is available. For instance, in [17], the constrained
spectral clustering algorithm was applied for semi-supervised classification of pixels char-
acterized by color texture features.
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Supervised segmentation methods, especially deep learning based methods, provide
better results than unsupervised and semi-supervised approaches thanks to prior informa-
tion [17]. It should also be noted that some of the above methods perform segmentation at
the pixel level and others at the "superpixel" level. This is the case for the methods discussed
in [1,3]. Recall that superpixels group neighboring pixels based on their spatial and color
similarity, and are used as samples in order to speed up color texture segmentation.

1.3. Fuzzy Color Texture Features

All aforementioned methods assume that images are crisp and free from vagueness.
However, in practice, color images carry more or less fuzziness because of the imprecision
inherent to the discretization of both the spatial domain (sampling) and the color component
levels (quantization). Therefore, boundaries separating the various image regions are not
precisely defined, and pixel levels are imprecise measures of the reflectance of surfaces
observed by the camera. Furthermore, the assumption that texture images are mainly
represented by spatial repetitions of a pattern may not be valid any longer. Texture
analysis techniques based on fuzzy concepts have then been proposed in order to take this
imprecision into account.

For instance, fuzzy histograms [30], fuzzy local binary patterns [31], and local fuzzy
patterns [32] are extracted from gray-level texture images. Fuzzy gray-level co-occurrence
matrices (FGLCMs) are also proposed to characterize spatial interactions between gray-
levels of neighboring pixels [33–37]. However, characterizing a color texture by at least
three FGLCMs (one by channel) is memory expensive. To overcome this drawback,
Ledoux et al. [38] proposed to extend FGLCMs to color images by defining fuzzy color
sets. A color image is then represented by one single fuzzy color co-occurrence ma-
trix (FCCM) that characterizes the local interactions between colors of neighboring pix-
els. Moreover, FGLCMs and FCCMs only consider spatially-invariant neighborhoods.
Hammouche et al. [39] showed that adaptive neighborhoods are useful for texture analysis
and provided an elegant formalism to deal with spatially-variant neighborhoods thanks to
the aura concept.

In the framework based on the aura set concept, Elfadel and Picard [40] proposed
a generalization of GLCMs called gray-level aura matrices (GLAMs). A GLAM quanti-
fies the presence of a set of pixels with a specified level in the neighborhood of another
set of pixels having another level. The amount of neighboring pixels with the specified
level is quantified by means of the aura measure. GLAMs are used for texture represen-
tation and synthesis [41,42], image retrieval [43,44], classification [45–50], and segmen-
tation [51–53]. A generalization of GLAMs to the fuzzy framework has been proposed
by Hammouche et al. [39]. Representing each color channel by a fuzzy GLAM (FGLAM)
outperforms the FGLCM representation for texture classification. Recently, FGLAMs have
been used to improve the accuracy of wood species classification [54]. However, as for
FGLCMs, the computation of FGLAMs for each pixel is memory and time expensive, which
makes their use for color image segmentation a challenge.

To circumvent these constraints, we adopted a vector strategy and propose to extend
FGLAMs to fuzzy color aura matrices (FCAMs). An FCAM makes it possible to locally
characterize the interactions between colors of neighboring pixels. While one FGLAM
must be computed for each color channel, a single low-dimensionnal FCAM is required to
describe the color texture.

1.4. FCAM for Image Segmentation by Superpixel Classification

In this study, we applied FCAM to color texture image segmentation. As FCAM
is based on a locally-adaptive neighborhood, it can characterize the texture represented
by small connected pixel subsets with different shapes, i.e., by superpixels. We use the
simple linear iterative clustering (SLIC) scheme [55] to generate superpixels from a color
image. These are then classified using a simple supervised classifier to segment the color
texture image.
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The remainder of this paper is organized as follows. In Section 2, we first give an
overview of basic SLIC algorithm; then we propose a modified version that incorporates
the regional information. Section 3 introduces some definitions of the fuzzy color aura
concept, and explains how to characterize the color texture of each superpixel by an FCAM.
In Section 4, we first present the datasets used in the experiments; then we give details
about the proposed color texture segmentation method based on FCAMs. Next, we assess
the regional SLIC algorithm and discuss its parameter settings. Last, we compare the seg-
mentation results achieved by our supervised segmentation approach with those obtained
by fuzzy texture features and by several other state-of-the-art color texture segmentation
methods. Concluding remarks about the contribution of this paper are given in Section 5.

2. Superpixel

The proposed color texture image segmentation is based on the classification of super-
pixels. A superpixel is a compact set of connected sites with similar properties. It is usually
adopted to replace the pixel grid in an image in order to reduce the computational burden of
subsequent processing. Superpixels are generated by over-segmentation algorithms using
color, spatial, and/or texture information. Among superpixel generation algorithms, simple
linear iterative clustering (SLIC) is widely used due to its simplicity, speed, and ability to
adhere to image boundaries. In this section, we briefly give an overview of SLIC algorithm
used to generate superpixels. Then, we propose a modified version that incorporates the
regional information.

2.1. Basic SLIC

The SLIC algorithm [55] generates a desired number of regular superpixels, with la ow
computational overhead, by clustering sites based on their spatial and color features. Let I be an
RGB image defined on a lattice S, such that each site s ∈ S is characterized by three color com-
ponents: I(s) = (IR(s), IG(s), IB(s))ᵀ. The RGB color components are transformed into the
La∗b∗ color space, so that SLIC represents each site s(xs, ys) by a five-dimensional feature vector:
(IL(s), Ia(s), Ib(s), xs, ys)ᵀ. SLIC follows a k-means clustering strategy but searches the nearest
cluster center according to the distance D(s, s′) =

√
d2

c (s, s′) + m2 · d2
s (s, s′)/S2 between two

sites s and s′, where d2
c (s, s′) = (IL(s)− IL(s′))2 + (Ia(s)− Ia(s′))2 + (Ib(s)− Ib(s′))2 and

d2
s (s, s′) = (xs − xs′)

2 + (ys − ys′)
2 measure the color and spatial proximity. The compact-

ness parameter m is set to its default value of 1, and the maximum spatial distance within
a cluster is defined as the sampling step S =

√
|S|/P, where |S| is the total number of

sites in the image and P is the number of superpixels. Figure 1b shows the results of the
segmentation achieved by SLIC on the color image of Figure 1a. It should be emphasized
that SLIC takes a post-processing step to enforce connectivity by merging small isolated
superpixels with nearby larger ones. Therefore, the actual number of superpixels produced
by SLIC can be slightly lower than the desired number of superpixels.

(a) Original image (b) Basic SLIC (c) fR map (d) Regional SLIC

Figure 1. SLIC pre-segmentation results (P = 400 superpixels). fR in (c) is rescaled to [[0, 255]]. SLIC:
simple linear iterative clustering.
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2.2. Regional SLIC

The basic SLIC algorithm achieves good pre-segmentation on color images, but may
fail to find boundaries of textures. Indeed, it successfully detects homogeneous regions
but somewhat fails to separate areas with different textures (see Figure 1a and arrows
on Figure 1b). To improve this pre-segmentation, we propose a modified version of the
algorithm, referred to as regional SLIC, that takes color, spatial, and regional information
into account. From the basic SLIC pre-segmentation result, we compute the regional feature
fR of each superpixel R as [56]:

fR = [pR − pR · log(pR)] +
1
|NR| ∑

R′∈NR

[pR′ − pR′ · log(pR′)], (1)

where pR = |R|/|S| is the area ratio of R to the whole image, and NR is the set of superpixels
that are adjacent to R. The regional feature fR is a sum of two terms: the first one reflects
the size of the superpixel R and monotonously increases with its size (because pR ∈]0, 1[),
and the second one reflects the superpixel context by taking the influence of adjacent
superpixels into account. A small superpixel surrounded by small superpixels provides a
low value of fR, and conversely, if both R and adjacent superpixels are large, fR is high (see
Figure 1c). At each site s of superpixel R, we replace the luminance component IL(s) by the
regional feature fR and we apply the SLIC algorithm again with ( fR, Ia(s), Ib(s), xs, ys)ᵀ as
the feature vector (see Algorithm 1).

Thanks to this regional SLIC method, the lattice S is partitioned into P superpixels
{Pp}P

p=1, i.e.,
⋃P

p=1 P
p = S and Pp ∩ Pp′ = ∅, for p 6= p′. A superpixel Pp is defined as a

set of connected sites, i.e., any two sites s and s′ in Pp are connected by at least one path
composed of sites in Pp. Figure 1d shows the final superpixels extracted from the color
texture image of Figure 1a. Note (see arrows) that areas with different textures are better
delineated with the regional SLIC than with its basic version, despite the regional feature
describing the superpixel contextual information in the pre-segmented image and not being
able to be considered as a texture feature.

Algorithm 1 Regional SLIC.
Input: RGB image I
1. Convert I from RGB to La∗b∗ color space;
2. Apply SLIC to S where each site s is characterized by (IL(s), Ia(s), Ib(s), xs, ys)ᵀ;
3. Extract the regional feature fR from each superpixel R of the SLIC map using Equation

(1);
4. Apply SLIC to S where each site s is characterized by ( fR, Ia(s), Ib(s), xs, ys)ᵀ.

Output: Partition of I into superpixels {Pp}P
p=1

3. Fuzzy Color Aura

In this section, we extend the aura concept introduced by Elfadel and Picard for gray-
level images [40] to color images. We explain how it is used to characterize a superpixel
thanks to a matrix of aura cardinals. As this matrix is huge when all RGB colors are
considered, we propose to extend the color aura concept to fuzzy colors whose number
is reduced.

3.1. Color Aura Set

Let I be an RGB image defined on a lattice S, such that each site s ∈ S is characterized
by its color I(s). For a given color x ∈ RGB, we define the set of sites with this color
as Sx = {s ∈ S, I(s) = x}. Then, {Sx}x∈RGB is a partition of S—i.e.,

⋃
x∈RGB Sx = S and

Sx ∩ Sx′ = ∅ for x 6= x′.
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Given two colors (x, x′) ∈ RGB2, we define the color aura set ASx′
(Sx) of Sx with

respect to Sx′ as:
ASx′

(Sx) =
⋃
s∈S

(Ns
Sx ∩ Sx′), (2)

where Ns
Sx

is the neighboring site set of each site s ∈ Sx:

Ns
Sx = {r ∈ S, (s ∈ Sx) ∧ (r ∈ Ns)}. (3)

Ns ·= {r ∈ S, ‖r− s‖∞ ≤ d} is the neighborhood of a site s. In this paper, d = 1 such
that Ns is only composed of the eight closest sites from s.

ASx′
(Sx) is the subset of Sx′ composed of the sites that are present in the neighborhood

of those of Sx. It provides an interpretation of the presence of Sx′ in the neighborhood of Sx.
The color aura set is a generalization of the gray-level aura set introduced by Elfadel and
Picard [40] to the color case.

Figure 2a shows a color image, defined on a lattice S of 7× 7 pixels, and three color
sets, SR, SG, and SB. For the neighborhood Ns, the aura set ASG

(SB) of SB with respect to
SG is composed of the green sites marked as circles. Note that it differs from the aura set
ASB

(SG) of SG with respect to SB, composed of the blue sites marked as diamonds.

(a) (b) (c)

Figure 2. Examples of two aura sets in a color image. (a) Original image composed of 3 color site
sets, SR, SG, and SB, and aura sets ASG

(SB) (circles) and ASB
(SG) (diamonds). (b) Superpixels P1

(left) and P2 (right), and aura sets A1
SG
(SB) ( 1 ) and A1

SB
(SG) ( 1 ). A2

SG
(SB) and A2

SB
(SG) are empty.

(c) Superpixels P1 (left) and P2 (right), and aura sets A2
SG
(SB) ( 2 ) and A2

SB
(SG) ( 2 ). A1

SG
(SB) and

A1
SB
(SG) are empty.

3.2. Color Aura Set in a Superpixel

Rather than building an aura set from all image sites, we focus on a superpixel Pp and
define the color aura set Ap

Sx′
(Sx) of Sx with respect to Sx′ for the superpixel Pp as:

A
p
Sx′

(Sx) =
⋃
s∈S

(N
p,s
Sx
∩ Sx′), (4)

where N
p,s
Sx

is the neighboring site set of each site s ∈ Sx within the superpixel Pp:

N
p,s
Sx

= {r ∈ S, (s ∈ Sx ∩ Pp) ∧ (r ∈ Ns ∩ Pp)}. (5)

The image of Figure 2a contains two textures, one represented by red and green vertical
stripes on the left three columns, and another represented by red and blue horizontal
stripes on the right three columns. These two textures are separated by the fourth column
composed of red, green, and blue sites. Figure 2b shows the partitioning of this image into
two superpixels delimited by a vertical black line. P1 covers the four left columns and P2

the three right ones. The aura sets A1
SG

(SB) and A1
SB
(SG) are not empty, since P1 contains

neighboring green and blue sites, but A2
SG

(SB) and A2
SB
(SG) are empty because P2 contains
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no green site. Figure 2c shows another partition where P1 covers the three left columns and
P2 the four right ones. In that case, A1

SG
(SB) and A1

SB
(SG) are empty because P1 contains no

blue site. This example illustrates that color aura sets depend on superpixel edges. Indeed,
along the fourth column that separates the two textures, only one green site (on first row)
and one blue site (second row) belong to the aura sets of superpixels in both Figure 2b,c.

3.3. Color Aura Cardinal

The aura measure was introduced by Elfadel and Picard [40] to characterize an aura
set by a number that expresses the amount of mixing between neighboring site sets. We use
here a simpler measure [39] and quantify the color aura set of a color site set Sx with respect
to another color site set Sx′ within the superpixel Pp thanks to its cardinal defined as:

mp(x, x′) =
∣∣∣Ap

Sx′
(Sx)

∣∣∣. (6)

The aura cardinal measures for all the possible pairs of color sets, (Sx, Sx′), (x, x′) ∈ RGB2,
are gathered in a matrix. This color aura cardinal matrix [mp(x, x′)] can be then considered
as the texture feature of the superpixel Pp. However, when color components of the image
are defined on 256 levels, as is classically the case, the number of possible colors reaches
2563 and mp would be of size 2563 × 2563. As such, a huge memory requirement is needed
in practice, so we propose to decrease the number of analyzed colors by introducing
fuzzy colors.

3.4. Fuzzy Color

To form a small subset C of C colors among the 2563 possible ones, we use the uniform
quantization technique for its simplicity of implementation. For each color component
k ∈ {R, G, B}, the full level range [[0, 255]] is divided into Ck disjoint intervals [[0, Lk − 1]],
[[Lk, 2Lk − 1]], · · · , [[(Ck − 1)Lk, 255]], of respective width Lk ·

= 256/Ck. The Ck centers
{b(Lk − 1)/2c, b(3Lk − 1)/2c, · · · , b256 − (Lk + 1)/2c} of the intervals define the k-th
component of the colors in C . The numbers CR, CG, and CB are chosen so that the number
of colors C = CR · CG · CB is much lower than 2563.

In the fuzzy framework [38], a fuzzy color c̃ is characterized by its membership
function µc̃ : RGB −→ [0, 1]. The membership degree µc̃(x) of any color x ∈ RGB is
defined using its infinity norm or Euclidean distance to the crisp counterpart c ∈ C of c̃,
thanks to either:

• the crisp membership function:

µc̃(x) =

{
1 if ‖ x− c ‖∞≤ b Lk

2 c,
0 otherwise,

(7)

• the symmetrical Gaussian function:

µc̃(x) = exp
(
−
‖ x− c ‖2

2
2α2

)
, (8)

• the triangular function:

µc̃(x) = max
(

1− ‖ x− c ‖2

β
, 0
)

, (9)

• or the fuzzy C-means (FCM) membership function:

µc̃(x) =
1

∑c′∈C

(
‖x−c‖2
‖x−c′‖2

) 2
ζ−1

. (10)
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Here, α and β are real positive constants used to control the span of the fuzzy
color, and ζ is any real number greater than 1. In this paper, we set β = (LR, LG, LB),
α = β/

√
2 ln(2), and ζ = 2. The parameters α and β are chosen to ensure that µc̃(x) = 0.5

at the bounds of each color domain of width (LR, LG, LB)ᵀ centered at c. Figure 3 shows the
shapes of the four membership functions computed at c = (192, 64, 64), for plane (R, G).

(a) Crisp (b) Gaussian

(c) Triangular (d) FCM

Figure 3. Membership functions µc̃ at c = (192, 64, 64) with CR = CG = CB = 2.

3.5. Fuzzy Color Aura Set in a Superpixel

A fuzzy color site set Sc, c ∈ C , is defined by its membership function µSc . The
membership degree µSc(s) of each site s ∈ S to Sc is the membership degree µc̃(I(s)) of its
color I(s) ∈ RGB to the fuzzy color c̃ [38]:

µSc(s) = µc̃(I(s)). (11)

From there, we define the fuzzy color aura set Ap
Sc′

(Sc) of Sc with respect to Sc′ , for any

color pair (c, c′) ∈ C 2, as the fuzzy site set with the following membership degree at each
site r ∈ S:

µ
A

p
Sc′

(Sc)
(r) = min

{
sup
s∈S

[
min

(
µSc(s), np(r, s)

)]
, µSc′ (r)

}
. (12)

The neighborhood function np(r, s) expresses the membership degree of r to the
neighborhood of s within the superpixel Pp, p ∈ [[1, P]]. This function may have any
support size and shape, and may take any real value between 0 and 1. In the simplest
binary case, we design it as:

np(r, s) =
{

1 if (s ∈ Pp) ∧ (r ∈ Ns ∩ Pp),
0 otherwise.

(13)

As a justification of Equation (12), we consider the fuzzy color aura set by analogy
with the crisp case [39]. The crisp set union operator

⋃
of Equation (4) is transcribed by
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the fuzzy operator sup to get the membership degree of the fuzzy color aura set Sc with
respect to Sc′ at each site r ∈ S:

µ
A

p
Sc′

(Sc)
(r) = sup

s∈S

(
µ
N

p,s
Sc ∩Sc′

(r)
)

. (14)

The crisp set intersection operator ∩ is transcribed by the fuzzy operator min, such
that the fuzzy counterpart of the color site set Np,s

Sx
∩ Sx′ of Equation (4) is defined by its

membership function given by:

µ
N

p,s
Sc ∩Sc′

(r) = min
[
µ
N

p,s
Sc
(r), µSc′ (r)

]
. (15)

The fuzzy counterpart of Np,s
Sx

(see Equation (5)) is defined for the fuzzy color site set
Sc, c ∈ C , by the following membership degree at each site r ∈ S:

µ
N

p,s
Sc
(r) = min

(
µSc(s), np(r, s)

)
. (16)

Plugging Equation (16) into (15) and the result into (14) provides the definition (12) of
the fuzzy aura set after swapping the first two operators.

3.6. Fuzzy Color Aura Cardinal

The fuzzy color aura cardinal of Sc with respect to Sc′ within Pp is exactly defined as
in the crisp case (see Equation (6)) and directly follows from Equation (12):

m̃p(c, c′
)
= ∑

r∈Pp
µ
A

p
Sc′

(Sc)
(r) = ∑

r∈Pp
min

{
sup
s∈Pp

[
min

(
µSc(s), np(r, s)

)]
, µSc′

(r)

}
. (17)

Following the crisp scheme, we define a fuzzy color aura matrix (FCAM) as the
collection of all fuzzy color aura cardinals of a superpixel for the C2 color pairs (c, c′) ∈ C 2.
Note that to define the FCAM, we only consider a few of the 2563 colors on which the
RGB image is defined—namely, the set C of C colors such that C � 2563. This provides a
compact FCAM of small size C× C that is a suitable color texture descriptor of a superpixel
for image segmentation purpose.

To make superpixels of different sizes comparable, their FCAMs are normalized
element-wise to sum up to one:

m̄p(c, c′
)
=

m̃p(c, c′)
∑(y,y′)∈C 2 m̃p(y, y′)

. (18)

Finally, each superpixel Pp of an image I is characterized by C2 features that are the
elements of its normalized FCAM m̄p.

4. Experiments

In this section, we first present the experimental dataset and explain how FCAM
features are used to segment its color texture images. To evaluate the performance of
the proposed approach, we then assess the regional SLIC algorithm, discuss parameter
settings, and study the relevance of FCAM features. We finally compare the segmentation
results achieved by our supervised segmentation approach with those obtained by several
state-of-the-art color texture segmentation methods.

4.1. Experimental Setup
4.1.1. Dataset

As the experimental dataset, we used the challenging Prague texture segmentation
benchmark [57]. It contains 20 color texture mosaics to be segmented (input test images),
some of which are shown in Figure 4 (top) with their corresponding segmentation ground
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truth images. Each of these images represents from 3 to 12 classes and has been synthetically
generated from the same number of original color texture images. The original Prague
dataset is composed of 89 images (one image per texture class) grouped into 10 categories
of natural and artificial textures. Figure 4 (bottom) shows some of these images that form
the training dataset. All images of Prague database are of size 512× 512 pixels.

Figure 4. Examples of test images (top two rows) and training images (from “flowers” and “man-
made” categories, bottom two rows) from the Prague dataset. Note that the framed test image
represents KI = 6 classes from the sole “flowers” category.

4.1.2. Color Texture Image Segmentation Based on FCAMs

Our method of color texture image segmentation based on FCAMs is a supervised
superpixel classification procedure. Each test image I represents KI classes whose pixels
should be retrieved by the segmentation. To this end, we used a simple artificial neural
network known as the extreme learning machine (ELM) that comes with a very fast learning
algorithm [58]. It consists of three fully-connected neuron layers: an input layer of C2

neurons that receives FCAM elements, a single hidden layer, and an output layer with KI
neurons. The number of neurons in the hidden layer was empirically set to 100 · KI. The
initial weights of hidden neurons were set to random values, and the output weights were
determined according to a least-square solution [58].

The proposed color texture segmentation of any test image I based on FCAMs follows
the two successive stages outlined in Figure 5. The ELM is first trained with a set of KI · T
training samples, where T is the number of prototype sites per class that are randomly
selected on each of the KI training images. Each training sample is the FCAM feature
computed over a square patch Wt, t ∈ {1, . . . , T}, centered at a prototype site and of size
(2W + 1)2. The trained ELM is then used to segment I as follows. First, I is segmented into
superpixels using the regional SLIC method. Then, the FCAM of each superpixel is fed as
input into the trained ELM, whose output provides the estimated texture class. All sites in
the superpixel are finally assigned to this class. A refinement procedure can be applied to
further improve segmentation accuracy. This consists of reassigning superpixels smaller
than 0.5% of the image size with the label of the largest adjacent superpixel [21]. All steps
of the proposed color texture image segmentation are summarized in Algorithm 2.
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Figure 5. Flowchart of the proposed color texture image segmentation (SLIC: simple linear iterative
clustering, FCAM: fuzzy color aura maxtrix, ELM: extreme learning machine).

Algorithm 2 Color texture image segmentation.
Input: Test image I, KI training images
Parameters: Number T of prototypes per class, number P of superpixels, number C of
fuzzy colors, patch half width W, membership function µc̃.
Step 1: Training stage
1. In each training image, randomly select T prototype sites.
2. At each prototype site, compute the normalized FCAM m̄t over a square patch Wt of

size (2W + 1)2 using Equation (18).
3. Train the ELM classifier with the KI · T normalized FCAMs of prototypes.
Step 2: Segmentation stage
1. Run regional SLIC (Algorithm 1) on I to provide P superpixels {Pp}P

p=1.
2. Compute the normalized FCAM m̄p of each superpixel Pp using Equation (18).
3. Feed m̄p into the trained ELM and assign each pixel in Pp to the ELM output class.
Step 3: Refinement (optional)
Output: Segmented image

4.1.3. Regional SLIC—Preliminary Assessment

To demonstrate the relevance of the proposed regional SLIC algorithm, we compare its
results with those achieved by the basic SLIC algorithm thanks to four standard metrics. The
achievable segmentation accuracy (ASA) quantifies the segmentation performance achievable
by assigning each superpixel to the ground truth region with the highest overlap [55,59].
The boundary recall (BR) assesses the boundary adherence with respect to the ground
truth boundaries [60]. The under-segmentation error (UE) evaluates the segmentation
boundary accuracy as the overlap between superpixels and ground truth regions [55,59].
The compactness (COM) measures the compactness of superpixels [60]. Higher BR, ASA,
and COM, and smaller UE, indicate better pre-segmentation.

Both the basic and regional SLIC algorithms require one to set the number of super-
pixels. This number must be small enough to get superpixels that are large enough to
contain homogeneous textures, and small enough for the superpixels to finely fit bound-
aries between textures. We empirically found that P = 400 is a good trade-off for the
Prague dataset. Table 1 shows the average and standard deviation of the four metrics
obtained by the basic and modified SLIC algorithms over the 20 images of Prague dataset.
From this table, we can see that the results achieved by the regional SLIC are better than
those obtained by the basic SLIC according to all metrics.
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Table 1. Basic and regional SLIC performances on the Prague dataset. Arrows denote the metric
direction (the higher ↑ or smaller ↓, the better), and best results are in bold.

Metric ↑BR ↓UE ↑ASA ↑COM

Basic SLIC 0.46± 0.15 0.36± 0.08 0.79± 0.05 0.56± 0.05
Regional SLIC 0.52± 0.13 0.32± 0.08 0.82± 0.05 0.63± 0.04

4.1.4. Parameter Settings

The proposed color texture segmentation requires one to set several parameters. For
the training stage, the number of prototypes was set to T = 1000, since CNN-based methods
use 1000 training texture mosaic images for each image to segment [23]. The size (2W + 1)2

of the patch centered at each prototype site and used for FCAM computation during the
training stage was set according to the image size N and the number P of superpixels
such that (2W + 1)2 ≈ N/P. As N = 512× 512 and P = 400, the patch size was set to
27× 27 pixels.

To characterize a site by an FCAM in the segmentation stage, we have to set both the
number C of fuzzy colors and the membership function µc̃ that defines the membership
degree µc̃(s) of each site s to any fuzzy color c̃ according to its color I(s). We consider
very few colors in order to evaluate how the memory cost of FCAMs can be reduced
while preserving their relevance as texture features. Specifically, the number of fuzzy
colors one of these values each time: C = 2 × 2 × 1, C = 2 × 2 × 2, C = 2 × 3 × 2,
C = 2× 4× 2, C = 3× 3× 2, C = 3× 4× 2, or C = 4× 4× 2, so that the FCAM size
was 4× 4, 8× 8, 12× 12, 16× 16, 18× 18, 24× 24, or 32× 32. Note that we privileged the
G color component over R and B because it is similar to luminance; other combinations
provide close classification accuracy results. Regarding the membership function, we had
to choose one among the four functions (crisp, Gaussian, triangular, or FCM) presented in
Section 3.4.

We retained a given number of fuzzy colors and membership function on the grounds
of segmentation accuracy. To make this choice independent of the classification algorithm,
we used the nearest neighbor classifier (1NN) instead of the ELM, and with no refinement
step. Figure 6 shows the average accuracy obtained with each membership function
according to the number C of fuzzy colors over the 20 images. From this figure, we can see
that the fuzzy membership functions (Gaussian, triangular, and FCM) largely outperform
the crisp one, especially when the number of fuzzy colors is low. However, when C ≥ 12, all
fuzzy membership functions lead to similar segmentation accuracies, even if the Gaussian
membership function seems to perform slightly better. Moreover, accuracies do not vary
significantly beyond C = 16. In the following, all experiments were therefore performed
with C = 16 fuzzy colors and the Gaussian membership function.

Figure 6. Average accuracy (%) vs. number of colors (C) for different membership functions.
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4.2. Comparison with Other Fuzzy Texture Features

We here compare the relevance of FCAMs with respect to other fuzzy texture fea-
tures, namely, the fuzzy gray-level co-occurrence matrix (FGLCM) [33], the fuzzy color co-
occurrence matrix (FCCM) [38], and the fuzzy gray-level aura cardinal matrix (FGLAM) [39].
Note that FGLCM and FCCM are similar to a fuzzy color aura matrix computed with a
fuzzy aura local measure, as shown in [39]. FGLCM and FGLAM features are formed by
the concatenation of the marginal features of the three R, G, and B components; and a single
FCCM captures the interactions among neighboring pixel colors. For a fair comparison, all
these matrices were computed with the same parameters as the FCAM (Gaussian member-
ship function, CR = CG = CB = 16 for FGLCM and FGLAM, and C = 16 for FCCM).

The comparison is based on the segmentation accuracy as the main performance
measure and on the computational time required by each feature extraction method. Ex-
periments were carried out using the 1NN classifier instead of the ELM, on a computer
with an Intel Core i7 3.60 GHz CPU and 8 GB of RAM. The results over the 20 images of the
Prague dataset are summarized in Table 2. They clearly show that FCAM is more relevant,
three times faster to compute, and requires less memory than marginal features (FGLCM
and FGLAM). FCAM is also more efficient and slightly faster to compute than FCCM.

Table 2. Average accuracy (%) and computation time (s) for different fuzzy features on the Prague
dataset. “nr” means no segmentation refinement, and “wr” means with segmentation refinement.

Feature Size Accuracy nr Accuracy wr Comp. Time

FGLCM 3× 162 = 768 86.69 90.97 123.53
FCCM 162 = 256 86.52 90.77 37.62

FGLAM 3× 162 = 768 87.24 91.28 112.32
FCAM 162 = 256 87.82 92.00 33.12

4.3. Comparison with State-of-the-Art Supervised Segmentation Methods

In this section, we compare the results obtained by the proposed segmentation method
with the results of several state-of-the-art segmentation methods, on the Prague dataset.
The assessment of segmentation performance was based on the conventional measures
provided on the Prague texture segmentation website [57], which include: (1) region-
based criteria: correct segmentation (CS), over-segmentation (OS), under-segmentation (US),
missed error (ME), and noise error (NE); (2) pixel-wise based criteria: omission error (O),
commission error (C), class accuracy (CA), recall (CO), precision (CC), type I error (I.), type
II error (II.), mean class accuracy estimate (EA), mapping score (MS), root mean square
proportion estimation error (RM), and comparison index (CI); (3) consistency-error criteria:
global consistency error (GCE) and local consistency error (LCE).

The methods involved in the comparison were: (1) the MRF algorithm based on a
Markov random field pixel classification model [11], (2) the COF algorithm that uses the
co-occurrence features and the 1NN classifier [57], (3) the Con-Col algorithm [57], (4) the
supervised fully convolutional network for texture (FCNT) algorithm [23] without refine-
ment or (5) with refinement, (6) the empirical-wavelet-transform-based fully convolutional
network for texture (EWT-FCNT) [23] that combines the empirical wavelet transform with
FCNT, (7) U-Net [24], (8) the deep visual model (DA) [25], (9) the pyramid scene parsing
network (PSP-Net) [26], and (10) our proposed method without refinement (FCAM nr) or
(11) with refinement (FCAM wr).

The segmentation results of EWT-FCNT, FCNT, MRF, COF, and Con-Col were taken
from the Prague benchmark website [57]; those of U-Net, DA, and PSP-Net were taken
from [23]. All these methods except MRF, COF, and Con-Col, involve a refinement step to
improve performance. Regarding the number of prototypes, no information is available
for MRF, COF, and Con-Col. In contrast, the CNN-based methods used a training set of
1000 texture mosaic images of size 512× 512 pixels, specifically created from the original
Prague dataset, for each image to segment.
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From Table 3, we can see that our proposed method, with and even without refinement,
outperforms the classical supervised methods, namely, MRF, COF, and Con-Col.In contrast,
EWT-FCNT and other CNN-based methods provided better segmentation results than
our method. However, by carefully analyzing these results, we found that—except the
EWT-FCNT method, which provided exceptional results—our method provided similar
results (to U-Net, FCNT, DA, and PSP-Net). For example, the gaps between its accuracy
(CO = 95.20% with refinement) and those of U-Net, FCNT, DA, and PSP-Net were lower
than 1.7%. We can also see that our FCAM-based method did not suffer from under-
segmentation nor over-segmentation (US and OS measures are equal to 0) compared to deep
learning methods. It is also noticeable that our method without refinement outperformed
FCNT without refinement according to most of the criteria.

Table 3. Results of supervised methods on the Prague dataset (20 test images). Arrows ↑, ↓ denote
the required criterion direction; “nr” means no segmentation refinement, and “wr” means with
segmentation refinement. Best results are in bold, and the second best ones in italic.

Criteria MRF COF Con-Col FCNTnr FCNTwr EWT-FCNT U-Net DA PSP-Net FCAMnr FCAMwr

↑ CS 46.11 52.48 84.57 87.52 96.01 98.45 96.71 94.18 96.45 84.24 91.27

↓ OS 0.81 0.00 0.00 0.00 1.56 0.00 1.71 0.00 0.17 0.00 0.00

↓ US 4.18 1.94 1.70 0.00 1.20 0.00 0.00 1.18 0.41 0.00 0.00

↓ME 44.82 41.55 9.50 6.70 0.78 0.37 0.68 3.42 1.23 11.45 5.93

↓ NE 45.29 40.97 10.22 6.90 0.89 0.46 0.48 3.24 1.12 11.39 5.36

↓ O 14.52 20.74 7.00 7.46 2.72 0.93 0.72 3.13 2.75 4.91 2.96

↓ C 16.77 22.10 5.34 6.16 2.29 1.04 0.70 1.32 2.39 5.89 2.72

↑ CA 65.42 67.01 86.21 87.08 93.95 97.67 95.86 94.53 93.89 87.28 91.54

↑ CO 76.19 77.86 92.02 92.61 96.73 98.78 96.91 96.23 96.06 92.60 95.20

↑ CC 80.30 78.34 92.68 93.26 97.02 98.81 97.38 97.01 96.41 93.65 95.96

↓ I. 23.81 22.14 7.98 7.39 3.27 1.22 3.09 3.77 3.94 7.40 4.80

↓ II. 4.82 4.40 1.70 1.49 0.68 0.25 0.41 0.58 0.69 1.32 0.87

↑ EA 75.40 76.21 91.72 92.68 96.68 98.77 97.01 96.24 96.08 92.58 95.13

↑MS 64.29 66.79 88.03 88.92 95.10 98.17 95.37 94.35 94.08 88.90 92.80

↓ RM 6.43 4.47 2.08 1.38 0.86 0.24 0.61 1.07 0.70 1.64 1.24

↑ CI 76.69 77.05 92.02 92.81 96.77 98.78 97.08 96.41 96.15 92.84 95.35

↓ GCE 25.79 23.94 11.76 12.54 5.55 2.33 2.13 3.50 4.67 11.60 7.45

↓ LCE 20.68 19.69 8.61 9.94 3.75 1.68 1.46 2.47 3.52 8.76 5.31

To thoroughly analyze segmentation results, Table 4 presents the accuracy obtained
on each individual test image by our proposed FCAM method; the handcrafted supervised
methods MRF, COF, and Con-Col; and the two CNN-based methods, FCNT (with refine-
ment) and EWT-FCNT. Only the segmentation results of individual test images obtained
by the compared methods (EWT-FCNT, FCNT, MRF, COF, and Con-Col) are available on
the Prague [57] benchmark website. Table 4 shows that accuracy obtained by our FCAM
method was higher than 96% for half of the 20 test images and outperformed MRF, COF and
Con-Col for almost all images. For 6 of the 20 tested images, our method also outperformed
FCNT and ranked second behind EWT-FCNT. Even better, it provideed the best accuracy
for image 11. For the other images, the accuracy obtained by our method is close to that of
FCNT, though for images 7, 8, 10, and 13, the obtained accuracy is poor (below 91%). This
explains why the average accuracy dropped to 95.20%.

Figure 7 shows a visual comparison of two handcrafted methods (COF and Con-Col)
and two deep learning-based ones (FCNT wr and EWT-FCNT) with the proposed method.
The results of these methods are publicly available online [57]. Overall, FCAM provided
satisfactory visual segmentation results that are close to the ground truth. Unlike other
methods, FCAM is not prone to over-segmentation, and classification errors almost only
occurred at region boundaries. This is mainly due to our pre-segmentation based on
regional SLIC that, despite its superiority over the basic SLIC, lacks the accuracy to correctly
determine the boundaries between two or more different texture regions.
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Table 4. Accuracy (CO) for each test image of the Prague dataset. “nr” means no segmentation
refinement, and “wr” means with segmentation refinement. Best results are in bold, and the second
best ones in italic.

Image MRF COF Con-Col FCNTwr EWT-FCNT FCAMnr FCAMwr

01 99.79 96.19 96.92 99.12 99.91 99.54 99.72

02 77.36 93.02 92.70 97.71 99.51 92.66 96.79

03 95.60 96.56 92.33 97.47 99.21 98.66 99.03

04 73.20 68.63 93.73 98.41 98.77 96.38 98.58

05 89.72 89.67 91.64 96.64 98.95 92.95 93.83

06 84.00 57.59 95.78 97.30 99.52 96.97 97.64

07 67.74 58.08 89.71 96.09 96.71 79.65 84.70

08 58.12 71.27 90.10 95.67 98.80 84.16 90.21

09 72.95 61.29 93.23 96.70 99.35 94.90 95.47

10 71.52 58.97 85.72 92.52 96.69 86.36 89.51

11 61.28 80.88 96.82 96.72 95.32 94.44 97.12

12 81.55 63.01 87.20 96.03 99.51 92.74 95.84

13 74.35 84.32 77.02 96.10 98.48 87.99 90.11

14 91.29 90.32 96.51 97.75 99.17 94.25 96.39

15 57.77 79.61 96.26 97.70 99.56 95.31 98.61

16 61.33 60.63 91.19 94.31 99.46 86.23 93.92

17 62.74 72.31 91.92 96.96 99.38 91.21 95.10

18 77.81 92.96 96.16 98.24 99.58 97.18 98.54

19 76.07 94.98 97.02 98.55 99.78 97.64 99.39

20 89.68 86.87 88.48 94.66 97.91 92.82 93.44

Average 76.19 77.86 92.02 96.73 98.78 92.60 95.20

However, it is important to underline that deep learning-based methods (including
EWT-FCNT) need to create a large training set (1000 images for each image to segment)
from the original training database. Moreover, they require an expensive learning step
to extract features and classify pixels. In order to get an overview on the computational
costs of our approach compared to CNN-based methods, the following section gives the
computational times measured during both training and segmentation phases.

4.4. Processing Time

In Section 4.2, we estimated the FCAM computational time only at superpixels. In or-
der to provide an overview of the computational requirements of the entire FCAM-based
color texture segmentation method, we estimated its overall runtime over the Prague
dataset on an 3.60 GHz Intel Core i7 computer with 8 GB RAM. Table 5 displays the average
computing time of our proposed method and those of CNN-based methods (EWT-FCNT,
FCNT, U-Net, DA, and PSP-Net). These processing times are separated into two parts: the
training time and the segmentation time. The segmentation times for CNNs were taken
from [23]. They were measured on a laptop computer with 2.5 GHz quad-core Intel Core
i7 processor and 16 GB memory, equipped with GTX 1080Ti external GPU with 11 GB
memory. The training times of these CNNs were unfortunately not provided. From this
table, we can see that the processing time required by our method during the segmentation
stage is the highest. It is about 41.14 s for a 512× 512 image. FCAM computation for
superpixels consumes most of this time (33.12 s). The remaining time is mainly shared
among the regional SLIC computation (8 s) and the classification of superpixels by ELM
(0.02 s). It should be noted that the reported computing time for our method was obtained
with MATLAB code without any GPU acceleration, and consequently, our method could
be implemented for real-time applications with this enhancement.
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Figure 7. Sample segmentation results on Prague dataset, from left to right: image 01, image 03,
image 06, image 15, and image 19.

In contrast, the total duration of the training stage for our method remained lower than
5 min and can be detailed as 260 s to compute the FCAM at the prototypes, and 0.9 s to train
the ELM. The overall training time (260.9 s) was much lower than with CNNs, which typi-
cally require several hours on powerful computers equipped with large-memory GPUs.
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Table 5. Average computation time per image of FCNT, EWT-FCNT, U-Net, DA, PSP-Net, and FCAM
on the Prague dataset.

Stage FCNT EWT-FCNT U-Net DA PSP-Net FCAM

Segmentation 3.61 ms 1.830 s 4.98 ms 3.80 ms 14.39 ms 41.14 s
Training - - - - - 260.9 s

5. Conclusions

In this paper, we introduced fuzzy color aura cardinal matrices (FCAMs) to locally
characterize colors and textures, and applied them for color texture image segmentation.
The FCAM feature makes it possible to locally characterize the interactions between colors
of neighboring sites. A single low-dimensionnal FCAM is required to describe the color
texture at each site, unlike in the marginal approach where a fuzzy gray-level aura matrix
(FGLAM) must be computed for each color channel.

The proposed color texture image segmentation is based on the classification of super-
pixels, generated from a modified version of the SLIC algorithm to incorporate regional
information. An FCAM is then computed for each superpixel thanks to a locally-adaptive
neighborhood function. The superpixels are finally classified using a simple supervised
ELM classifier. Experiments on the Prague texture segmentation benchmark showed that
the proposed color texture segmentation based on FCAMs outperforms the classical state-
of-the-art segmentation methods and is competitive with recent methods based on deep
learning. However, unlike CNN-based approaches that require an expensive learning
procedure and a large training set of segmented texture images, whose construction is
time-consuming, our method is applied straightforwardly from a much smaller database
using ELM-based classification.

Despite its respectable performance, our segmentation method remains sensitive to
pre-segmentation results. Although the regional SLIC improves segmentation results in
comparison with the basic SLIC, the detection of color texture boundaries is still not accurate
enough. In future work, we intend to use a texture-aware superpixel procedure that takes
into account the properties of the available color spaces. The proposed segmentation
method was developed in a supervised context; we also plan to adapt it to unsupervised
color texture segmentation.
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