
Citation: El Shair, Z.; Rawashdeh,

S.A. High-Temporal-Resolution

Object Detection and Tracking Using

Images and Events. J. Imaging 2022, 8,

210. https://doi.org/10.3390/

jimaging8080210

Academic Editor: Pier Luigi Mazzeo

Received: 29 June 2022

Accepted: 25 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

High-Temporal-Resolution Object Detection and Tracking
Using Images and Events
Zaid El Shair * and Samir A. Rawashdeh

Department of Electrical and Computer Engineering, University of Michigan-Dearborn,
Dearborn, MI 48128, USA; srawa@umich.edu
* Correspondence: zelshair@umich.edu

Abstract: Event-based vision is an emerging field of computer vision that offers unique properties,
such as asynchronous visual output, high temporal resolutions, and dependence on brightness
changes, to generate data. These properties can enable robust high-temporal-resolution object
detection and tracking when combined with frame-based vision. In this paper, we present a hybrid,
high-temporal-resolution object detection and tracking approach that combines learned and classical
methods using synchronized images and event data. Off-the-shelf frame-based object detectors are
used for initial object detection and classification. Then, event masks, generated per detection, are
used to enable inter-frame tracking at varying temporal resolutions using the event data. Detections
are associated across time using a simple, low-cost association metric. Moreover, we collect and label a
traffic dataset using the hybrid sensor DAVIS 240c. This dataset is utilized for quantitative evaluation
using state-of-the-art detection and tracking metrics. We provide ground truth bounding boxes and
object IDs for each vehicle annotation. Further, we generate high-temporal-resolution ground truth
data to analyze tracking performance at different temporal rates. Our approach shows promising
results, with minimal performance deterioration at higher temporal resolutions (48–384 Hz) when
compared with the baseline frame-based performance at 24 Hz.

Keywords: event-based vision; object detection and tracking; high-temporal-resolution tracking;
frame-based vision; hybrid approach

1. Introduction

Object tracking is a common and well-defined task in computer vision. It entails
identifying objects in a scene and tracking their locations across time. The implementations
using conventional cameras have been vast and well-established for quite some time [1–3].
Typically, object trackers utilize an object detection mechanism applied to images, to detect
and track present objects across sequential frames based on some association metrics. This
results in discrete tracking outputs with rather low temporal resolution, even when the
object detection performance is ideal. Such temporal resolutions might be insufficient for
high-speed robotics or for applications that require higher tracking temporal resolutions.

Most conventional cameras (hereafter referred to as frame-based cameras) capture
images at a relatively low fixed rate of about 30 Hz (or frames per second). Low dynamic
range, motion blur, high power consumption, as well as low update rates, are among the
main limitations of frame-based cameras.

On the other hand, event-based vision, which is an emerging field of computer vision,
proposes a novel type of bio-inspired sensing modality that offers different physical prop-
erties that can be utilized for common computer vision tasks, including object detection
and tracking. These sensors, commonly known as event cameras in the literature, capture
per-pixel brightness changes at a very high temporal resolution at the level of microsec-
onds. These brightness changes are referred to as events and are only generated whenever
the brightness change of any given pixel exceeds a set threshold. An initial version of

J. Imaging 2022, 8, 210. https://doi.org/10.3390/jimaging8080210 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8080210
https://doi.org/10.3390/jimaging8080210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-9518-2828
https://doi.org/10.3390/jimaging8080210
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8080210?type=check_update&version=1

J. Imaging 2022, 8, 210 2 of 21

this sensor, known as the Dynamic Vision Sensor (DVS), was first introduced in 2008 by
Lichtsteiner et al. [4].

In general, an event can be defined as:

e = {x, y, t, p}, (1)

where x and y denote the 2D pixel coordinates of the event, whereas t is the timestamp in
microseconds of when the event was captured, and p specifies the polarity of the event,
which can be either positive or negative p ∈ {+1,−1}, indicating a brightness increase or
decrease, respectively.

Unlike frame-based cameras, event cameras generate data asynchronously only at
the pixel(s) that undergo a brightness change. These brightness changes (events), other
than noise, typically imply motion or highlight changes in the scene. Moreover, event
cameras offer numerous advantages compared to standard cameras, including a high
dynamic range (HDR) of typically >120 dB vs. ~60 dB for standard cameras, no motion blur,
low latency (microseconds), high temporal resolution (~1 µs per event), and low power
consumption [5]. A more in-depth literature survey of this technology can be found in [6].

When it comes to object tracking, the limitations of frame-based cameras can affect
performance. Considering their low capture rates, a rapid change in the position or motion
of an object being tracked, for example, might not be detected if it occurs at a higher
rate than the camera’s capture rate. The effects of this might cause undesired outcomes
depending on the intended application, as tracking ends up yielding a low temporal
resolution output with insufficient data for the inference of other useful characteristics, such
as object kinematics (velocity and acceleration rates), or the ability to generate continuous
tracking results without the use of data extrapolation techniques.

As for the other frame-based limitations, object tracking can suffer intermittent object
detection performance, where objects of interest are not always successfully detected in
each frame. This causes some false-negative readings (missed detections) that may result
in erratic and inconsistent tracking performance, especially if other means of averaging
or filtering are not applied. Theoretically, the maximum achievable tracking rate should
be bounded by the camera’s synchronous capture rate, generated at discrete times, given
an ideal object detection and tracking performance. Alternatively, a high framerate input
source can be used to yield higher tracking resolutions. However, frame-based object
detection is computationally expensive and can be very significant in this case, as inference
times per frame are usually in the order of several milliseconds, at best using deep learning-
based object detectors [7]. This can effectively limit real-time performance, which might be
needed given the application. Moreover, consecutive frames might have minimal changes
between them, creating redundant data, yet with the same computational expense per
frame. This is in addition to the fact that high framerate cameras are expensive, require
more memory, and consume more power [8].

Nonetheless, event cameras suffer from limitations as well, one of which is the lack of
intensity information that regular cameras provide, which causes object classification to
be challenging. Although it was shown that intensity images can be reconstructed from
events [9], noise and other issues can cause artifacts in the reconstruction. This is evident
in scenes with limited changes generated by a camera without any ego-motion applied,
in which a significant proportion of the events generated are due to noise. Ego-motion
is defined as the 3D motion of a camera relative to the environment [10]. Ego-motion
applied on an event camera acts as a trigger that generates events at the edges of the objects
within the camera’s field of view due to the brightness changes prominent around edge-like
features. Accordingly, to achieve more robust detection and tracking, a combined approach
would be advantageous.

J. Imaging 2022, 8, 210 3 of 21

In this paper, our main contributions can be described as follows:

1. We present and evaluate a novel hybrid approach to utilize some of the advantages
of both types of sensing modalities (frame-based and event-based vision) to produce
higher tracking temporal resolutions. Frame-based vision is used for detecting and
classifying objects in a scene (learned approach), whereas event-based vision’s asyn-
chronous and high temporal resolution is used for inter-frame tracking by using event
masks extracted from the event stream guided by the frame-based detection position
(classical approach). Euclidean distance-based object association is used, as the data
generated is assumed to be continuous whenever an object is moving, to evaluate
the feasibility of higher temporal resolution tracking. Our approach is demonstrated
in Figure 1.

2. We collected and manually labeled several hours of synchronized image and event
data using Dynamic and Active-Pixel Vision Sensor (DAVIS) 240c (Zurich, Switzer-
land) [5], which combines a grayscale camera, known as Active Pixel Sensor (APS),
as well as the event-based sensor DVS, using the same pixel array. Our labeled data
provides both the true 2D bounding boxes for all vehicles in the scene for any image,
as well as their corresponding object IDs, which are used for object tracking evaluation.
This dataset is publicly available.

3. To generate matching high-temporal-resolution tracking data for our evaluations, we
temporally interpolate our ground truth data multiple times to yield true rates beyond
the base framerate of the APS, which is 24 Hz.

4. We assess our approach’s performance using state-of-the-art object detection and
tracking metrics, at temporal resolutions of 48, 96, 192, and 384 Hz.

J. Imaging 2022, 8, x FOR PEER REVIEW 3 of 22

the camera’s field of view due to the brightness changes prominent around edge-like fea-
tures. Accordingly, to achieve more robust detection and tracking, a combined approach
would be advantageous.

In this paper, our main contributions can be described as follows:
1. We present and evaluate a novel hybrid approach to utilize some of the advantages

of both types of sensing modalities (frame-based and event-based vision) to produce
higher tracking temporal resolutions. Frame-based vision is used for detecting and
classifying objects in a scene (learned approach), whereas event-based vision’s asyn-
chronous and high temporal resolution is used for inter-frame tracking by using event
masks extracted from the event stream guided by the frame-based detection position
(classical approach). Euclidean distance-based object association is used, as the data
generated is assumed to be continuous whenever an object is moving, to evaluate the
feasibility of higher temporal resolution tracking. Our approach is demonstrated in
Figure 1.

2. We collected and manually labeled several hours of synchronized image and event
data using Dynamic and Active-Pixel Vision Sensor (DAVIS) 240c (Zurich, Switzer-
land) [5], which combines a grayscale camera, known as Active Pixel Sensor (APS),
as well as the event-based sensor DVS, using the same pixel array. Our labeled data
provides both the true 2D bounding boxes for all vehicles in the scene for any image,
as well as their corresponding object IDs, which are used for object tracking evalua-
tion. This dataset is publicly available.

3. To generate matching high-temporal-resolution tracking data for our evaluations, we
temporally interpolate our ground truth data multiple times to yield true rates be-
yond the base framerate of the APS, which is 24 Hz.

4. We assess our approach’s performance using state-of-the-art object detection and
tracking metrics, at temporal resolutions of 48, 96, 192, and 384 Hz.

Figure 1. A conceptual diagram of our high-temporal-resolution object detection and tracking ap-
proach using images and event data. The figure shows three sequential grayscale image frames
across time, with events (red and blue dots) overlayed on top, representing their sparse and asyn-
chronous nature. An event mask is extracted whenever an object is detected in a given image, which
is then used for inter-frame detection and tracking using events until a new image is captured and
the process is repeated.

The remainder of this paper is organized as follows. In Section 2, the related work is
surveyed. Section 3 breaks down our hybrid tracking approach. Section 4 describes the
experimental setup used to evaluate our approach, including the dataset, experimental
configuration, and metrics used. Section 5 presents and discusses the results, and Section
6 concludes our work.

Figure 1. A conceptual diagram of our high-temporal-resolution object detection and tracking ap-
proach using images and event data. The figure shows three sequential grayscale image frames across
time, with events (red and blue dots) overlayed on top, representing their sparse and asynchronous
nature. An event mask is extracted whenever an object is detected in a given image, which is then
used for inter-frame detection and tracking using events until a new image is captured and the
process is repeated.

The remainder of this paper is organized as follows. In Section 2, the related work is
surveyed. Section 3 breaks down our hybrid tracking approach. Section 4 describes the
experimental setup used to evaluate our approach, including the dataset, experimental
configuration, and metrics used. Section 5 presents and discusses the results, and Section 6
concludes our work.

J. Imaging 2022, 8, 210 4 of 21

2. Related Work
2.1. Frame-Based Object Tracking

Frame-based multi-object tracking has been well-established in the literature for quite
some time. Most works currently utilize direct methods, specifically tracking-by-detection,
using optimized object detectors, while focusing on the data association aspect of object
tracking [11–15].

Recent state-of-the-art trackers, such as DeepSORT [12] and SOTMOT [13], propose
different association methods that are performed in an online manner and constrained by a
trade-off between accuracy and latency. DeepSORT [12], for instance, incorporates motion
information based on a recursive Kalman filter [16] and appearance information generated
by a pre-trained convolutional neural network (CNN), using Mahalanobis distance, to
perform data association on a frame-by-frame basis. Frame-based detections are generated
using a fine-tuned FasterRCNN [17]. Meanwhile, SOTMOT [13] employs a one-shot
framework based on a modified DLA [18] backbone with multiple parallel branches to
perform object detection and data association simultaneously.

Global methods, also known as batch methods, exist as well [14,15]. However, they are
not considered in this paper due to their limited utility in robotics operating in real time,
as they function in an offline manner. Thus, they require full knowledge of all present and
future data for object detection and tracking. Further, it is common for global trackers (and
some online ones) to use linear interpolation to cover the gaps in the trajectories of the
objects being tracked. On the other hand, some trackers (such as Deep SORT [12]) incor-
porate motion information to improve data association and mitigate missing detections,
using predictions generated by a Kalman filter [16]. Finally, most of these implementations
are usually evaluated and compared using common frame-based multi-object tracking
benchmarks, such as MOT20 [19], which contains only image frames (no event data).

In our work, we use Euclidean distance [20] as the data association metric. Euclidean
distance can be defined as the length of a line connecting any two points. This metric is
sufficient for our work, given the modest complexity of the dataset used and the expected
continuous nature of the object detection resulting from the added use of event data.
Furthermore, in our work, the frame-based-only approach to object tracking is only used
as a baseline (at 24 frames per second) to compare with the tracking results of the higher
temporal resolutions (48 Hz and above) that use both modalities. Thus, it is irrelevant to
include other frame-based approaches in our evaluation. Finally, to constrain the scope of
this work, we do not investigate the application of interpolation techniques to fill any gaps
in the generated tracking trajectories.

2.2. Event-Based Object Tracking

In contrast with frame-based object tracking, event-based object tracking is still in
its early stages. In the literature, event-based feature tracking has been the focus of the
research community and significant progress has been made. It entails using event data to
extract features of different types (e.g., corners) and track them through time [21–23]. As
for event-based object detection and tracking, most works have been application-specific,
with few similarities overall [24–34]. We categorize these works as either event-based or
combined (i.e., using images and events) approaches.

A common approach to event-based object tracking is using clustering methods [25,26,
31,34]. Clustering is an intuitive approach for event-based object tracking whenever there
is no ego-motion applied to the camera, thus assuming that events are mainly generated
around the moving objects. Therefore, these clusters can track these objects with decent
performance. Nevertheless, clustering is less robust against occlusion and can lead to more
object ID switching between the objects being tracked.

J. Imaging 2022, 8, 210 5 of 21

As for the other, non-clustering, event-based tracking methods, Mitrokhin et al. [27]
proposed a motion compensation model that enables the detection of objects in a scene by
finding inconsistencies in the resulting model and then tracking them using a Kalman filter.
They tested their approach on a dataset collected on a moving platform comprising several
sequences of varying lighting conditions. The objects were labeled at the time instances of
the captured RGB frames. Finally, they evaluated their tracking performance based on a
success rate of the percentage of objects detected with at least 50% overlap.

Chen et al. [29] proposed an asynchronous tracking-by-detection method for object
tracking based on bounding boxes which involved combining events and converting them
into frames. Afterward, they used the generated frames with their proposed tracking
method and directly compared them with other frame-based approaches. The number of
frames generated is dynamic, based on the sum of events captured due to the motion of
the objects in the scene. Objects are detected using a contour-based detector, then tracked
using an Intersection over Union (IoU) measure for data association. Finally, they used the
same dataset provided in [27] along with average precision (AP) and average robustness
(AR) metrics for evaluation.

Ramesh et al. [28,35] presented an object tracking method using a local sliding window
technique for reliable tracking. Objects are initially detected using a global sliding window
to find regions of interest (ROIs) which is only used during the initialization of an object
or when the tracking fails to enable real-time performance. Finally, overlap success and
center location error metrics were used for quantitative evaluation on a short indoor data
sequence [36].

As for the combined approaches using events and frames, the work by Liu et al. [24]
proposed to utilize the event stream to generate ROIs using cluster-based methods which
are then classified by a CNN as either foreground or background. Finally, a particle filter
is used to estimate the target’s location using the extracted ROIs. This work was mainly
meant for detecting and tracking a single object (representing a prey robot); therefore,
positional accuracy was used as the evaluation metric.

Zhang et al. [32] similarly presented a multi-modal approach to achieve single object
tracking. They evaluated success and precision rates on a large-scale dataset annotated at
different frequencies, for both vision domains, using a motion capture system. Meanwhile,
Zhao et al. [33] proposed an object detection method based on color which then tracks
a single object using a kernel correlation filter applied to the event data and estimates
the distance to the object, while mean average precision (mAP) is used to assess the
detection performance.

Overall, we noticed that most works in the literature focused on object tracking
from a detection perspective, meaning that they only estimated the overall detection
and overlap success rates for all objects available. None seems to have evaluated data
association performance, which is the common practice in the frame-based domain. This
can be attributed to the scarcity of event-based datasets as well as the limitations of the
publicly available ones, as most authors emphasized single object tracking and thus did
not include ground truth object ID data per annotation. Object IDs are required by the
most popular object tracking metrics [3,19,37] for evaluating data association performance.
In contrast, we provide a fully labeled traffic dataset with bounding boxes and object IDs
for objects of vehicle type. Additionally, to the best of our knowledge, none of the works
have explored the use of event data for higher temporal resolution object tracking than
the base framerate of a given frame-based camera. Meanwhile, we achieve this here by
generating several higher-temporal resolution ground truth data for the acquired sequences,
at various rates. These labeled trajectories are then utilized in the evaluation of different
approaches for event-based inter-frame frame tracking, using well-defined object tracking
metrics [3,19,37]. Accordingly, we assess the feasibility of high-temporal-resolution tracking
using a hybrid approach.

J. Imaging 2022, 8, 210 6 of 21

3. Hybrid Object Tracking

In this section, we break down the design of our hybrid approach.

3.1. Frame-Based Object Detection

Given temporally synchronized streams of images (frames) and event data, we start
with the image stream. A vital first step for tracking objects across time is to detect them
when they first appear and in every subsequent frame. As mentioned before, classification
using event data alone is challenging; therefore, our approach uses the image frames to
detect and classify objects wherever they appear in the scene, then tracks them between
frames using event data.

To achieve reliable object detection, we utilize two well-known, pre-trained, deep-
learning-based object detectors, namely, YOLOv3 [38] and SSD [39], to perform frame-based
object detection. These models are used to detect objects in every new image frame, as
shown in Figure 2, initializing the objects to be tracked and feeding into the Euclidean-based
object tracker, described in Section 3.3. The frame-based object detectors can be replaced
by other frame-based detectors as needed based on the desired minimum accuracy and
maximum latency requirements. In our work, we use a detection confidence threshold of
50% and a non-maximum suppression threshold of 50% as well for both object detectors
used. This process is repeated whenever we read a new image frame.

J. Imaging 2022, 8, x FOR PEER REVIEW 6 of 22

3. Hybrid Object Tracking
In this section, we break down the design of our hybrid approach.

3.1. Frame-Based Object Detection
Given temporally synchronized streams of images (frames) and event data, we start

with the image stream. A vital first step for tracking objects across time is to detect them
when they first appear and in every subsequent frame. As mentioned before, classification
using event data alone is challenging; therefore, our approach uses the image frames to
detect and classify objects wherever they appear in the scene, then tracks them between
frames using event data.

To achieve reliable object detection, we utilize two well-known, pre-trained, deep-
learning-based object detectors, namely, YOLOv3 [38] and SSD [39], to perform frame-
based object detection. These models are used to detect objects in every new image frame,
as shown in Figure 2, initializing the objects to be tracked and feeding into the Euclidean-
based object tracker, described in Section 3.3. The frame-based object detectors can be re-
placed by other frame-based detectors as needed based on the desired minimum accuracy
and maximum latency requirements. In our work, we use a detection confidence thresh-
old of 50% and a non-maximum suppression threshold of 50% as well for both object de-
tectors used. This process is repeated whenever we read a new image frame.

Figure 2. Object detection on some sample images (left, center, and right) of our collected data for
one of the scenes. The object detector used in this figure is YOLOv3. In this scene, static objects, such
as the parked vehicles in the top half of the scene, are disregarded.

3.2. Event-Based Object Detection
3.2.1. Combining Image and Event Streams Using Window Frames

To make use of an asynchronous event stream, an event-representation method is
required. In our work, we accumulate events for a certain interval and incorporate them
into a window frame, along with any available image frames. For our application of high-
temporal-resolution tracking, the desired tracking rate 𝑘 must be initially set. 𝑘 defines
the tracking rate our system would utilize to accumulate and parse event data. For exam-
ple, given that the frames are captured at a rate of 24 Hz, a 𝑘 value of 48 Hz would indi-
cate that a window frame is collected every 21 ms. The window frame size refers to the
duration of the time that the system will read and accumulate synchronized images and
event data per window frame. As stated earlier, DAVIS 240c has a frame-based capture
rate of 24 Hz; therefore, a new image frame is read around every 42 ms. Thus, using a 𝑘
value of 48 Hz, every other window frame will contain an image frame (captured by the
APS) as well as all the events generated throughout that time (captured by the DVS). This
is demonstrated in Figure 3. In this paper, we experiment with multiple 𝑘 values, includ-
ing 24, 48, 96, 192, and 384 Hz, which correspond to window frame sizes of around 42, 21,
10, 5, and 3 ms, respectively.

Accordingly, whenever a window frame containing an image is read, frame-based
object detectors output a list of 2D bounding boxes with corresponding object classes for

Figure 2. Object detection on some sample images (left, center, and right) of our collected data for
one of the scenes. The object detector used in this figure is YOLOv3. In this scene, static objects, such
as the parked vehicles in the top half of the scene, are disregarded.

3.2. Event-Based Object Detection
3.2.1. Combining Image and Event Streams Using Window Frames

To make use of an asynchronous event stream, an event-representation method is
required. In our work, we accumulate events for a certain interval and incorporate them
into a window frame, along with any available image frames. For our application of high-
temporal-resolution tracking, the desired tracking rate k must be initially set. k defines the
tracking rate our system would utilize to accumulate and parse event data. For example,
given that the frames are captured at a rate of 24 Hz, a k value of 48 Hz would indicate
that a window frame is collected every 21 ms. The window frame size refers to the duration
of the time that the system will read and accumulate synchronized images and event
data per window frame. As stated earlier, DAVIS 240c has a frame-based capture rate of
24 Hz; therefore, a new image frame is read around every 42 ms. Thus, using a k value
of 48 Hz, every other window frame will contain an image frame (captured by the APS)
as well as all the events generated throughout that time (captured by the DVS). This is
demonstrated in Figure 3. In this paper, we experiment with multiple k values, including
24, 48, 96, 192, and 384 Hz, which correspond to window frame sizes of around 42, 21, 10, 5,
and 3 ms, respectively.

J. Imaging 2022, 8, 210 7 of 21

J. Imaging 2022, 8, x FOR PEER REVIEW 7 of 22

each, as described in Section 3.1. Whenever these detections are fed into the object tracker,
we generate an event mask per object detected. These event masks are used to accurately
detect and localize the identified objects, using the event data, in the subsequent window
frames containing events only (assuming that 𝑘 is higher than the APS base frame rate).
Using the prior example (𝑘 = 48 Hz), the first window frame would contain an image as
well as events, whereas the second would only contain events. Similarly, the third win-
dow frame would contain both, while the fourth would contain only events, and so on, as
shown in Figure 3.

Furthermore, the window frame can either take discrete time steps or use a moving
window instead. A discrete step would mean that the window frame would move ms
forward for every new frame, as shown in Figure 3. Meanwhile, a moving window would
incorporate a longer duration of event history for every window frame; thus, some events
would be included in multiple consecutive ones. For example, when setting the event-
history duration as 50 ms and the tracking rate as 48 Hz, the window frame would read
the last 50 ms of event data at any time instant 𝑡 (instead of just 21 ms in the case of
discrete time steps), yet it would still move 21 ms forward when loading a new window
frame. In general, the window frame would include all of the events available within the
time interval 𝑡 ∈ ℝ | 𝑡 − 50 𝑚𝑠 𝑡 𝑡 at a given time instant 𝑡 . Incorporating a
longer temporal history of events can produce higher tracking accuracy, especially at
greater tracking rates or resolutions, where larger numbers of event data are accumulated
compared to when using a discrete-step window frame. The effects of both parameters, as
well as temporally weighting the events, are evaluated later on in this paper.

Figure 3. Visualization of a synchronized stream of image frames and event data over time. In this
example, the image frames are captured at around every 42 ms (at a rate of 24 Hz), whereas the
window frame size is set to a temporal resolution of 21 ms (tracking rate of 48 Hz). A window frame
encapsulates any image frames and event data available in that specified time frame. A total of 8
window frames are demonstrated in this figure as indicated by their number.

3.2.2. Event Mask Extraction
As for the event masks, they can be either event-based or edge-based. Event-based

masks are produced by extracting all the accumulated events (available in the most recent
window frame) that are located within the bounding box of each object detected in the
image, as shown in Figure 4. Due to the sparse nature of event data, the event-based masks
are stored as a sparse matrix of +1 and −1 integers, representing the mask’s positive and
negative events, respectively. Additionally, only the most recent event per pixel is used in
the event-based mask’s sparse matrix. Moreover, if a discrete-step window frame is used,

Figure 3. Visualization of a synchronized stream of image frames and event data over time. In this
example, the image frames are captured at around every 42 ms (at a rate of 24 Hz), whereas the
window frame size is set to a temporal resolution of 21 ms (tracking rate of 48 Hz). A window frame
encapsulates any image frames and event data available in that specified time frame. A total of
8 window frames are demonstrated in this figure as indicated by their number.

Accordingly, whenever a window frame containing an image is read, frame-based
object detectors output a list of 2D bounding boxes with corresponding object classes for
each, as described in Section 3.1. Whenever these detections are fed into the object tracker,
we generate an event mask per object detected. These event masks are used to accurately
detect and localize the identified objects, using the event data, in the subsequent window
frames containing events only (assuming that k is higher than the APS base frame rate).
Using the prior example (k = 48 Hz), the first window frame would contain an image as
well as events, whereas the second would only contain events. Similarly, the third window
frame would contain both, while the fourth would contain only events, and so on, as shown
in Figure 3.

Furthermore, the window frame can either take discrete time steps or use a moving
window instead. A discrete step would mean that the window frame would move 1

k
ms forward for every new frame, as shown in Figure 3. Meanwhile, a moving window
would incorporate a longer duration of event history for every window frame; thus, some
events would be included in multiple consecutive ones. For example, when setting the
event-history duration as 50 ms and the tracking rate as 48 Hz, the window frame would
read the last 50 ms of event data at any time instant ti (instead of just 21 ms in the case of
discrete time steps), yet it would still move 21 ms forward when loading a new window
frame. In general, the window frame would include all of the events available within
the time interval {t ∈ R+ | ti − 50 ms ≤ t ≤ ti} at a given time instant ti. Incorporating
a longer temporal history of events can produce higher tracking accuracy, especially at
greater tracking rates or resolutions, where larger numbers of event data are accumulated
compared to when using a discrete-step window frame. The effects of both parameters, as
well as temporally weighting the events, are evaluated later on in this paper.

3.2.2. Event Mask Extraction

As for the event masks, they can be either event-based or edge-based. Event-based masks
are produced by extracting all the accumulated events (available in the most recent window
frame) that are located within the bounding box of each object detected in the image, as
shown in Figure 4. Due to the sparse nature of event data, the event-based masks are
stored as a sparse matrix of +1 and −1 integers, representing the mask’s positive and
negative events, respectively. Additionally, only the most recent event per pixel is used
in the event-based mask’s sparse matrix. Moreover, if a discrete-step window frame is

J. Imaging 2022, 8, 210 8 of 21

used, the event mask appends the events found in the next window frame after the object
is tracked to improve the tracking robustness in subsequent window frames containing
events only. However, this approach assumes that an object is correctly tracked using the
event data. Otherwise, if a moving window with a significant amount of event history is
used, the event mask is only generated when detecting an object in a given image frame
and used without alteration in the subsequent window frames of event data.

J. Imaging 2022, 8, x FOR PEER REVIEW 8 of 22

the event mask appends the events found in the next window frame after the object is
tracked to improve the tracking robustness in subsequent window frames containing
events only. However, this approach assumes that an object is correctly tracked using the
event data. Otherwise, if a moving window with a significant amount of event history is
used, the event mask is only generated when detecting an object in a given image frame
and used without alteration in the subsequent window frames of event data.

Figure 4. The figure demonstrates when an event mask is generated by accumulating the events
located within the bounding box, as shown in the top right corner. In this frame, a white SUV is
detected, as highlighted by the yellow bounding box (using the frame-based object detector SSD
[39]), with 99% confidence. The tracking rate used here is 48 Hz, meaning that the window frame’s
size is 21 ms, and only the events captured during this interval are displayed.

On the other hand, edge-based masks are generated using the image’s bounding box
crop, generated by the frame-based object detector. Given that events are typically gener-
ated around the edges of an object whenever there is motion, an edge-based mask can be
useful for event-based tracking. To generate an event-based mask, the bounding box crop
is initially converted to grayscale (if an RGB image is used), then it is equalized based on
its histogram to mitigate low-contrast crops that are either too dark or bright to be able to
generate accurate edges. Afterward, an edge-based mask is generated using the Canny
Edge Detection algorithm (developed by Canny, J. [40]) which is then thresholded to create
a binary version of zeros and ones (representing the object’s contour). Finally, it is stored
in a sparse matrix that represents the event mask of the object. These steps are demon-
strated in Figure 5. Note that when an edge-based mask is used, the event polarities are
no longer utilized. Instead, only the presence of an event at a given pixel is considered.

The motivation behind the edge-based approach is that events are mainly generated
at the edges of the objects, as edges represent a sharp intensity change in a given local
patch of an image. This way, an edge map would be more robust with respect to tracking
an object moving in any direction, whereas, for an event-based mask, events are generated
in the direction of motion; therefore, if an object suddenly moves perpendicularly to its
prior direction of motion (e.g., vertically instead of horizontally), tracking might momen-
tarily fail until sufficient events are captured and accumulated due to the vertical motion.
We can notice this effect on the event-based mask in Figure 5b. The edges around the top
and the bottom of the vehicle have almost no events in contrast to the edge-based mask in
Figure 5d. Nevertheless, the edges of the background are also incorporated into the mask,
which might affect the tracking’s accuracy and precision. Additionally, the edge-based
mask can be affected by poor image conditions, specifically when there is over- or under-
exposure in the scene.

Figure 4. The figure demonstrates when an event mask is generated by accumulating the events
located within the bounding box, as shown in the top right corner. In this frame, a white SUV is
detected, as highlighted by the yellow bounding box (using the frame-based object detector SSD [39]),
with 99% confidence. The tracking rate used here is 48 Hz, meaning that the window frame’s size is
21 ms, and only the events captured during this interval are displayed.

On the other hand, edge-based masks are generated using the image’s bounding
box crop, generated by the frame-based object detector. Given that events are typically
generated around the edges of an object whenever there is motion, an edge-based mask
can be useful for event-based tracking. To generate an event-based mask, the bounding box
crop is initially converted to grayscale (if an RGB image is used), then it is equalized based
on its histogram to mitigate low-contrast crops that are either too dark or bright to be able
to generate accurate edges. Afterward, an edge-based mask is generated using the Canny
Edge Detection algorithm (developed by Canny, J. [40]) which is then thresholded to create a
binary version of zeros and ones (representing the object’s contour). Finally, it is stored in a
sparse matrix that represents the event mask of the object. These steps are demonstrated in
Figure 5. Note that when an edge-based mask is used, the event polarities are no longer
utilized. Instead, only the presence of an event at a given pixel is considered.

J. Imaging 2022, 8, x FOR PEER REVIEW 9 of 22

(a) (b) (c) (d)

Figure 5. Visualization of (a) the actual grayscale image crop based on the bounding box of the
detected object; (b) event-based mask created from the accumulated events in the current window
frame used in event-based tracking; (c) a histogram-equalized version of the crop; and (d) the gen-
erated edge-based mask used for event-based tracking as well.

3.2.3. Inter-Frame Object Detection Using Event Data
Once the initial window frame containing an image frame is read, the next window

frame is loaded. Assuming a 𝑘 value of 48 Hz, the second window frame would contain
event data only (as demonstrated earlier in Figure 3). Therefore, the next step would be to
perform event-based object detection and tracking, using the extracted event mask of each
object detected in the prior window frame’s image. Similar to [28], a search region is used
to track an object locally using the available events.

Based on the set parameters, the event-based inter-frame object detection and track-
ing is performed as follows:
1. Create a search region positioned around the center of each of the objects being cur-

rently tracked (detected in the latest image). The search region is set 20% larger than
the frame-based detection’s height and width. Thus, around a 44% larger bounding
box size is used in our case (represented by the green bounding boxes in Figure 6).
This value can be set according to the nature of the objects (expected velocities, etc.).
Larger search regions can be used, however, at higher computational costs. Moreo-
ver, we add padding to the search region when an object is at the edge of the frame
and is exiting the scene, to return a more accurate object position.

(a) (b) (c)

Figure 6. Inter-frame tracking output at 48 Hz in three different modes: (a) event-based mask with
a discrete-step moving window with no temporal weighting; (b) event-based mask with temporally
weighted events in a 50 ms moving window frame; (c) edge-based mask with temporally weighted
events in a 50 ms moving window frame. The inter-frame object position is highlighted by the light-
blue bounding box (cyan dot represents its centroid), whereas the yellow bounding box and dot
represent the object’s position and centroid in the latest image frame, respectively.

Figure 5. Visualization of (a) the actual grayscale image crop based on the bounding box of the
detected object; (b) event-based mask created from the accumulated events in the current window
frame used in event-based tracking; (c) a histogram-equalized version of the crop; and (d) the
generated edge-based mask used for event-based tracking as well.

J. Imaging 2022, 8, 210 9 of 21

The motivation behind the edge-based approach is that events are mainly generated at
the edges of the objects, as edges represent a sharp intensity change in a given local patch
of an image. This way, an edge map would be more robust with respect to tracking an
object moving in any direction, whereas, for an event-based mask, events are generated in
the direction of motion; therefore, if an object suddenly moves perpendicularly to its prior
direction of motion (e.g., vertically instead of horizontally), tracking might momentarily
fail until sufficient events are captured and accumulated due to the vertical motion. We can
notice this effect on the event-based mask in Figure 5b. The edges around the top and the
bottom of the vehicle have almost no events in contrast to the edge-based mask in Figure 5d.
Nevertheless, the edges of the background are also incorporated into the mask, which
might affect the tracking’s accuracy and precision. Additionally, the edge-based mask can
be affected by poor image conditions, specifically when there is over- or underexposure in
the scene.

3.2.3. Inter-Frame Object Detection Using Event Data

Once the initial window frame containing an image frame is read, the next window
frame is loaded. Assuming a k value of 48 Hz, the second window frame would contain
event data only (as demonstrated earlier in Figure 3). Therefore, the next step would be to
perform event-based object detection and tracking, using the extracted event mask of each
object detected in the prior window frame’s image. Similar to [28], a search region is used to
track an object locally using the available events.

Based on the set parameters, the event-based inter-frame object detection and tracking
is performed as follows:

1. Create a search region positioned around the center of each of the objects being
currently tracked (detected in the latest image). The search region is set 20% larger than
the frame-based detection’s height and width. Thus, around a 44% larger bounding
box size is used in our case (represented by the green bounding boxes in Figure 6).
This value can be set according to the nature of the objects (expected velocities, etc.).
Larger search regions can be used, however, at higher computational costs. Moreover,
we add padding to the search region when an object is at the edge of the frame and is
exiting the scene, to return a more accurate object position.

2. Extract all the events (available in the current window frame) located within the
search region.

3. For every possible event mask and search region intersection combination:

a. Using a sliding window mechanism, create a sparse matrix of the subset of the
search region. These events are encoded either spatially or spatiotemporally.

b. Perform a cross-correlation between the mask and every search region’s subset,
as demonstrated in Figure 7. This process is mainly a two-dimensional sliding-
window matrix multiplication between the event mask and each subset of the
search region (starting at the top left corner of the search region). The sum of
all the cells, resulting from every matrix multiplication combination, is stored
in the corresponding entry of the cost matrix C. The cost matrix C is of size m
rows by n columns, which are defined as:

m = Hsr − Hem (2)

n = Wsr −Wem (3)

where Hsr and Wsr are the search region’s height and width, while Hem and
Wem are the event mask’s height and width, respectively.

J. Imaging 2022, 8, 210 10 of 21

4. Based on highest Ci,j entry value, use the best correlating box as the object’s inter-
frame position. Figure 7 shows the best tracking result of this maximum correlation
step highlighted in the cyan bounding box, which is the best fit for event-based
tracking for the current window frame. Similarly, this is demonstrated in Figure 6 by
the light-blue bounding boxes. A minimum threshold is typically applied so that the
system will only update each object’s position if the Ci,j value is above a set threshold.
This is typically done to avoid updating the object’s position based on noise, thus
limiting the number of false positives.

5. If successfully detected, update the object’s position using the object tracker described
in Section 3.3. If a discrete-step window frame is used, update the object’s event
mask by aggregating it with the new event data available within the updated posi-
tion, assuming the object is correctly detected and that the new events will line up
correctly with the previous ones. This step typically improves the tracking robustness,
particularly when tracking at very high rates (e.g., >200 Hz), at which fewer events
are captured. Otherwise, if a moving window frame is used, the event mask would
only update once a new image frame is read (given that the event-history length
is sufficient).

6. Finally, load the next window frame and repeat the same process according to if it
contains an image or just event data.

J. Imaging 2022, 8, x FOR PEER REVIEW 9 of 22

(a) (b) (c) (d)

Figure 5. Visualization of (a) the actual grayscale image crop based on the bounding box of the
detected object; (b) event-based mask created from the accumulated events in the current window
frame used in event-based tracking; (c) a histogram-equalized version of the crop; and (d) the gen-
erated edge-based mask used for event-based tracking as well.

3.2.3. Inter-Frame Object Detection Using Event Data
Once the initial window frame containing an image frame is read, the next window

frame is loaded. Assuming a 𝑘 value of 48 Hz, the second window frame would contain
event data only (as demonstrated earlier in Figure 3). Therefore, the next step would be to
perform event-based object detection and tracking, using the extracted event mask of each
object detected in the prior window frame’s image. Similar to [28], a search region is used
to track an object locally using the available events.

Based on the set parameters, the event-based inter-frame object detection and track-
ing is performed as follows:
1. Create a search region positioned around the center of each of the objects being cur-

rently tracked (detected in the latest image). The search region is set 20% larger than
the frame-based detection’s height and width. Thus, around a 44% larger bounding
box size is used in our case (represented by the green bounding boxes in Figure 6).
This value can be set according to the nature of the objects (expected velocities, etc.).
Larger search regions can be used, however, at higher computational costs. Moreo-
ver, we add padding to the search region when an object is at the edge of the frame
and is exiting the scene, to return a more accurate object position.

(a) (b) (c)

Figure 6. Inter-frame tracking output at 48 Hz in three different modes: (a) event-based mask with
a discrete-step moving window with no temporal weighting; (b) event-based mask with temporally
weighted events in a 50 ms moving window frame; (c) edge-based mask with temporally weighted
events in a 50 ms moving window frame. The inter-frame object position is highlighted by the light-
blue bounding box (cyan dot represents its centroid), whereas the yellow bounding box and dot
represent the object’s position and centroid in the latest image frame, respectively.

Figure 6. Inter-frame tracking output at 48 Hz in three different modes: (a) event-based mask with a
discrete-step moving window with no temporal weighting; (b) event-based mask with temporally
weighted events in a 50 ms moving window frame; (c) edge-based mask with temporally weighted
events in a 50 ms moving window frame. The inter-frame object position is highlighted by the
light-blue bounding box (cyan dot represents its centroid), whereas the yellow bounding box and dot
represent the object’s position and centroid in the latest image frame, respectively.

Note that when creating the search region (step 3a) to find the object’s inter-frame
position, we encode the events either spatially or both spatially and temporally. Spatial
encoding refers to incorporating the events’ x and y coordinates in the tracking process
(which is the base case throughout the paper), whereas temporal encoding incorporates their
capture time t as well. Temporal encoding is accomplished by weighting the events either
equally or temporally. Equal weighting gives all events the same significance, meaning
that all events have the same impact on the estimated position of the object. Meanwhile,
temporal weighting gives more weight to the most recent events and less weight to the
older events. This is visualized in Figure 8.

J. Imaging 2022, 8, 210 11 of 21

J. Imaging 2022, 8, x FOR PEER REVIEW 10 of 22

2. Extract all the events (available in the current window frame) located within the
search region.

3. For every possible event mask and search region intersection combination:
a. Using a sliding window mechanism, create a sparse matrix of the subset of the

search region. These events are encoded either spatially or spatiotemporally.
b. Perform a cross-correlation between the mask and every search region’s subset,

as demonstrated in Figure 7. This process is mainly a two-dimensional sliding-
window matrix multiplication between the event mask and each subset of the
search region (starting at the top left corner of the search region). The sum of all
the cells, resulting from every matrix multiplication combination, is stored in
the corresponding entry of the cost matrix 𝐶. The cost matrix 𝐶 is of size 𝑚
rows by 𝑛 columns, which are defined as: 𝑚 = 𝐻 − 𝐻 (2) 𝑛 = 𝑊 − 𝑊 (3)

where 𝐻 and 𝑊 are the search region’s height and width, while 𝐻 and 𝑊 are the
event mask’s height and width, respectively.

Figure 7. Demonstration of the sparse matrix multiplication between the event mask and a sliding
section of the search region. This process is used to find the highest correlating position of the object
by summing the result of each multiplication, similar to a typical image convolution using a kernel.
Based on the results of the sliding window mechanism, the new object’s location is set by selecting
the highest correlating position (highlighted by the cyan rectangle in this example).

4. Based on highest 𝐶 , entry value, use the best correlating box as the object’s inter-
frame position. Figure 7 shows the best tracking result of this maximum correlation
step highlighted in the cyan bounding box, which is the best fit for event-based track-
ing for the current window frame. Similarly, this is demonstrated in Figure 6 by the
light-blue bounding boxes. A minimum threshold is typically applied so that the sys-
tem will only update each object’s position if the 𝐶 , value is above a set threshold.
This is typically done to avoid updating the object’s position based on noise, thus
limiting the number of false positives.

5. If successfully detected, update the object’s position using the object tracker de-
scribed in Section 3.3. If a discrete-step window frame is used, update the object’s
event mask by aggregating it with the new event data available within the updated

Figure 7. Demonstration of the sparse matrix multiplication between the event mask and a sliding
section of the search region. This process is used to find the highest correlating position of the object
by summing the result of each multiplication, similar to a typical image convolution using a kernel.
Based on the results of the sliding window mechanism, the new object’s location is set by selecting
the highest correlating position (highlighted by the cyan rectangle in this example).

J. Imaging 2022, 8, x FOR PEER REVIEW 11 of 22

position, assuming the object is correctly detected and that the new events will line
up correctly with the previous ones. This step typically improves the tracking robust-
ness, particularly when tracking at very high rates (e.g., >200 Hz), at which fewer
events are captured. Otherwise, if a moving window frame is used, the event mask
would only update once a new image frame is read (given that the event-history
length is sufficient).

6. Finally, load the next window frame and repeat the same process according to if it
contains an image or just event data.
Note that when creating the search region (step 3a) to find the object’s inter-frame

position, we encode the events either spatially or both spatially and temporally. Spatial
encoding refers to incorporating the events’ 𝑥 and 𝑦 coordinates in the tracking process
(which is the base case throughout the paper), whereas temporal encoding incorporates
their capture time 𝑡 as well. Temporal encoding is accomplished by weighting the events
either equally or temporally. Equal weighting gives all events the same significance,
meaning that all events have the same impact on the estimated position of the object.
Meanwhile, temporal weighting gives more weight to the most recent events and less
weight to the older events. This is visualized in Figure 8.

Figure 8. The figure demonstrates an image with temporally weighted events (visualized by the
transparency effect) overlayed on top. Faded blue and red dots resemble older positive and negative
events, respectively. This scene represents the same time instance as the one shown in Figure 4 at a
tracking rate of 48 Hz, though with an extended 50 ms of event data history compared to 21 ms.

To weight the events temporally, we use the following equation for each event:

𝑤 = 𝑝 ∗ 𝑡 − 𝑡𝑤𝑗∆𝑡𝑤𝑗 (4)

where 𝑤 is the given weight of the event 𝑒 at a specified pixel position; 𝑝 and 𝑡
are the polarity and the timestamp of the event 𝑒 , respectively; while 𝑡𝑤𝑗 and ∆𝑡𝑤𝑗 are
the window frame 𝑗’s start time and size (in the same timestamp unit). As described in
Section 3.2.1, the window frame size would be equal to either ms, if a discrete-step win-
dow is used, or a specified duration (longer than), if a moving window is used with an
extended event history. The resulting weights 𝑤 are appended to the search region’s
sparse matrix (using the most recent event available at every pixel coordinate), then used
in finding the best object position estimate. In contrast, when the events are weighted
equally, the weight 𝑤 of each event is simply set equal to their defined polarities 𝑝 .

Figure 8. The figure demonstrates an image with temporally weighted events (visualized by the
transparency effect) overlayed on top. Faded blue and red dots resemble older positive and negative
events, respectively. This scene represents the same time instance as the one shown in Figure 4 at a
tracking rate of 48 Hz, though with an extended 50 ms of event data history compared to 21 ms.

To weight the events temporally, we use the following equation for each event:

wei =
pei ∗

(
tei − twj0

)
∆twj

(4)

where wei is the given weight of the event ei at a specified pixel position; pei and tei are the
polarity and the timestamp of the event ei, respectively; while twj0 and ∆twj are the window
frame j’s start time and size (in the same timestamp unit). As described in Section 3.2.1,
the window frame size would be equal to either 1

k ms, if a discrete-step window is used, or
a specified duration (longer than 1

k), if a moving window is used with an extended event
history. The resulting weights we are appended to the search region’s sparse matrix (using
the most recent event available at every pixel coordinate), then used in finding the best
object position estimate. In contrast, when the events are weighted equally, the weight wei

J. Imaging 2022, 8, 210 12 of 21

of each event is simply set equal to their defined polarities pei . Moreover, the polarity pei of
any event is set as 1 when using an edge-based event mask to track the objects.

3.3. Euclidean-Based Object Tracker

As for the object tracker, we use a simple centroid-based (detections’ center x and y
coordinates) object tracking algorithm using Euclidean distance [41] as the object association
cost across consecutive window frames. Euclidean distance is a metric that is used to find
the optimal assignments to be able to track objects across subsequent frames at any given
point with a low computational cost. Moreover, it is appropriate for our application given
the continuous nature of the event data and the presumed object detection data, as the
centroid of any moving object should be the one closest to its prior center, given that it was
successfully detected. The centroid-based tracking algorithm used is based on the work of
Adrian Rosebrock [41].

Even though the inter-frame event-based detection (described in Section 3.2.3) fun-
damentally tracks the objects and estimates their new positions, the detection results are
fed into the object tracker to confirm the object assignments. The object tracker uses these
detections to either: register new objects with a unique ID, update the positions of the cur-
rent ones being tracked, or possibly remove the objects that were not successfully matched
for n subsequent window frames. Overall, more sophisticated association metrics can be
used; however, this work mainly focuses on presenting a novel method to leverage the
event data to enable higher-temporal resolution tracking and analyze its feasibility. Thus,
the object tracker can be replaced by other tracking-by-detection methods in future studies
as desired.

Lastly, we summarize our overall object detection and tracking approach in Figure 9.

J. Imaging 2022, 8, x FOR PEER REVIEW 12 of 22

Moreover, the polarity 𝑝 of any event is set as 1 when using an edge-based event mask
to track the objects.

3.3. Euclidean-Based Object Tracker
As for the object tracker, we use a simple centroid-based (detections’ center x and y

coordinates) object tracking algorithm using Euclidean distance [41] as the object associa-
tion cost across consecutive window frames. Euclidean distance is a metric that is used to
find the optimal assignments to be able to track objects across subsequent frames at any
given point with a low computational cost. Moreover, it is appropriate for our application
given the continuous nature of the event data and the presumed object detection data, as
the centroid of any moving object should be the one closest to its prior center, given that
it was successfully detected. The centroid-based tracking algorithm used is based on the
work of Adrian Rosebrock [41].

Even though the inter-frame event-based detection (described in Section 3.2.3) fun-
damentally tracks the objects and estimates their new positions, the detection results are
fed into the object tracker to confirm the object assignments. The object tracker uses these
detections to either: register new objects with a unique ID, update the positions of the
current ones being tracked, or possibly remove the objects that were not successfully
matched for 𝑛 subsequent window frames. Overall, more sophisticated association met-
rics can be used; however, this work mainly focuses on presenting a novel method to lev-
erage the event data to enable higher-temporal resolution tracking and analyze its feasi-
bility. Thus, the object tracker can be replaced by other tracking-by-detection methods in
future studies as desired.

Lastly, we summarize our overall object detection and tracking approach in Figure
9.

Figure 9. Summary flowchart of the overall hybrid object detection and tracking process. The branch
on the right would repeat for every consecutive window frame that only contains events given prior
frame-based object detections until a new image is read. The window frame size is set before this
process starts.

J. Imaging 2022, 8, 210 13 of 21

4. Experimental Setup

In this section, we describe the dataset that was collected and labeled and utilized in
the evaluation of our approach, then we define the object detection and tracking evaluation
metrics used, and, finally, we overview the different tracking configurations applied in
our experiment.

4.1. Dataset Description

To evaluate our approach’s tracking performance, we used the DAVIS 240c [5], which
combines a frame-based sensor APS, and an event-based sensor DVS, to collect our eval-
uation dataset. The DAVIS 240c uses the same pixel array for both sensor types with a
resolution of 240 × 180 pixels. The APS captures synchronous intensity (monochrome)
images at a fixed rate of ~24 Hz. Meanwhile, the DVS captures asynchronous events with a
temporal resolution of 1 µs.

Using the DAVIS 240c and the ROS DVS package developed by Robotics and Percep-
tion Group [4,5,42] to record the data, we collected several hours of spatially and temporally
synchronized images and events at two different scenes, referred to as scenes A and B.
Scene A was demonstrated earlier in the figures of Section 3. In addition, we note that the
proximity of the objects to the event camera in scene B were lower than in A; therefore, the
objects detected in the scene were larger in size relative to the frame. Snapshots of scenes A
and B were shown in Figures 1 and 2, respectively.

As for the setup, the event camera was placed on the edge of a building while pointing
downwards at the street, representing an infrastructure camera setting. The camera was
static (no ego-motion was applied); therefore, the events captured would be only due to an
object’s motion or due to noise. In our experiment, we mainly captured data sequences of
moving vehicles of different types (sedans, trucks, etc.). Some data of pedestrians passing
by were also collected but they were not included in this study due to the relatively slow
movements of the pedestrians and their proximity to the camera, which made the object
detection challenging and intermittent. Further, we split each scene’s recorded data into
~30 short sequences that mostly contained images and events of objects present in the scene
while trimming the other intervals that did not contain any. We also note that the vehicles
that passed by in the scene did so at varying speeds and accelerations, some reaching a full
stop at several instances, thus making event-based detection and tracking more challenging.

In order to quantitatively evaluate our hybrid-based object detection and tracking
approach, we manually labelled APS-generated intensity images. Our labeled data pro-
vided both the true 2D bounding boxes for all vehicles in the scene present in any image,
as well as their corresponding object IDs, which are required for proper object tracking
evaluation. Accordingly, after splitting the data into more compact sequences, scene A
contained 32 sequences, with 9274 images and 6828 annotations, while scene B contained
31 sequences, with 3485 images and 3063 annotations, totaling 9891 vehicle annotations.
The difference between the number of images and annotations was due to the frames that
did not contain any objects.

As for the high-temporal-resolution tracking experiment, we needed matching track-
ing ground truth data for our evaluations. Therefore, we temporally interpolated our
ground truth data, based on a constant acceleration model, to increase the temporal resolu-
tion of our ground truth data and produce the estimated true tracking rates beyond the
24 Hz base framerate of the APS. This was done by taking an object’s annotations at 24 Hz,
then finding the interpolated bounding box positive between every two consecutive labels,
while maintaining the same object ID. The first interpolation yielded the ground truth
tracking data for 48 Hz; thus, we repeated the same process multiple times to generate the
ground truth tracking data for temporal resolutions of 96, 192, and 384 Hz as well. Overall,
this intuitive method provided us with the ground truth labels for inter-frame tracking
using event data, given that directly labeling events is a very challenging task, especially at
time instances with very few events resembling shapes recognizable by a human.

J. Imaging 2022, 8, 210 14 of 21

4.2. Evaluation Metrics

Many evaluation metrics are available to assess detection and tracking performance.
In our experiment, we used the novel Higher Order Tracking Accuracy (HOTA) metric,
developed by Luiten et al. [37], that is used to evaluate multi-object tracking performance.
HOTA is particularly useful in assessing the performance of object trackers, as it analyzes
the accuracy of the detection, association, and localization of the objects individually and
combines them within the same metric. To calculate the final HOTA score, the Intersection
over Unions (IoUs) of localization, detection, and association are calculated. IoU is simply
defined as the ratio of the overlap of two detections over their total covered area. The
two detections used in the IoU calculation are typically the predicted and the true ground
truth detections.

As defined by the authors, the foundation of the overall HOTA metric can be described
as follows:

• Localization Accuracy (LocA) is the average of all localization IoUs between all possible
pairs of matching predicted and true detections of the dataset. Localization refers to
the spatial alignment of the predictions compared to the ground truth detections.

• Detection Accuracy (DetA), similar to LocA, measures alignment between the set of all
predicted and ground truth detections. However, it incorporates a defined IoU thresh-
old α to identify which predicted and true detections intersect to find the matching
pairs, known as True Positives (TPs). False Positives (FPs) are the predicted detections
that do not match, while False Negatives (FNs) are the ground truth detections that do
not match. Accordingly, DetA is calculated by dividing the total count of TP over the
summation of the count of TPs, FPs, and FNs.

• Association Accuracy (AssA) measures how well a tracker associates detections over
time using all object IDs, i.e., assesses the whole track of each ground truth object ID
using IoUs. For each track, the IoU is calculated by dividing the number of TP matches
between the two tracks, divided by the summation of TP, FN, and FP matches between
them as well. Ultimately, the AssA is calculated by finding the association IOU over
all matching predicted and ground truth detections.

• The final HOTA value is then generated, using a range of IoU threshold α values to pro-
vide one compact value that incorporates the three different components. This value
is used to assess the overall object tracking performance for a specified configuration.

Furthermore, we note that HOTA(0), LocA(0), and HOTA-LocA(0) refer to the same
metrics discussed above, though at the lowest α threshold value; thus, localization accuracy
does not affect the results. Additionally, DetRe and DetPr refer to the detection recall and
precision performance, respectively, whereas AssRe and AssPr refer to the association
recall and precision. The recall and precision values can be used to calculate the accuracy
values (for both detection and association). Additional details about these metrics can be
found in [37].

In addition to the HOTA metrics, we used a subset of the CLEAR MOT [19,43] metrics,
including:

• Mostly Tracked (MT), which is the percentage of ground truth trajectories that are
covered by tracker output for more than 80% of their length;

• Mostly Lost (ML), which is the percentage of ground truth trajectories that are covered
by tracker output for less than 20% of their length;

• Partially tracked (PT), which is the total number of unique ground truth trajectories
minus the summation of MT and ML;

• ID-Switches (IDSW), which is the number of ID switches or the number of times a
tracked trajectory changed its ground truth one;

• Fragmentations (FRAG), which is the number of times the ground truth trajectory was
interrupted or untracked, before resuming later.

J. Imaging 2022, 8, 210 15 of 21

We note that, according to the authors of these metrics, ID switches are irrelevant when
measuring MT, ML, and PT. Therefore, they mostly focus on detection performance for the
overall trajectory of each ground truth object, without considering association accuracy.
This can provide some insight into how well an inter-frame event-based object detection
system performs.

4.3. Experimental Parameters and Configurations

To compare and contrast the results of different detection and tracking settings, we
evaluated our approach using two frame-based object detectors with three different tracking
modes (of varying parameters) for event-based inter-frame object detection and tracking.

The deep-learning, frame-based object detectors used in our evaluation were
YOLOv3 [38] and SSD [39]. Both of these pre-trained models provide real-time perfor-
mance with great accuracy. SSD is more accurate but has higher latency when compared to
YOLOv3. Both object detectors were used as is, with the original weights and without any
further fine-tuning or training. Moreover, as mentioned earlier, we set the confidence and
the non-maximal suppression thresholds to 50%. Lastly, we only used the ‘vehicle’ object
class, including its different forms (car, truck, bus, etc.), while filtering out the other class
types in our evaluation.

As for the inter-frame tracking, applied at higher temporal resolutions above the base
rate (24 Hz), we used three modes of different inter-frame tracking parameter combinations:

1. Event-based mask with discrete-step moving window frame with no temporal weighting;
2. Event-based mask with 50 ms moving window frame and temporally weighted events;
3. Edge-based mask with 50 ms moving window frame and temporally weighted events.

These settings were based on the design details presented in Section 3 and are shown
in Figure 6a–c.

To summarize, we evaluated these three different modes with both frame-based object
detectors and at the temporal resolutions of 48, 96, 192, and 384 Hz. As for the 24 Hz rate,
we only used the frame-based object detectors, given that it matches the base capture rate
of the APS, the results of which were used to set a baseline for the other tracking results
and to analyze the feasibility and consistency of incorporating the event data as well to
generate high-temporal-resolution tracking results.

Additionally, we formatted our ground truth data for the different temporal resolutions
and the resulting tracker outputs in the MOTChallenge [3] format, then generated the results
using TrackEval [44].

5. Results and Discussion

Based on the detection and tracking settings specified in Section 4, we obtained the
results presented in Tables 1 and 2, using the frame-based object detectors SSD and YOLOv3,
respectively. Moreover, AssA values are plotted against DetA for each temporal resolution
(with the resulting HOTA values) in Figure 10.

Starting with the baseline frame-based tracking results, at the base image capture rate
of 24 Hz, we obtained final HOTA scores of 69 and 56.6 for SSD and YOLOv3, respectively.
This was expected given that SSD is a more accurate object detector, as is highlighted by
its DetA of 67.4 compared with 53.0 for YOLOv3. These values were used as the baseline
values to compare our three different event-based inter-frame object tracking approaches at
various temporal resolutions.

Applying the approach specified by Mode 1, which used event-based masks without
history or temporal weighting, we noticed that the outcomes of most HOTA metrics
significantly deteriorated with higher temporal resolutions. This is the result of a lower
number of events being available to track with smaller window frame lengths. A tracking
rate such as 384 Hz has a temporal interval of only 2.6 ms.

J. Imaging 2022, 8, 210 16 of 21

Table 1. Hybrid object detection and tracking results using HOTA metrics at different temporal
resolutions, using the frame-based object detector SSD. The results are shown for the three different
event-based, inter-frame, tracking modes described in Section 3. Our approaches represented by
Modes 2 and 3 show significant promise regarding the ability to leverage event data to generate
accurate high-temporal-resolution tracking results. The best metric value at each rate is in bold.

Object
Detector

Tracking
Rate Mode HOTA DetA AssA DetRe DetPr AssRe AssPr LocA RHOTA HOTA(0) LocA(0) HOTA-

LocA(0)

SSD

24 Hz * - 69.0 67.4 70.9 69.7 89.2 73.4 90.1 89.1 70.2 77.2 87.9 67.9

48 Hz
1 66.6 64.9 68.5 67.0 88.9 70.1 91.1 88.9 67.8 74.9 87.7 65.6
2 69.0 67.2 71.0 69.4 89.1 72.6 91.3 89.0 70.2 77.3 87.8 67.9
3 67.6 66.1 69.3 68.2 89.0 70.8 90.9 88.9 68.7 75.9 87.8 66.6

96 Hz
1 61.0 59.2 63.0 62.1 86.4 64.8 89.6 88.3 62.5 69.4 86.5 60.0
2 66.4 64.5 68.6 67.8 87.1 70.4 90.3 88.9 68.1 74.9 87.1 65.2
3 64.4 62.9 66.0 66.0 86.9 67.9 89.8 88.7 66.0 72.9 86.9 63.3

192 Hz
1 55.0 52.3 58.0 55.0 84.9 59.5 88.6 87.8 56.4 63.0 85.9 54.1
2 65.7 63.2 68.5 66.9 86.0 70.4 90.1 88.8 67.7 74.1 86.9 64.5
3 63.3 61.3 65.7 64.8 85.8 67.4 89.7 88.7 65.2 71.7 86.8 62.2

384 Hz
1 46.3 42.2 50.8 44.0 84.1 52.0 88.0 87.3 47.3 53.2 85.2 45.4
2 65.0 62.5 67.8 66.4 85.4 69.6 90.2 88.8 67.1 73.2 87.0 63.7
3 62.5 60.4 64.7 64.2 85.2 66.4 89.8 88.7 64.4 70.6 86.9 61.3

* Image frames only.

Table 2. Hybrid object detection and tracking results using HOTA metrics at different temporal
resolutions, using the frame-based object detector YOLOv3. The results are shown for the three
different event-based, inter-frame, tracking modes described in Section 3. Our approaches represented
by modes 2 and 3 show significant promise regarding the ability to leverage event data to generate
accurate high-temporal-resolution tracking results. The best metric value at each rate is in bold.

Object
Detector

Tracking
Rate Mode HOTA DetA AssA DetRe DetPr AssRe AssPr LocA RHOTA HOTA(0) LocA(0) HOTA-

LocA(0)

YOLOv3

24 Hz * - 56.6 53.0 60.8 54.6 83.6 62.9 87.0 84.2 57.5 68.1 82.0 55.9

48 Hz
1 53.8 51.2 56.8 52.7 83.5 58.8 86.7 84.1 54.6 65.0 81.9 53.2
2 55.4 52.9 58.4 54.5 83.6 60.4 86.9 84.2 56.4 66.9 82.0 54.9
3 54.7 52.3 57.5 53.8 83.7 59.5 86.4 84.3 55.6 66.0 82.1 54.2

96 Hz
1 49.6 47.1 52.4 49.0 81.6 53.8 86.4 83.8 50.6 60.6 80.9 49.1
2 53.6 51.4 56.2 53.5 82.1 57.7 86.9 84.1 54.8 65.3 81.3 53.1
3 52.6 50.5 55.1 52.4 82.2 56.6 86.3 84.2 53.7 64.1 81.4 52.2

192 Hz
1 44.4 41.6 47.6 43.3 80.9 48.9 85.8 83.8 45.4 54.1 80.9 43.7
2 53.2 50.5 56.2 52.9 81.2 57.7 86.7 84.1 54.5 64.8 81.2 52.6
3 52.0 49.4 54.9 51.6 81.4 56.4 86.1 84.2 53.2 63.3 81.4 51.5

384 Hz
1 36.4 33.1 40.2 34.2 80.9 41.1 85.3 83.8 37.0 44.0 81.0 35.6
2 52.5 50.1 55.3 52.6 80.8 56.7 87.0 84.1 53.9 63.8 81.3 51.9
3 51.3 48.9 54.1 51.2 80.9 55.5 86.2 84.2 52.6 62.3 81.5 50.8

* Image frames only.

On the other hand, Mode 2, which also used an event-based mask but with a tem-
porally weighted event history of 50 ms, consistently yielded the best performance when
using either frame-based object detector. Mode 3, which used an edge-based mask instead,
slightly underperformed Mode 2 but provided similar consistency.

Overall, the approaches represented by Modes 2 and 3 proved that high-temporal-
resolution tracking is possible by incorporating event data without any significant impact on
performance. In Mode 2′s configuration, the HOTA values deteriorated slightly, declining
from 69.0 and 56.6 (using SSD and YOLOv3 at 24 Hz) to 65.0 and 52.5. This translates to a
relative performance decrease of just 5.8% and 7.24%, for SSD and YOLOv3, respectively.

J. Imaging 2022, 8, 210 17 of 21

J. Imaging 2022, 8, x FOR PEER REVIEW 17 of 22

Object
Detector

Tracking
Rate

Mode HOTA DetA AssA DetRe DetPr AssRe AssPr LocA RHOTA HOTA(0) LocA(0) HOTA-
LocA(0)

YOLOv3

24 Hz * - 56.6 53.0 60.8 54.6 83.6 62.9 87.0 84.2 57.5 68.1 82.0 55.9

48 Hz
1 53.8 51.2 56.8 52.7 83.5 58.8 86.7 84.1 54.6 65.0 81.9 53.2
2 55.4 52.9 58.4 54.5 83.6 60.4 86.9 84.2 56.4 66.9 82.0 54.9
3 54.7 52.3 57.5 53.8 83.7 59.5 86.4 84.3 55.6 66.0 82.1 54.2

96 Hz
1 49.6 47.1 52.4 49.0 81.6 53.8 86.4 83.8 50.6 60.6 80.9 49.1
2 53.6 51.4 56.2 53.5 82.1 57.7 86.9 84.1 54.8 65.3 81.3 53.1
3 52.6 50.5 55.1 52.4 82.2 56.6 86.3 84.2 53.7 64.1 81.4 52.2

192 Hz
1 44.4 41.6 47.6 43.3 80.9 48.9 85.8 83.8 45.4 54.1 80.9 43.7
2 53.2 50.5 56.2 52.9 81.2 57.7 86.7 84.1 54.5 64.8 81.2 52.6
3 52.0 49.4 54.9 51.6 81.4 56.4 86.1 84.2 53.2 63.3 81.4 51.5

384 Hz
1 36.4 33.1 40.2 34.2 80.9 41.1 85.3 83.8 37.0 44.0 81.0 35.6
2 52.5 50.1 55.3 52.6 80.8 56.7 87.0 84.1 53.9 63.8 81.3 51.9

 3 51.3 48.9 54.1 51.2 80.9 55.5 86.2 84.2 52.6 62.3 81.5 50.8
* Image frames only.

(a) 24 Hz (b) 48 Hz (c) 96 Hz

(d) 192 Hz (e) 384 Hz (f) Legend

Figure 10. Comparison between the results of the different tracking configurations for various tem-
poral resolutions. AssA is plotted against DetA with the resulting HOTA values marked for tracker
configuration, for temporal resolutions of (a–e) 24 Hz–384 Hz. The legend (f) defines the symbols
used according to the object detector used and tracking mode. Results show a linear correlation

Figure 10. Comparison between the results of the different tracking configurations for various tem-
poral resolutions. AssA is plotted against DetA with the resulting HOTA values marked for tracker
configuration, for temporal resolutions of (a–e) 24 Hz–384 Hz. The legend (f) defines the symbols
used according to the object detector used and tracking mode. Results show a linear correlation
between the AssA and DetA, with Mode 2′s approach outperforming the other configurations for
either object detector.

Similarly, Table 3 shows the results of the selected CLEAR MOT metrics for every
tracking configuration. Consistent with the previous results, Mode 2′s configuration show
very minimal deterioration in tracking performance. As for the SSD-based configuration,
the baseline tracking of 24 Hz had an MT of 40 and a PT of 45 with no ML objects, which
was minimally affected by the higher temporal resolutions, as shown in the results for the
highest rate of 384 Hz with MT, PT, and ML of 37, 46 and 2, respectively. Additionally, the
YOLOv3-based configuration had MT, PT, and ML baseline tracking results of 27, 52, and
6, respectively, which insignificantly declined at the tracking resolution of 384 Hz, with
only two fewer objects MT that became ML instead. Similarly, Mode 3′s configuration
was a close second at varying tracking resolutions. Meanwhile, Mode 1′s configuration
performed progressively worse with higher temporal results. We note that there are a
total of 85 unique object trajectories in the whole dataset, as shown in Table A1. Therefore,
MT, PT, and ML always add up to a total of 85. As expected, IDSW got marginally worse
with increasing rates for each of the three modes, whereas FRAG suddenly increased at
the temporal resolution of 96 Hz, then stabilized, except for Mode 1, which continued to
worsen at increasing rates. The total number of ground truth detections for each rate is also
provided in Table A1 for reference.

J. Imaging 2022, 8, 210 18 of 21

Table 3. Hybrid object detection and tracking results using a subset of CLEAR MOT metrics for
different tracking configurations and temporal resolutions. The selected metrics provide extra insight
into the behavior and the quality of each tracking configuration. Mode 2′s tracking configuration
consistently outperformed the others in all metrics, deteriorating slightly with increasing temporal
resolutions. The best metric value at each rate is in bold.

Tracking
Rate Mode

MT PT ML IDSW FRAG MT PT ML IDSW FRAG

SSD YOLOv3

24 Hz * - 40 45 0 16 33 27 52 6 18 21

48 Hz
1 39 46 0 29 70 21 58 6 30 76
2 40 45 0 29 34 27 52 6 30 22
3 40 45 0 29 35 25 54 6 30 23

96 Hz
1 25 59 1 48 749 15 62 8 50 550
2 37 47 1 48 715 25 53 7 50 502
3 36 48 1 48 727 23 55 7 50 517

192 Hz
1 16 65 4 49 908 8 66 11 54 635
2 37 46 2 48 715 25 52 8 50 505
3 35 48 2 48 738 23 54 8 50 526

384 Hz
1 9 68 8 67 1054 3 69 13 86 695
2 37 46 2 61 721 25 52 8 75 507
3 35 48 2 62 742 22 55 8 75 532

* Image frames only.

In general, the results show that temporal weighting of events is vital when using
event-based data. Temporal information is a valuable component of asynchronous events
which synchronous, fixed-rate, images lack. Our first approach, represented by Mode 1,
confirms this hypothesis, where the tracking performance was significantly affected with
increasing temporal resolutions, regardless of the frame-based object detector used. As
for the third approach, used in Mode 3, edge-based masks were heavily dependent on the
captured image quality. Given the limitations of frame-based cameras, this constrains the
performance of event-based vision in challenging scenes, making the system less robust
given its low dynamic range and capture rates. In our evaluation, event-based masks
proved to be more robust, with lower computational costs.

6. Conclusions

In this work, we have presented a novel way of using frame-based and event-based
vision data to enable high-temporal-resolution object detection and tracking. We leveraged
state-of-the-art frame-based object detectors to initialize tracking by detecting and classi-
fying objects in a scene using synchronous image frames, then generated high-temporal-
resolution inter-frame tracking using event data. We developed and compared three differ-
ent approaches for event-based detection and tracking and analyzed their performances at
several temporal resolutions. Moreover, we used a simple and low-cost association metric,
that is, Euclidean distance, to match object detections across time.

We evaluated these approaches using our dataset for two traffic scenes, obtained using
a static camera with no ego-motion applied. We collect the data using the DAVIS 240c,
which combines a frame-based and an event-based sensor using the same lens, generat-
ing synchronized image and event data streams. Furthermore, we manually labelled all
the vehicles within the scene with accurate bounding boxes and an object ID for every
trajectory, using the images generated by the frame-based camera. Then, we generated
high-temporal-resolution ground truth trajectories, for object detection and tracking, by
temporally interpolating the labeled data, for the tracking rates of 48, 96, 192, and 384 Hz.
Finally, we evaluated the results of our different approaches and corresponding configura-
tions using HOTA and a select few CLEAR MOT metrics.

J. Imaging 2022, 8, 210 19 of 21

Our results show that out of the three methods presented, event-based masks, com-
bined with temporal weighting of events and a sufficient temporal history, yielded the
most consistent performance with minimal deterioration as we progressively increased
the tracking rates and the corresponding temporal resolutions, when compared with the
baseline frame-based performance at 24 Hz. Moreover, edge-based masks with temporal
weighting showed promise as well, ranking very close to the prior approach, whereas our
first approach, using event-based masks but without temporal weighting, resulted in the
worst performance with the most degradation as we increased the temporal resolutions.

In conclusion, our work shows that a hybrid approach that leverages both image
and event data to generate higher tracking temporal resolutions is feasible, with very
consistent performance. Our labeled dataset provides a quantitative means of assessing
different event-based tracking approaches, which we hope will encourage the production
of other challenging labeled event-based datasets for object tracking in the future, given
that the presented dataset might not provide the most challenging scenarios that would
require more sophisticated detection and tracking approaches. This can be attributed to the
relatively low number of available object occlusions and objects present in the scene at any
given instant, as well as the limited resolution of the event-based sensor used. Moreover,
when considering tracking different object types, we note that classical approaches might
not be ideal for objects of dynamic shapes that change at very rapid rates.

This work opens doors for future research, such as into the use of more advanced
association metrics tailored for both of these sensing modalities, a more dynamic approach
that is less dependent on either, or the exploration of a fully event-based approach for the
entire object detection and tracking process.

Author Contributions: Conceptualization, Z.E.S. and S.A.R.; methodology, Z.E.S. and S.A.R.; soft-
ware, Z.E.S.; validation, Z.E.S.; formal analysis, Z.E.S.; investigation, Z.E.S. and S.A.R.; data curation,
Z.E.S.; writing—original draft preparation, Z.E.S.; writing—review and editing, S.A.R.; visualiza-
tion, Z.E.S.; supervision, S.A.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available at http://sar-lab.
net/event-based-vehicle-detection-and-tracking-dataset/ (accessed on 22 July 2022).

Acknowledgments: The authors of this paper would like to thank Mariana A. Al Bader for her
remarkable efforts in annotating and labeling the collected dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The total number of IDs and detections for both the ground truth data and the predicted
results for the different tracking configurations used in our evaluation. Our dataset has a total number
of unique object ID trajectories of 85. The number of ground truth detections increases as the temporal
resolution of the data increases.

Ground Truth SSD YOLOv3

Tracking Rate Mode GT_IDs GT_Dets IDs Dets IDs Dets

24 Hz * - 85 9891 110 7723 105 6462

48 Hz
1

85 19,777
125 14,908 117 12,480

2 125 15,405 117 12,899
3 125 15,155 117 12,710

http://sar-lab.net/event-based-vehicle-detection-and-tracking-dataset/
http://sar-lab.net/event-based-vehicle-detection-and-tracking-dataset/

J. Imaging 2022, 8, 210 20 of 21

Table A1. Cont.

Ground Truth SSD YOLOv3

Tracking Rate Mode GT_IDs GT_Dets IDs Dets IDs Dets

96 Hz
1

85 39,549
147 28,427 139 23,748

2 147 30,773 139 25,773
3 147 30,022 139 25,207

192 Hz
1

85 79,093
149 51,226 142 42,332

2 147 61,498 139 51,521
3 147 59,720 139 50,179

384 Hz
1

85 158,181
171 82,708 172 66,862

2 165 122,972 165 103,023
3 165 119,131 165 100,131

* Image frames only.

References
1. Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. Acm Comput. Surv. 2006, 38, 13-es. [CrossRef]
2. Deori, B.; Thounaojam, D.M. A survey on moving object tracking in video. Int. J. Inf. Theory 2014, 3, 346. [CrossRef]
3. Dendorfer, P.; Osep, A.; Milan, A.; Schindler, K.; Cremers, D.; Reid, I.; Roth, S.; Leal-Taixé, L. MOTChallenge: A Benchmark for

Single-Camera Multiple Target Tracking. Int. J. Comput. Vis. 2020, 129, 845–881. [CrossRef]
4. Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J.

Solid State Circuits 2008, 43, 566–576. [CrossRef]
5. Brandli, C.; Berner, R.; Yang, M.; Liu, S.-C.; Delbruck, T. A 240 × 180 130 db 3 µs latency global shutter spatiotemporal vision

sensor. IEEE J. Solid State Circuits 2014, 49, 2333–2341. [CrossRef]
6. Gallego, G.; Delbrück, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.J.; Conradt, J.; Daniilidis,

K.; et al. Event-based vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 154–180. [CrossRef] [PubMed]
7. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
8. Pueo, B. High speed cameras for motion analysis in sports science. J. Hum. Sport Exerc. 2016, 11, 53–73. [CrossRef]
9. Rebecq, H.; Ranftl, R.; Koltun, V.; Scaramuzza, D. Events-to-video: Bringing modern computer vision to event cameras. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.
10. Burger, W.; Bhanu, B. Estimating 3D egomotion from perspective image sequence. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12,

1040–1058. [CrossRef]
11. Aladem, M.; Rawashdeh, S.A. A Combined Vision-Based Multiple Object Tracking and Visual Odometry System. IEEE Sensors J.

2019, 19, 11714–11720. [CrossRef]
12. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017

IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.
13. Zheng, L.; Tang, M.; Chen, Y.; Zhu, G.; Wang, J.; Lu, H. Improving multiple object tracking with single object tracking. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.
14. Peng, J.; Wang, T.; Lin, W.; Wang, J.; See, J.; Wen, S.; Ding, E. TPM: Multiple object tracking with tracklet-plane matching. Pattern

Recognit. 2020, 107, 107480. [CrossRef]
15. Yang, F.; Chang, X.; Sakti, S.; Wu, Y.; Nakamura, S. ReMOT: A model-agnostic refinement for multiple object tracking. Image Vis.

Comput. 2020, 106, 104091. [CrossRef]
16. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
17. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Adv.

Neural Inf. Process. Syst. 2015, 28, 1137–1149. [CrossRef]
18. Yu, F.; Wang, D.; Shelhamer, E.; Darrell, T. Deep layer aggregation. In Proceedings of the IEEE conference on computer vision and

pattern recognition, Salt Lake City, UT, USA, 18–23 June 2018.
19. Dendorfer, P.; Rezatofighi, H.; Milan, A.; Shi, J.; Cremers, D.; Reid, I.; Roth, S.; Schindler, K.; Leal-Taixé, L. Mot20: A benchmark

for multi object tracking in crowded scenes. arXiv 2020, arXiv:2003.09003.
20. Danielsson, P.-E. Euclidean distance mapping. Comput. Graph. Image Process. 1980, 14, 227–248. [CrossRef]
21. Yılmaz, Ö.; Simon-Chane, C.; Histace, A. Evaluation of Event-Based Corner Detectors. J. Imaging 2021, 7, 25. [CrossRef]
22. Tedaldi, D.; Gallego, G.; Mueggler, E.; Scaramuzza, D. Feature detection and tracking with the dynamic and active-pixel vision

sensor (DAVIS). In Proceedings of the 2016 Second International Conference on Event-based Control, Communication, and Signal
Processing (EBCCSP), Krakow, Poland, 13–15 June 2016.

23. Gehrig, D.; Rebecq, H.; Gallego, G.; Scaramuzza, D. EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames.
Int. J. Comput. Vis. 2020, 128, 601–618. [CrossRef]

24. Liu, H.; Moeys, D.P.; Das, G.; Neil, D.; Liu, S.-C.; Delbrück, T. Combined frame-and event-based detection and tracking. In
Proceedings of the 2016 IEEE International Symposium on Circuits and systems (ISCAS), Montréal, QC, Canada, 22–25 May 2016.

http://doi.org/10.1145/1177352.1177355
http://doi.org/10.5121/ijit.2014.3304
http://doi.org/10.1007/s11263-020-01393-0
http://doi.org/10.1109/JSSC.2007.914337
http://doi.org/10.1109/JSSC.2014.2342715
http://doi.org/10.1109/TPAMI.2020.3008413
http://www.ncbi.nlm.nih.gov/pubmed/32750812
http://doi.org/10.14198/jhse.2016.111.05
http://doi.org/10.1109/34.61704
http://doi.org/10.1109/JSEN.2019.2937304
http://doi.org/10.1016/j.patcog.2020.107480
http://doi.org/10.1016/j.imavis.2020.104091
http://doi.org/10.1115/1.3662552
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1016/0146-664X(80)90054-4
http://doi.org/10.3390/jimaging7020025
http://doi.org/10.1007/s11263-019-01209-w

J. Imaging 2022, 8, 210 21 of 21

25. Iaboni, C.; Patel, H.; Lobo, D.; Choi, J.-W.; Abichandani, P. Event Camera Based Real-Time Detection and Tracking of Indoor
Ground Robots. IEEE Access 2021, 9, 166588–166602. [CrossRef]

26. Mondal, A.; Giraldo, J.H.; Bouwmans, T.; Chowdhury, A.S. Moving Object Detection for Event-based Vision using Graph
Spectral Clustering. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada,
11–17 October 2021.

27. Mitrokhin, A.; Fermüller, C.; Parameshwara, C.; Aloimonos, Y. Event-based moving object detection and tracking. In Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018.

28. Ramesh, B.; Zhang, S.; Yang, H.; Ussa, A.; Ong, M.; Orchard, G.; Xiang, C. e-tld: Event-based framework for dynamic object
tracking. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 3996–4006. [CrossRef]

29. Chen, H.; Wu, Q.; Liang, Y.; Gao, X.; Wang, H. Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for Event-based
Object Tracking. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019.

30. Li, H.; Shi, L. Robust Event-Based Object Tracking Combining Correlation Filter and CNN Representation. Front. Neurorobotics
2019, 13, 82. [CrossRef]

31. Guillen-Garcia, J.; Palacios-Alonso, D.; Cabello, E.; Conde, C. Unsupervised Adaptive Multi-Object Tracking-by-Clustering
Algorithm With a Bio-Inspired System. IEEE Access 2022, 10, 24895–24908. [CrossRef]

32. Zhang, J.; Yang, X.; Fu, Y.; Wei, X.; Yin, B.; Dong, B. Object tracking by jointly exploiting frame and event domain. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021.

33. Zhao, J.; Ji, S.; Cai, Z.; Zeng, Y.; Wang, Y. Moving Object Detection and Tracking by Event Frame from Neuromorphic Vision
Sensors. Biomimetics 2022, 7, 31. [CrossRef]

34. Barranco, F.; Fermuller, C.; Ros, E. Real-time clustering and multi-target tracking using event-based sensors. In Proceedings of the
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018.

35. Ramesh, B.; Zhang, S.; Lee, Z.W.; Gao, Z.; Orchard, G.; Xiang, C. Long-term object tracking with a moving event camera. In
Proceedings of the 29th British Machine Vision Conference, Newcastle, UK, 3–6 September 2018.

36. Mueggler, E.; Rebecq, H.; Gallego, G.; Delbruck, T.; Scaramuzza, D. The event-camera dataset and simulator: Event-based data
for pose estimation, visual odometry, and SLAM. Int. J. Robot. Res. 2017, 36, 142–149. [CrossRef]

37. Luiten, J.; Osep, A.; Dendorfer, P.; Torr, P.; Geiger, A.; Leal-Taixé, L.; Leibe, B. HOTA: A Higher Order Metric for Evaluating
Multi-object Tracking. Int. J. Comput. Vis. 2020, 129, 548–578. [CrossRef]

38. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
39. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European conference on computer vision, Amsterdam, The Netherlands, 11–14 October 2016.
40. Canny, J.F. A Variational Approach to Edge Detection. AAAI 1983, 1983, 54–58.
41. Rosebrock, A. Simple Object Tracking with OpenCV. PyImageSearch. Available online: https://www.pyimagesearch.com/2018

/07/23/simple-object-tracking-with-opencv/ (accessed on 1 October 2021).
42. Mueggler, E.; Huber, B.; Scaramuzza, D. Event-based, 6-DOF pose tracking for high-speed maneuvers. In Proceedings of the 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014.
43. Bernardin, K.; Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The Clear Mot Metrics. EURASIP J. Image Video

Process. 2008, 2008, 246309. [CrossRef]
44. Luiten, J.; Hoffhues, A. TrackEval. 2020. Available online: https://github.com/JonathonLuiten/TrackEval (accessed on

29 June 2022).

http://doi.org/10.1109/ACCESS.2021.3133533
http://doi.org/10.1109/TCSVT.2020.3044287
http://doi.org/10.3389/fnbot.2019.00082
http://doi.org/10.1109/ACCESS.2022.3154895
http://doi.org/10.3390/biomimetics7010031
http://doi.org/10.1177/0278364917691115
http://doi.org/10.1007/s11263-020-01375-2
https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
http://doi.org/10.1155/2008/246309
https://github.com/JonathonLuiten/TrackEval

	Introduction
	Related Work
	Frame-Based Object Tracking
	Event-Based Object Tracking

	Hybrid Object Tracking
	Frame-Based Object Detection
	Event-Based Object Detection
	Combining Image and Event Streams Using Window Frames
	Event Mask Extraction
	Inter-Frame Object Detection Using Event Data

	Euclidean-Based Object Tracker

	Experimental Setup
	Dataset Description
	Evaluation Metrics
	Experimental Parameters and Configurations

	Results and Discussion
	Conclusions
	Appendix A
	References

