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Abstract: Multi-Focus image fusion is of great importance in order to cope with the limited Depth-
of-Field of optical lenses. Since input images contain noise, multi-focus image fusion methods that
support denoising are important. Transform-domain methods have been applied to image fusion,
however, they are likely to produce artifacts. In order to cope with these issues, we introduce the
Conditional Random Field (CRF) CRF-Guided fusion method. A novel Edge Aware Centering
method is proposed and employed to extract the low and high frequencies of the input images.
The Independent Component Analysis—ICA transform is applied to high-frequency components
and a Conditional Random Field (CRF) model is created from the low frequency and the transform
coefficients. The CRF model is solved efficiently with the α-expansion method. The estimated labels
are used to guide the fusion of the low-frequency components and the transform coefficients. Inverse
ICA is then applied to the fused transform coefficients. Finally, the fused image is the addition
of the fused low frequency and the fused high frequency. CRF-Guided fusion does not introduce
artifacts during fusion and supports image denoising during fusion by applying transform domain
coefficient shrinkage. Quantitative and qualitative evaluation demonstrate the superior performance
of CRF-Guided fusion compared to state-of-the-art multi-focus image fusion methods.

Keywords: multi-focus; image fusion; transform domain; graphical model

1. Introduction

The limited Depth-of-Field of optical lenses allows only parts of the scene within
a certain distance from the camera sensor to be captured well-focused each time, while
the remaining parts of the scene stay out-of-focus or blurred. Multi-focus image fusion
algorithms are thus of vital importance in order to cope with this limitation. Multi-focus
image fusion methods merge multiple input images captured with different focus settings
into a single image with extended Depth-of-Field. More precisely, the well-focused pixels of
the input images are preserved in the fused image and the out-of-focus pixels of the input
images are discarded. Consequently, the fused image should have extended Depth-of-Field
and thus more information than each one of the input images and should not introduce
artifacts during fusion.

The problem of multi-focus image fusion has been explored widely in the literature.
Lately, a number of multi-focus image fusion methods have been proposed. Liu et al. [1]
classified the multi-focus image fusion methods in four categories: spatial-domain methods,
transform-domain methods, combined methods and deep learning methods. In spatial-
domain methods, the fused image is estimated as the weighted average of the input images.
Spatial-domain methods are also classified as block-based, region-based, and pixel-based.
In block-based methods, the image is decomposed into blocks of fixed size, and the activity
level is estimated individually for each of these blocks.

However, since blocks are likely to contain both well-focused and out-of-focus pixels,
the block-based methods are likely to have blocking artifacts near the boundaries of well-
focused and out-of-focus pixels. Thus, the fused image has lower quality near their
boundary. Region-based methods, use a whole region of irregular shape in order to
estimate the saliency of the included pixels. Although region-based methods provide
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higher flexibility than block-based methods, a region may also contain simultaneously
both well-focused and out-of-focus pixels. As a result, region-based methods also produce
artifacts and have lower fused image quality near the boundaries of well-focused and
out-of-focus pixels. In order to overcome these issues, pixel-based methods have lately
gained more popularity. In these methods, activity level estimation is carried out at
pixel level. Pixel-based methods do not have blocking artifacts and have better accuracy
near the boundary of well-focused and out-of-focus pixels, however, they are likely to
produce noisy weight maps, which also lead to fused images of lower image quality.
Popular spatial domain-based multi-focus image fusion methods include: Quadtree [2],
Boundary Finding [3], dense Sift [4], guided filtering [5], PCNN [6] and Image Matting [7].
Singh et al. [8] used the Arithmetic optimization algorithm (AOA) in order to estimate the
weight maps for image fusion, which were refined with weighted least square optimization
(WLS). The fused image is extracted through pixel-wise weighted average fusion. In [9], the
fusion method FNMRA was presented, which used the modified naked mole-rat algorithm
(mNMRA) in order to generate the weight maps, which were refined with weighted least-
squares optimization. Pixel-wise single-scale composition was used in order to create the
fused image.

In transform-domain methods, a forward transform is firstly applied to the input im-
ages. A fusion rule is then applied in order to combine the transform coefficients. Finally, an
inverse transform is applied to the fused coefficients in order to return the fused image to the
spatial domain. An advantage of dictionary-based transform-domain methods is the sup-
port of image denoising during fusion, by applying shrinkage methods,such as [10], which
can be used to remove the noisy transform-domain coefficients. An issue of transform-
domain methods lies in the imperfect forward-backward transforms that result in visible
artifacts due to the Gibbs phenomenon. Since both the selection of the transform domain
and the manual design of the fusion rule highly impact the quality of the fused image
a number of transform domain-based multi-focus image fusion methods have been in-
troduced. Typical transform domain-based multi-focus image fusion methods include:
ICA [11], ASR [12], CSR [13], NSCT [14], NSCT-SR [15], MWGF [16] and DCHWT [17].
Qin et al. [18] proposed a new image fusion method combining discrete wavelet trans-
form (DWT) and sparse representation (SR). Jagtap et al. [19] introduced information
preservation-based guided filtering in order to decompose the input images into base and
detail images. Low-rank representation was used in order to estimate the focus map and
perform a fusion of the detailed images. In [20], the authors used weight maps based on
local contrast, and the fused image was estimated with multi-scale weighted average fusion
based on pyramid decomposition.

The methods that lie in the combined methods category employ both the merits of
spatial and transform domain methods. Nonetheless, each method uses different do-
mains. Bouzos et al. [21] combined the advantages of both the ICA domain and spatial
domain. Chai et al. [22] combined advantages of multi-scale decomposition and spatial
domain. He et al. [23] combined the Meanshift algorithm and NSCT domain. An issue of
the aforementioned methods is that they do not support image denoising during fusion.
Singh et al. [24] proposed the Discrete Wavelet Transform-bilateral filter (DWTBF) method,
which combined the Discrete Wavelet Transform (DWT) and the bilateral filter. In [25], the
authors combined a multi-resolution pyramid and the bilateral filter in order to predict the
fused image.

Lately, deep learning-based methods have gained more popularity. According to the
study [26], deep learning-based methods, are classified into decision map-based methods
and end-to-end methods. In decision-map-based methods, the deep learning networks
predict a decision map, with a classification-based architecture. Post-processing steps,
including morphological operations, are usually employed to refine the decision map. The
decision map is later used to guide the fusion of the input images, by selecting the respective
pixels from the input images. Typical decision map-based deep learning multi-focus image
fusion methods include: CNNFusion [27], ECNN [28] and p-CNN [29]. On the other hand,
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end-to-end deep learning-based networks, directly predict the fused image without the
intermediate step of the decision map. Typical end-to-end based deep learning networks
for multi-focus image fusion include: IFCNN [30] and DenseFuse [31]. Ma et al. [32] intro-
duced a multi-focus image fusion method based on an end-to-end multi-scale generative
adversarial network (MsGAN). Wei et al. [33] combined advantages of sparse representa-
tion and CNN networks in order to estimate the fusion weights for the multi-focus image
fusion problem. Since the sensitivity of the aforementioned deep learning-based methods
to noise was not studied, the methods are likely to be sensitive to noise. In addition, these
deep learning-based multi-focus image fusion methods do not support image denoising
during fusion.

In this manuscript, we introduce CRF-Guided fusion, which is a novel transform
domain-based method that uses the Conditional Random Field model, in order to guide
the fusion of the transform-domain ICA method. Due to various sources, input images
are likely to contain noise, thus multi-focus methods that are robust to noise and support
fusion and denoising during fusion are of great importance. Since CRF-Guided fusion is
a dictionary-based method (ICA), the method is robust to Gaussian noise and supports
image denoising during fusion by applying the shrinkage coefficient method [10]. A
novel Edge Aware Centering method (EAC) is also introduced and is used, instead of the
typical centering method, and alleviates artifacts caused by the centering procedure. The
combination of EAC and the proposed CRF-Guided fusion method produce fused images
of high quality, without introducing artifacts for both clean images and images that contain
Gaussian noise, while also supporting denoising during fusion.

The main contributions of this manuscript and improvements over our previous
method [21] are:

1. the development of the novel EAC method, which preserves the strong edges of the
input images, instead of the typical centering method.

2. the design of a novel framework, based on a CRF model, that is suitable for transform-
domain image fusion.

3. the design of a novel transform-domain fusion method that produces fused images
of high visual quality, preserves via CRF optimization, the boundary between well-
focused and out-of-focus pixels, and does not introduce artifacts during fusion.

4. the introduction of a novel transform-domain fusion rule, based on the labels extracted
from the CRF model, that produces fused images of higher image quality without the
transform-domain artifacts

5. the robustness of the proposed method against Gaussian noise and the support of
denoising during fusion, by applying the transform-domain coefficient shrinkage
method [10].

2. Proposed Method Description

The proposed framework of the CRF-Guided fusion is summarised in Figure 1. An
outline of the method is now provided: Firstly, Edge Aware Centering is applied to the
input images, in order to extract the low and high-frequency components. The Forward
ICA transform is then applied to the high frequencies of the input images. Then, the
Low frequency and ICA coefficients are used to compute the Unary U and Smoothness
V potentials and thus construct the CRF model. Consequently, the CRF model is solved
efficiently with the α-expansion method based on GraphCuts [34]. The predicted labels are
then employed to fuse the low frequencies leading to the fused low-frequency image. In
addition, they are also used to guide the fusion of the transform-domain ICA coefficients.
Lastly, the inverse ICA transform is applied to the fused transform coefficients in order
to return the fused high-frequency component. Finally, the fused image F is estimated
by the addition of the fused low-frequency and the fused high-frequency components.
More details of the aforementioned steps of the proposed framework are included in the
following subsections. Figure 2 includes two source input images for multi-focus image
fusion that will be used during the steps of the CRF-Guided fusion.
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Figure 1. CRF-Guided fusion Framework for input images x1, x2, labels ` as estimated from the
CRF minimization, and the fused image F is constructed by the addition of the low-frequency and
high-frequency fusion results.

(a) (b)

Figure 2. Source input images: (a) Near focused image, (b) Far focused image.

2.1. Edge Aware Centering

In this section, we introduce the Edge Aware Centering (EAC) method, which is used
instead of the typical centering method, in order to estimate the low frequency of the
multi-focus input images. EAC consists of a spatially varying Gaussian filter that preserves
the strong edges of the input images. More precisely,

wi,j = exp

− (xi,j − µi,j)
2

2
〈(

xm,n − µi,j
)2
〉
 (1)

where wi,j is the weight at spatial location (i, j), µi,j is the mean value of a 7× 7 block
with central pixel at (i, j), x is the input image and m ∈ [i− 3, i + 3], n ∈ [j− 3, j + 3]. In
addition, the 〈·〉 operator implies averaging over the all m, n values. Finally, the filtered
image f in spatial locations (i, j) is estimated as:

fi,j =
∑m,n wm,n Imn

∑m,n wm,n
(2)

EAC is applied to both input images in order to estimate the low frequency of each
image. Figure 3 includes the low-frequency images, as computed by applying the proposed
EAC to the input images of Figure 2. It is evident that the EAC preserves accurately the
strong edges of the input images.
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(a) (b)

Figure 3. Low frequency of input images using the EAC: (a) Low frequency of near focused image,
(b) Low frequency of far focused image. It is evident that the EAC preserves the strong image edges.

By subtracting the low-frequency images from the input images, we extract the high-
frequency images as demonstrated in Figure 4. The forward ICA transform is then applied
to the high-frequency images in order to get the transform domain coefficients. For more
information on the estimation of the ICA transform, and its application on images for
fusion, please refer to [11].

(a) (b)

Figure 4. High frequency of input images: (a) High frequency of near focused image, (b) High
frequency of far focused image.

2.2. Energy Minimization

In order to model the multi-focus image fusion problem and solve it efficiently, we
construct an energy minimization equation. Since solvers of graph cuts can reach a global or
close-to-global optimum solution, we formulate the energy minimization problem of multi-
focus image fusion as a graph cut problem. More precisely, we introduce the Conditional
Random Field (CRF) equation that describes our multi-focus image fusion problem, which
is solved efficiently with the inference method of α-expansion reaching a global or close-
to-global optimum solution. The solution of the proposed energy minimization leads to
the optimum labels of the decision that is used to guide the fusion of low frequency and
transform coefficients.

In order to guide the fusion of the low frequency and the transform coefficients, we
formulate the Conditional Random Field (CRF) equation, as follows:

` = arg min
`

 N

∑
i=1

U(`i) + ∑
(m,n)∈C

Vm,n(`m, `n)

 (3)
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where ` are the estimated labels, U is the unary potential function, V is the pairwise
potential function, i are spatial locations, and m, n adjacent pixels in the C which is the
N8-neighborhood. The energy minimization equation is optimized using the α-expansion
method, based on GraphCuts [34].

2.3. Inference α-Expansion Method

In the α-expansion, the optimization problem is divided into a sequence of binary-
valued maximization problems. Given a current label configuration h and a fixed label
α ∈ U, with U being the set of all label values. In the α-expansion move, each pixel i gets a
binary decision, to either retain its old value or change it to label α. The expansion move
starts with the initial set of labels h0 and then based on some order, computes the optimal α-
expansion moves for the labels α. Only the moves that lead to the increase of the objective
function are accepted.

2.4. Unary Potential Estimation

Let us assume that x1, x2 are the input images, PL is the probability of low frequency,
PH the probability of high frequency, P the probability of the input images, and U unary
potential function. Figure 5 depicts the method of estimating the unary potential. More
precisely, EAC is firstly applied to the images to extract low and high frequencies. The
2nd Laplacian is applied to both low-frequency components and the probability of the low
frequency, PL is estimated by:

PL(`n) =

{
S0

S0+S1
, `n = 0

S1
S0+S1

, `n = 1
(4)

where, S0, S1 are the second Laplacian of the low frequencies of the first and the second
image respectively.

x1, x2 EAC

Low
Freq

High
Freq

2nd 
Laplacian

ICA PH

PL

x P -log U

Figure 5. Unary potential estimation for CRF-Guided method.

The probability of the high frequency PH is extracted by the ICA coefficients and is
estimated as follows:

PH(`n) =


‖C0‖

‖C0‖+‖C1‖
, `n = 0

‖C1‖
‖C0‖+‖C1‖

, `n = 1
(5)

where ‖C0‖ is the L2-norm of ICA coefficients of the first image, ‖C1‖ is the L2-norm of ICA
coefficients of the second image. In order to determine the probability that each one of the
input images i should contribute to the spatial location n of the guidance map, we compute
the combined probability of high and low frequencies for each image. This probability we
call the probability of input image that corresponds to label `. Thus probability of each
input image P(`n) is estimated as follows:

P(`n) = PH(`n) ∗ PL(`n) (6)
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Finally, the Unary potential function U is estimated by the negative likelihood of the
predicted probabilities:

U(`n) = − log P(`n) (7)

2.5. Smoothness Term

The smoothness potential function V is estimated from the low-frequency image,
as follows:

Vpq =

∣∣∣lp
0 − lq

1

∣∣∣+ ∣∣∣lp
1 − lq

0

∣∣∣∣∣∣lp
0 − lq

0

∣∣∣+ ∣∣∣lp
1 − lq

1

∣∣∣ (8)

where p, q are adjacent pixels in the N8-neighborhood and l0, l1 are the first and second low-
frequency images respectively. Finally, the labels ` of the CRF model in (3) are estimated
efficiently using the α-expansion method [34].

Figure 6 demonstrates the labels, as estimated from the direct minimization of the
unary term U and the labels, as estimated from the CRF minimization (3). The predicted
labels are then used to fuse the low frequency of the input images.

LF(i) = (1− `i) ∗ L0(i) + `i ∗ L1(i) (9)

where LF is the low-frequency fused image, i is the spatial location, L0 is the low frequency
of the first image and L1 is the low- frequency of the second image.

(a) (b)

Figure 6. Predicted labels, black pixels correspond to ` = 0, white pixels correspond to ` = 1,
(a) ` = arg min U, (b) ` = arg min(CRF) .

2.6. Transform-Domain CRF Fusion Rule

A sliding window with size 7× 7 is applied to the decision map of the predicted
probabilities. The transform coefficients that correspond to each 7× 7 block are then fused
according to the label of the central pixel of the block by selecting the respective coefficients
from the input images that correspond to that label. Inverse ICA is then applied to the
fused transform coefficients in order to return the fused high frequency. Figure 7 depicts
the fused low-frequency component and the fused high-frequency component.
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(a) (b)

Figure 7. (a) Fused low frequency, (b) Fused high frequency.

Finally, the fused image is estimated by the addition of the low and high-frequency
components. Figure 8 demonstrates the final fused image.

Figure 8. Final fused image by the proposed method.

3. Fusion and Denoising

A major advantage of the proposed CRF-Guided fusion is the robustness against
Gaussian noise and the support of denoising during fusion. In the case of Gaussian noise,
the coefficient shrinkage method [10] is applied to the transform coefficients of both input
images. More precisely,

C(k) = 0, if |C(k)| < 1.95 ∗ σn (10)

where C(k) is the k-th transform coefficient in the ICA domain and σn is the standard
deviation of the noise, which is estimated by areas of the image where there is low activity.
Low activity areas contain no strong edges, therefore may contain only noise and thus can
be used to estimate the noise standard deviation σn. The denoised transform coefficients
are then employed to estimate the PH of both input images. Consequently, Guided fusion
from the CRF labels is performed on the denoised transform coefficients. Then, the inverse
ICA transform is used to return the denoised high-frequency image. Lastly, the final
denoised fused image is formed by the addition of the denoised high-frequency and the
fused low-frequency images.

Figure 9 includes the noisy input images with Gaussian noise N
(
0, σ2), σ = 5 and the

denoised fused image F. The fused image F is successfully denoised during the fusion, as
is demonstrated in Figure 9c.
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(a) (b) (c)

Figure 9. (a) Near-focused image with Gaussian noise σn = 5, (b) Far-focused image with Gaussian
noise σn = 5, (c) Denoised fused image.

Figure 10 includes the noisy input images with Gaussian noise N
(
0, σ2), σ = 10 and

the denoised fused image F. The proposed CRF-Guided fusion framework can successfully
produce the denoised fused image Figure 10c, with denoising performed during fusion.

(a) (b) (c)

Figure 10. (a) Near focused image with Gaussian noise σ = 10, (b) Far focused image with Gaussian
noise σ = 10, (c) Denoised fused image.

4. Experimental Results

The proposed CRF-Guided fusion method is compared to 13 state-of-the-art image
fusion methods in the two public datasets: the Lytro dataset [35], which consists of 20 color
input image pairs and the grayscale dataset [3], which consists of 17 grayscale input
image pairs. The state-of-the-art compared methods are: GBM [36], NSCT [14], ICA [11],
DCHWT [17], ASR [12], IFCNN [30] and DenseFuse [31], acof [37], CFL [38], ConvCFL [39],
DTNP [40], MLCF [41] and Joint [42]. Both quantitative and qualitative results are included
in order to evaluate the performance of CRF-Guided fusion and the compared multi-focus
image fusion methods.

4.1. Quantitative Evaluation

In [43,44] Singh et al. made a review of multiple image fusion algorithms along with
the image fusion performance metrics. In order to assess the quality of the fused images of
the compared multi-focus image fusion methods, eight metrics are used. More precisely
the metrics used are: Mutual Information (MI) [45], Qab/ f [46], Qg [47], Qy [48], CB [49],
SSIM [50], NIQE [51] and Entropy.
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4.1.1. Mutual Information—MI

Mutual Information—MI is an information theory-based metric and the objective
measure of the mutual dependence of two random variables. For two discrete random
variables U and V, MI is defined as follows:

MI(U; V) = ∑
v∈V

∑
u∈U

p(u, v) log2
p(u, v)

p(u)p(v)
(11)

4.1.2. Yang’s Metric Qy

Yang et al. [48] proposed the image structural similarity-based metric QY. For input
images A, B and fused image F, it is defined as follows:

QY =

{
λ(w)SSIM(A, F|w) + (1− λ(w))SSIM(B, F|w), SSIM(A, B|w) > 0.75

max{SSIM(A, F|w), SSIM(B, F|w)}, SSIM(A, B|w) < 0.75
(12)

λ(w) =
s(A|w)

s(A|w) + s(B|w)
(13)

where s(A|w) is a local salience measure of image A within a window w. A higher value
of QY indicates better-fused image quality and higher structural similarity of the fused
images and the input images.

4.1.3. Chen-Blum Metric—CB

The Chen-Blum Metric CB [49] is a human perception-inspired fusion metric that
features the following five steps:

1. Contrast sensitivity filtering: Filtered image I′A(m, n) = IA(m, n)S(r), where S(r) is
the CSF filter in polar form and r =

√
m2 + n2.

2. Local contrast computation:

C(i, j) =
φk(i, j) ∗ I(i, j)

φk+1(i, j) ∗ I(i, j)
− 1 (14)

φk(x, y) =
1(√

2πσk

)2 e
− x2+y2

2σ2
k (15)

where σk = 2.
3. Contrast preservation calculation: For input image IA the masked contrast map is

estimated as:

C′A =
t(CA)

p

h(CA)
q + Z

(16)

where t, h, p, q, Z are real scalar parameters that determine the shape of the nonlinearity
of the masking function [49].

4. Generation of saliency map: The saliency map for image IA is:

λA =
C′2A

C′2A + C′2B
(17)

The value of information preservation is:

QAF =


C′A
C′F

if C′A < C′F
C′F
C′A

otherwise.
(18)
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5. The global quality map is defined as:

QGQM(i, j) = λA(i, j)QAF(i, j) + λB(i, j)QBF(i, j) (19)

The value of metric CB is the average of the global quality map:

CB = meani,jQGQM(i, j) (20)

4.1.4. Gradient Based Methods—QG, QAB/F

Xydeas et al. [47] proposed a metric to measure the amount of edge information from
source images to the fused image. QG is a gradient-based method. Firstly, a Sobel operator
is applied to input image A to extract edge strength gA(i, j) and orientation αA(i, j).

ga(i, j) =
√

sx
A(i, j)2 + sy

A(i, j)2. (21)

αA(i, j) = tan−1

(
sy

A(i, j)
sx

A(i, j)

)
(22)

where sx
A, sy

A are the outputs of the convolution application of the horizontal and vertical
Sobel templates respectively. The relative strength between input image A and fused image
F is:

GAF(i, j) =


gF(i,j)
gA(i,j)

, if gA(i, j) > gF(i, j)
gA(i,j)
gF(i,j)

, otherwise.
(23)

The orientation values ∆AF between input image A and fused image F are:

∆AF(i, j) = 1− |αA(i, j)− αF(i, j)|
π/2

(24)

The edge strength value is estimated as:

QAF
g (i, j) =

Γg

1 + ekg(GAF(i,j)−σg)
(25)

The orientation preservation value is estimated as:

QAF
α (i, j) =

Γα

1 + eka(∆AF(i,j)−σα)
(26)

The constants Γg, kg, σg and Γα, kα, σα are used to define the shape of the sigmoid
functions used for the edge strength and orientation preservation values [47].

QAB/F =
∑N

n=1 ∑M
m=1

[
QAFwA + QABwB]

∑N
n=1 ∑M

m=1[wA + wB]
(27)

and
QAF = QAF

g QAF
α (28)

where QAF(i, j) denotes the edge similarity at position (i, j) between input image A and
fused image F, QAF

g the edge strength similarity and QAF
α the orientation similarity.

4.1.5. Structural Similarity Index—SSIM [50]

The structural similarity index—SSIM for two images A, B is defined as:

SSIM(A, B) =
(2µAµB + C1)(2 ∗ σAB + C2)(
µ2

A + µ2
B + C1

)(
σ2

A + σ2
B + C2

) (29)
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where µA, µB are the mean intensity values of images A, B, σA, σB are the standard deviation
of images A, B and σAB is the square root of covariance of A, B. C1, C2 are constants. Due to
the lack of ground truth image, the SSIM for input images A, B and fused image F in the
experiments is defined as follows:

SSIM =
SSIM(A, F) + SSIM(B, F)

2
(30)

where A and B are the two input images and F is the fused image.

4.1.6. Niqe [51]

NIQE is a blind image quality metric based on the Multivariate Gaussian Model
(MVG). The quality of the fused image is defined as the distance between the quality
aware natural scene statistic (NSS) model and the MVG fit, extracted from features of the
distorted image:

D(v1, v2, Σ1, Σ2) =

√√√√(((v1 − v2)
T
)(Σ1 + Σ2

2

)−1

(v1 − v2)

)
(31)

where v1, v2 and Σ1, Σ2 are the mean vectors and covariance matrices of the natural multivari-
ate Gaussian model [51] and the multivariate Gaussian model that is fit to the fused image.

4.1.7. Entropy

The entropy of an image I is defined as:

EI = −
2L−1

∑
j=1

p
(
sj
)

log2
(

p
(
sj
))

(32)

where L is the number of gray levels, p
(
sj
)

is the probability of occurrence of gray level sj
in image I.

Table 1 includes the objective evaluation of the compared methods for the Lytro
dataset [35].

For the Lytro dataset [35], the proposed CRF-Guided fusion method has the highest
value for the metrics MI, Qg, QAB/F, QY, CB, the lowest value for the NIQE metric and the
second highest score for SSIM and entropy. These results indicate that the fused quality
of the proposed fused image is better than the compared state-of-the art methods. Since
CRF-Guided has the highest Mutual Information [45], the proposed method preserves
best the information of the input images. In addition, CRF-Guided has the highest Qg [47]
and QAB/F [46] values, which indicate that the proposed method preserves best the edge
information from the input images to the fused image. In order to assess the quality of
the structural similarity of the fused images, Yang’s metric QY [48] and the structural
similarity index measure SSIM [50] are employed. The proposed method has the highest
QY value and the second highest according to SSIM, which indicates high fused image
quality, regarding structural similarity. DenseFuse [31] has highest SSIM value for the Lytro
dataset. The proposed CRF-Guided method has the highest value on the human perception
inspired fusion metric CB [49], which implies that perceptually the produced results by
the method are the most pleasing to the human eye. According to the blind image quality
metric NIQE [51], CRF-Guided has the lowest value and thus the best fused image quality.
Lastly, for the blind image quality Entropy, GBM [36] has the highest score and CRF-Guided
has the second highest score. Overall for the Lytro dataset [35] of perfectly registered color
input images, the proposed CRF-Guided method outperforms the compared state-of-the
art image fusion methods in most metrics.
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Table 1. Objective evaluation for the Lytro dataset [35]. Lower values for NIQE indicate better fused
image quality, while for rest metrics higher values indicate better fused image quality.

Methods MI [45] Qg [47] QAB/F [46] Qy [48] CB [49] SSIM [50] N IQE [51] Entropy

ASR [12] 7.1310 0.7510 0.7013 0.9691 0.7264 0.8437 3.4591 7.5217
NSCT [14] 7.1986 0.7502 0.6960 0.9649 0.7527 0.8432 3.4479 7.5309
GBM [36] 3.8813 0.7172 0.6202 0.8554 0.6159 0.7932 3.0434 7.5684
ICA [11] 6.8769 0.7393 0.6741 0.9512 0.7088 0.8534 3.3915 7.5267

IFCNN [30] 7.0400 0.7337 0.6628 0.9522 0.7292 0.8440 3.4623 7.5319
DenseFuse [31] 6.2048 0.5532 0.4694 0.8141 0.6037 0.8651 3.3953 7.4681
dchwt [17] 6.7298 0.7184 0.6078 0.9202 0.6924 0.8526 3.2976 7.5205
acof [37] 7.2675 0.5287 0.5112 0.9475 0.6387 0.8260 4.6501 7.4901
cfl [38] 5.6254 0.6576 0.5746 0.8827 0.6323 0.8158 3.4033 7.5734

ConvCFL [39] 5.9742 0.6916 0.5864 0.8869 0.6643 0.8396 3.7099 7.5581
DTNP [40] 6.7854 0.7431 0.6779 0.9566 0.7347 0.8390 3.4198 7.5298
mlcf [41] 6.4414 0.5377 0.5147 0.8593 0.6259 0.8564 3.8699 7.4906
joint [42] 6.9991 0.7435 0.6970 0.9621 0.7176 0.8426 3.3935 7.5200

CRFGuided 7.3639 0.7534 0.7143 0.9851 0.7557 0.8601 3.0336 7.5697

Table 2 includes the quantitative evaluation of the compared methods for the grayscale
dataset [3]. The CRF-Guided fusion method outperforms the compared state-of-the-art
methods, in terms of metrics MI [45], Qg [47], QAB/F [46], QY [48], CB [49] and SSIM [50]
and has the second lowest score for the NIQE [51] metric and the second highest Entropy
value. More precisely, since CRF-Guided has the highest Mutual Information [45], it
preserves better the original information compared to the other methods. The highest value
of CRF-Guided in Qg [47] and QAB/F [46] indicate that the proposed method preserves
better the edges of the input images, compared to the state-of-the-art methods. Moreover,
the structural information of the original images is best preserved in the CRF-Guided
method, since both Qy [48] and SSIM [50] have the highest value for the proposed method.
According to the human perception inspired fusion metric CB [49], CRF-Guided has the
best fused image quality. For the NIQE [51] metric, the method dchwt [17] has the lowest
score and the proposed method has the second lowest value. The method GBM [36] has
the highest entropy value for the grayscale dataset. Overall, the proposed method has the
highest fused image compared to the state of the art methods for the grayscale dataset [3].

Table 2. Objective evaluation for the grayscale dataset [3]. Lower values for NIQE indicate better
fused image quality, while for rest metrics higher values indicate better fused image quality.

Methods MI [45] Qg [47] QAB/F [46] Qy [48] CB [49] SSIM [50] N IQE [51] Entropy

ASR [12] 6.3790 0.7192 0.6721 0.9541 0.7057 0.8150 5.5111 7.3262
NSCT [14] 6.2947 0.7074 0.6593 0.9439 0.7284 0.8161 5.3080 7.3451
GBM [36] 3.5292 0.6729 0.5826 0.8275 0.6005 0.7503 5.0053 7.5298
ICA [11] 6.0174 0.6945 0.6507 0.9313 0.6996 0.8302 5.2144 7.3449

IFCNN [30] 5.9641 0.6743 0.6074 0.9118 0.6725 0.8230 5.4436 7.3435
DenseFuse [31] 6.0467 0.6139 0.5798 0.8517 0.6275 0.8351 5.2584 7.3739
dchwt [17] 5.9965 0.6781 0.5810 0.8997 0.6752 0.8244 4.9713 7.3396
acof [37] 6.5748 0.5594 0.5543 0.8691 0.6183 0.8098 5.1625 7.3088
cfl [38] 4.8158 0.5985 0.5327 0.8548 0.6138 0.7966 5.5156 7.4403

ConvCFL [39] 5.3014 0.6510 0.5619 0.8640 0.6558 0.8234 5.5023 7.3895
DTNP [40] 6.0911 0.6966 0.6357 0.9296 0.7056 0.8119 5.2817 7.3496
mlcf [41] 6.3294 0.5912 0.5890 0.9274 0.6594 0.8040 5.2670 7.3176
joint [42] 6.6541 0.7212 0.6775 0.9553 0.7234 0.8102 5.4543 7.3239

CRFGuided 6.6740 0.7290 0.6903 0.9798 0.7337 0.8356 5.0001 7.3928

In summary, according to the 8 metrics used for quantitative evaluation, the proposed
CRF-Guided method has the best performance compared to 13 state-of-the art image fusion
methods for both public datasets: the Lytro dataset [35] and the grayscale dataset [3].
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4.2. Qualitative Evaluation

In this section, we perform a visual comparison between the tested methods. Figure 11
includes the fused results of the compared methods for the scene ‘Lab’ of the grayscale
dataset [3]. The compared methods GBM [36], NSCT [14], ICA [11], DCHWT [17], ASR [12],
IFCNN [30], DenseFuse [31], acof [37], CFL [38], ConvCFL [39], DTNP [40], MLCF [41]
and Joint [42], all feature visible artifacts in the area of the head. Moreover, these methods
cannot accurately preserve the boundary of the clock in the red rectangle. MLCF cannot
accurately capture the boundaries of the well-focused and out-of-focus pixels. NSCT [14],
ICA [11], IFCNN [30], DenseFuse [31], acof [37], CFL [38], ConvCFL [39] also feature
artifacts around the arm, included in the red rectangle area. The proposed CRF-Guided
method has the highest fused image quality for the area of the head, without introducing
artifacts during fusion. Furthermore, the boundary of the clock is best preserved in the
CRF-Guided fusion method, compared to the state-of-the-art methods. Moreover, the
CRF-Guided fusion method does not introduce artifacts in the area of the red rectangle
around the arm. The proposed CRF-Guided method does not have artifacts during fusion
and has the highest visual image quality for the ‘Lab’ scene.

(k) (l)

(p)(m) (n) (o)

(j)

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 11. Fused results for the scene ‘Lab’ of the grayscale dataset [3]. (a) Source 1, (b) Source
2, (c) GBM [36], (d) NSCT [14], (e) ICA [11], (f) DCHWT [17], (g) ASR [12], (h) IFCNN [30],
(i) DenseFuse [31], (j) acof [37], (k) CFL [38], (l) ConvCFL [39], (m) DTNP [40], (n) MLCF [41],
(o) Joint [42], (p) CRFGuided.

Figure 12 includes the resulting fused images of the proposed and the compared
methods for the scene ‘Temple’ of the grayscale dataset [3]. Two regions are selected
for magnification to assess with qualitative evaluation. GBM [36], NSCT [14], ICA [11],
DCHWT [17], ASR [12], IFCNN [30], DenseFuse [31], acof [37], CFL [38], ConvCFL [39],
DTNP [40], MLCF [41] and Joint [42] all have visible artifacts in both regions of the red and
the blue rectangles. Moreover, they cannot accurately preserve the boundary of the well-
focused and out-of-focus pixels. The proposed CRF-Guided method preserves accurately
the boundaries between the well-focused and out-of-focus pixels for both regions without
introducing artifacts, compared to the other multi-focus image fusion methods. CRF-
Guided features the best fused image quality for the scene ‘Temple’. Qualitative evaluation
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indicates that the proposed CRF-Guided method has the best visual fused image quality,
without introducing artifacts during fusion, compared to 13 state-of-the art methods.

(a) (b) (c) (d) (e)

(g) (h) (i)

(p)

(f)

(k) (l)(j)

(m) (n) (o)

Figure 12. Fused results for the scene ‘Temple’ of the grayscale dataset [3]. (a) Source 1, (b) Source 2,
(c) GBM [36], (d) NSCT [14], (e) ICA [11], (f) DCHWT [17], (g) ASR [12], (h) IFCNN [30],
(i) DenseFuse [31], (j) acof [37], (k) CFL [38], (l) ConvCFL [39], (m) DTNP [40], (n) MLCF [41],
(o) Joint [42], (p) CRFGuided.

Figure 13 includes the qualitative evaluation of the compared methods for the scene
‘Golfer’ of the Lytro dataset [35]. CFL [38] and ConvCFL [39] produce artifacts around the
boundary of well-focused and out-of-focus pixels in both regions. The boundary of the
well-focused pixels isn’t well preserved in GBM [36], NSCT [14], ICA [11], DCHWT [17],
ASR [12], IFCNN [30], DenseFuse [31], acof [37], CFL [38], ConvCFL [39], DTNP [40],
MLCF [41] and joint [42], while on the proposed CRFGuided the fused image is better
preserved. Methods acof [37], mlcf [41] cannot accurately capture the boundary of well-
focused and out-of-focus pixels in both regions. NSCT [14], DenseFuse [31], acof [37],
DTNP [40] and MLCF [41] cannot preserve accurately the boundaries between the well-
focused and out-of-focus pixels in the area of the red rectangle. The proposed CRFGuided
method has the highest visual quality for both regions for the ‘Golfer’ scene of the Lytro [35]
dataset, preserving best the boundary of well-focused and out-of-focus pixels, without
introducing artifacts during fusion.
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(a) (b) (c) (d) (e) (f)

(m) (n) (o) (p)

(h) (i) (j) (k) (l)(g)

Figure 13. Fused results for the scene ‘Golfer’ of the Lytro dataset [35]. (a) Source 1, (b) Source 2,
(c) GBM [36], (d) NSCT [14], (e) ICA [11], (f) DCHWT [17], (g) ASR [12], (h) IFCNN [30],
(i) DenseFuse [31], (j) acof [37], (k) CFL [38], (l) ConvCFL [39], (m) DTNP [40], (n) MLCF [41],
(o) Joint [42], (p) CRFGuided.

Figure 14 features the qualitative evaluation for the ‘Volley’ scene of the Lytro [35]
dataset. Two regions were selected with magnification. For the blue region, the bound-
aries of well-focused and out-of-focus pixels in methods GBM [36], NSCT [14], ICA [11],
DCHWT [17], IFCNN [30], DenseFuse [31], acof [37], CFL [38], ConvCFL [39], DTNP [40],
MLCF [41] are not accurately preserved. Methods acof [37] and MLCF [41] can not pre-
serve accurately the boundaries of well-focused and out-of-focus pixels in both regions.
For the red region, Joint [42] produces color degradation and lower contrast. Moreover,
GBM [36], NSCT [14], ICA [11], DCHWT [17], ASR [12], IFCNN [30], DenseFuse [31],
acof [37], CFL [38], ConvCFL [39], DTNP [40], MLCF [41] can not preserve well the bound-
ary of well-focused and out-of-focus pixels and the back shoe is not well-focused. The
proposed CRFGuided preserves best the boundary between well-focused and out-of-focus
pixels for both regions for the ‘Volley’ scene of the Lytro dataset [35], resulting in a fused
image of high quality without introducing artifacts during fusion.

According to the previous qualitative evaluation, the proposed CRF-Guided fusion
method produces fused images of high quality, preserving best the boundary of well-
focused and out-of-focus pixels without introducing artifacts during fusion.
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Figure 14. Fused results for the scene ‘Volley’ of the Lytro dataset [35]. (a) Source 1, (b) Source 2,
(c) GBM [36], (d) NSCT [14], (e) ICA [11], (f) DCHWT [17], (g) ASR [12], (h) IFCNN [30],
(i) DenseFuse [31], (j) acof [37], (k) CFL [38], (l) ConvCFL [39], (m) DTNP [40], (n) MLCF [41],
(o) Joint [42], (p) CRFGuided.

4.3. Complexity

We analyzed the computational complexity of the proposed and compared image
fusion methods. The average execution time on the Lytro dataset of the compared methods
are included in Table 3. The included times were computed on an Intel ® CoreTM i9 2.9GHz
processor with 16 GB RAM and a 64-bit operating system. IFCNN [30] and DenseFuse [31]
were executed on an NVIDIA GeForce RTX 2080 with Max-Q Design.

Table 3. Average running time of compared methods for input image pairs of size [520× 520].

Methods Time (s)

GBM [36] 2.43 s
NSCT [14] 87.27 s
ICA [11] 24.02 s

DCHWT [17] 18.59 s
ASR [12] 1204.92 s

IFCNN [30] 0.22 s
DenseFuse [31] 0.41 s

acof [37] 9.91 s
CFL [38] 23.69 s

ConvCFL [39] 138.42 s
DTNP [40] 420 s
MLCF [41] 53.11 s
Joint [42] 83.09 s

CRF-Guided 31.00 s
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The two deep learning-based approaches IFCNN and DenseFuse have very small
execution times, due to their parallel implementation on a GPU. The remaining methods
were implemented on MATLAB v2021b. The proposed CRF-Guided was implemented
on MATLAB without any code optimization. Nonetheless, its average execution time of
31 s compares favorably with the fastest methods, being the 6th method (excluding the
IFCNN and DenseFuse), but with the best overall qualitative performance. Thus, the best
qualitative fortunately implies a medium computational complexity.

5. Conclusions

A novel transform domain multi-focus image fusion method is introduced in this
paper. The proposed CRF-Guided fusion takes advantage of the CRF minimization and
the labels are used to guide the fusion of both low frequency and the ICA transform
coefficients and thus the high frequency. CRF-Guided fusion supports image denoising
during fusion, by applying coefficient shrinkage. Quantitative and qualitative evaluation
demonstrate that CRF-Guided fusion outperforms state-of-the-art multi-focus image fusion
methods. Limitations of the proposed CRF-Guided fusion method include the selection of
the transform domain and the hand-crafted design of the unary and smoothness potential
functions for the energy minimization problem. Future work includes the application of
CRF-Guided fusion in different transform domains and learning the unary and smoothness
potential function with deep learning networks.
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