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Abstract: Timestamps in the Radiology Information System (RIS) are a readily available and valuable
source of information with increasing significance, among others, due to the current focus on the
clinical impact of artificial intelligence applications. We aimed to evaluate timestamp-based radiolog-
ical dictation time, introduce timestamp modeling techniques, and compare those with prospective
measured reporting. Dictation time was calculated from RIS timestamps between 05/2010 and
01/2021 at our institution (n = 108,310). We minimized contextual outliers by simulating the raw
data by iteration (1000, vector size (µ/sd/λ) = 100/loop), assuming normally distributed reporting
times. In addition, 329 reporting times were prospectively measured by two radiologists (1 and
4 years of experience). Altogether, 106,127 of 108,310 exams were included after simulation, with
a mean dictation time of 16.62 min. Mean dictation time was 16.05 min head CT (44,743/45,596),
15.84 min for chest CT (32,797/33,381), 17.92 min for abdominal CT (n = 22,805/23,483), 10.96 min for
CT foot (n = 937/958), 9.14 min for lumbar spine (881/892), 8.83 min for shoulder (409/436), 8.83 min
for CT wrist (1201/1322), and 39.20 min for a polytrauma patient (2127/2242), without a significant
difference to the prospective reporting times. In conclusion, timestamp analysis is useful to measure
current reporting practice, whereas body-region and radiological experience are confounders. This
could aid in cost–benefit assessments of workflow changes (e.g., AI implementation).

Keywords: economic; reporting; time stamps; radiology; modelling; outlier detection

1. Introduction

A scientifically rigorous and valid performance measurement is essential for quality
improvement and therefore health care [1,2]. The art of reporting is currently in a state of
upheaval, and various recent developments are predicted to revolutionize radiology.

While an increasing implementation of machine learning algorithms is expected for
radiological reporting due to improving performance, various roadblocks still hamper
broad clinical implementation [3]. Besides diagnostic accuracy, acceptance by human ex-
perts is crucial to improve accountability of Computer-aided Diagnosis (CAD) Systems [4].
Herein, the human–computer interaction in clinical decision support systems plays an
important role and must be included to assess efficiency [5]. A recently published survey
by the European Society of Radiology (ESR) showed that many AI algorithms do not meet
clinical expectations, and that higher workloads compared to their added value prevent
their implementation [6]. Considering increasing workloads, the current discussion of
reporting format with varying degrees of structuring, multimedia enhancement, and the
implementation of IT solutions might also increase radiological reading time.

With suitable measuring points of the current structures, processes, and the associated
treatment outcome, weak points can be identified and compared with possible solution
strategies [7]. The goal is to increase quality and reduce existing costs in parallel [8]. There-
fore, it is necessary to record the actual radiological reading time and analyze the influence
of new approaches on them. With the current common use of speech recognition in radio-
logical reporting and the use of Radiology Information System (RIS) systems, timestamps
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are routinely and automatically recorded and are a valuable source of information [9].
However, these are susceptible to contextual outliers like interruptions within the report,
which can both extend and shorten the registered time. An urgent phone call can lead to
a shortened time entry through immediate caching, literature research, or conversations
while the report is still open, and can additionally lead to a delayed time entry.

The aim of the study is to assess the radiological reading time based on Speech-
Recognition related RIS timestamps, reduce systematic outlier via simulation based on
the expected normal distribution, and validate the estimates with prospectively recorded
reporting time.

2. Materials and Methods
2.1. Data

The Radiology Information System (Centricity RIS-i 7, 7.0.1.7; General Electric Com-
pany, Boston, MA, USA) automatically saves the time of dictation start as well as the time
of the first saving. In our current practice, we routinely use (anatomically) structured re-
porting, combined with the use of speech recognition (Philips SpeechMike III Pro Premium
LFH3500, Philips, Amsterdam, The Netherlands). We screened for all recorded timestamps
for head CTs (n = 45,596), chest CTs (n = 33,381), abdominal CTs (n = 23,483), foot CTs
(n = 958), lumbar spine CTs (n = 892), shoulder CTs (n = 436), wrist CTs (n = 1322), and
polytrauma CTs (n = 2242) between 05/2010 and 01/2021 where a speech recognition
was used. To avoid inappropriate exclusion and for simplification, different protocols,
including multiphase imaging, were pooled according to the specific anatomical subsite.
For example, head CT ranges for CTs without contrast to Stroke-protocols (native, CTA,
Perfusion imaging).

The examination entity and the times for the start of the speech recognition and the
first saving of the report were exported.

2.2. Definitions

For comprehension, we specified RIS–timestamps-based radiological reading time
as dictation time and the prospective measured reading as reporting time throughout the
manuscript. We defined the time between dictation start and first saving as dictation time.
Cases in which the reports were first saved before the dictation was started were excluded.

2.3. Simulation for Outlier Detection

We defined outliers as data points that deviate significantly from the expected dis-
tribution. Since comorbidities influence the radiological reading time, there is a mean,
individual reporting time in daily practice which shows a certain scatter range due to
varying case complexity, whereas extremes are characterized as less likely (e.g., 2 min or
90 min for CT abdomen). Based on indicative values from the literature and clinical experi-
ence, four independent variables were identified: too short time entries due to interruptions
for caching or release (1 = interrupts), true radiological reading (2: reporting time), too long
time entries due to interruptions without buffering but the continuation of reporting to a
later time point (e.g., overnights), as well as time entries of unknown cause (4).

Since in opposite to the other indicative values, true radiological reading best fits
a normal distribution, we developed a mathematical simulation (R 3.4.3) based on the
expectation-maximization algorithm to minimize outliers.

By simulating normally distributed values, lambda, mean, and standard deviation
were iteratively optimized for the simulation. We chose 1000 iterations with a respective
vector size of 100 values for lambda, mean, and standard deviation, which were adapted
with increasing iteration steps. A simulation was accepted when the mean, standard
deviation, and lambda approached a specific value as the iteration increased. The code of
the simulation can be found in Appendix A.
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2.4. Real Reporting Time

As for validation, we aim to compare the reporting time means with the dictation
time using a two-tailed t-test. A random sample of 10 measured reporting times (reader
1: 4 years of experience) with a mean of 13.3 min and a standard deviation of 4.2 min was
used for the sample size estimation, based on the following Equation [10]:

N =
4σ2(zcrit + zpwr)

2

D2 (1)

N = total sample size, σ = assumed SD, zcrit and zpwr = Standard normal deviates (for the
significance criterion and the Statistical Power), D = total width of the expected CI.

For a power of 0.9 (zpwr = 1.282) and 0.05 as significance criterion (zcrit = 1.96), a
minimum of 329 reporting times (N) is needed to detect a minimum difference of 1.5 min
(D). Therefore, two radiologists (reader 1, reader 2: 1 year of experience) prospectively
measured their real-time reporting between 01/2021 and 12/2021 for head CT, chest CT,
abdominal CT, foot CT, lumbar spine CT, shoulder CT, wrist CT, and polytrauma CT.
Interruptions were excluded.

2.5. Statistics

The descriptive statistics were represented by mean, standard deviation, median,
skewness, and kurtosis. We used Kolmogorov–Smirnov to test for normal distribution.
For differences in mean reporting time t-test was performed, and Mann-Whitney-U-Test
to compare case complexity tendencies between first and second prospective assessment
period. The simulations were performed for head CT, chest CT, abdominal CT, foot CT,
lumbar spine CT, shoulder CT, wrist CT, and polytrauma CT. A p-value of <0.05 was
considered statistically significant. All statistical analyses were performed with R 4.0.5
(R Core Team, Vienna, Austria).

3. Results
3.1. Reporting Time

Before simulation for outlier detection, CT abdomen, foot, lumbar spine, wrist, and
polytrauma were normally distributed (Kolmogorov–Smirnov: p > 0.05). The initial median
dictation time for head, chest, abdomen, foot, lumbar spine, wrist, and polytrauma CT
was head 8.94 min (mean: 27.24 min, SD: 65.53 min), chest 13.42 min (mean: 36.96 min,
SD: 72.83 min), 16.00 min (mean: 40.74 min, SD: 76.32 min), 8.08 min (mean: 24.54 min,
SD: 52.68 min), 11.63 min (mean: 37.85 min, SD: 79.55 min), 5.68 min (mean: 19.98 min,
SD: 51.13 min), and 15.80 min (mean: 37.07 min, SD: 74.08 min), respectively, as shown in
Figure 1.

The results of simulation are summarized in Table 1. Note the consistency between
mean and median. There is a large variance in case complexity and radiological experience
(multiple observers) impacting the standard deviation.

Table 1. n (total): all available timestamps, n (norm): cases after outlier reduction which follows a
normal distribution.

n (Total) n (Norm) Mean Standard Deviation Median

Head 45,596 44,743 16.05 31.27 16.37
Chest 33,381 32,797 15.84 30.21 16.16

Abdomen 23,483 22,805 17.92 31.95 17.75
Foot 958 937 10.96 20.16 10.80

Lumbar spine 892 881 9.14 13.27 8.91
Wrist 1322 1201 8.83 12.83 8.44

Polytrauma 2242 2127 39.2 52.41 39.36
All 107,874 105,491 16.62 33.11 16.58
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Figure 1. Violin chart shows all CT dictation times by anatomical regions from 05/2010 until
01/2021 before simulation for outlier reduction. For better clarity, longer time entries in the graph
(>80 min) were not taken into account. Note that the charts seem to be truncated, which is caused
by outliers with short time entries, e.g., by initially caching the report after starting the dictation
software. Nevertheless, the data seem to be normally distributed, which can only be explained by the
proportion of the actual radiological reading time.

Real Reporting Time

In total, the time of 329 reporting times was recorded prospectively. The mean re-
porting time was 16.01 min (SD: 7.48 min, 95% CI: 15.20–16.83 min, Median 15.00 min).
The reporting time for head CT (n = 135), chest CT (n = 95), abdominal CT (n = 57), foot
CT (n = 7), lumbar spine CT (n = 6), wrist CT (n = 5), and polytrauma CT (n = 26) were
14.90 min (SD: 5.66 min), 14.38 min (SD: 5.34 min), 15.84 min (SD: 5.17 min), 10.13 min
(SD: 5.45 min), 10.08 min (SD: 2.68 min), 9.66 min (SD: 3.53 min), and 32.16 min (SD: 8.74 min).
However, reporting times for abdominal, foot, lumbar spine, wrist, and polytrauma CT
were normally distributed (Kolmogorov–Smirnov, p > 0.05), and measures for head and
chest CT showed a relative high kurtosis with 3.41 (standard error: 0.41) and 2.81 (standard
error: 0.50). The corresponding skewness was 1.40 (standard error: 0.21) and 0.97 (standard
error: 0.25). Figure 2 compares real-time reporting time with the acquired dictation time
based on timestamps. There is no significant difference between the simulation and the
real-time subset (p < 0.001). Experience had an influence on the mean reporting time
(p = 0.004): reader 1 required a mean of 15.47 min (SD: 7.15 min) and reader 2 required a
mean of 19.83 min (SD: 8.71 min). Within the observation period, there was no significant
reduction (p = 0.351) in individual reporting time. For example, reader 1 required 15.08 min
in the first period versus 15.87 min in the second, with a slight increase, but not significantly
more time-consuming reports in the second period (p|: 0.07).
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of the 108,310 examinations (light blue) before simulation for outlier reduction.

4. Discussion

An iterative simulation of dictation time based on RIS timestamps can be used to
reduce systemic outliers and allows monitoring of radiological reading time on a large
database if speech recognition is used. The simulated dictation time was, on average,
16.62 min without a significant time difference to a small sample of 329 real-time reports.

The turnaround time is established to monitor changes in the work process, e.g., chang-
ing the reporting system from decentralized/modality-based to centralized/subspecialized
can result in a reduced report turnaround time (RTAT) [11]. However, the turnaround time
corresponds to the actual effective working time to a limited extent. If the workload is high
for two radiologists who work fast, and both are involved in the preparation of the report,
the turnaround time may be high, despite the high level of effectiveness. Conversely, if the
workload is low, the turnaround time is shortened, despite the low effectiveness.

To address this problem, McDonald proposed a timestamp approach to more accu-
rately measure reporting time [12]. However, these are outlier-prone. For example, to
allow fast-track in stroke patients (door to needle) neuroradiologists are on-call, and in-
terrupt routine reporting to facilitate immediate decision-making at the CT-workstation,
which might lead to a “false-long” time registries. Therefore, McDonald et al. used
60 min as an upper cutoff per CT report and only reported medians in their study (more
robust for a skewed distribution) and lacked a prospective real-time validation. Their
measured medians largely correspond to our mean values after outlier reduction. They
measured a median duration (minutes) of 15.21 min for chest (n = 2469), 14.34 min for
abdomen (n = 5710), 13.15 min for lumbar spine (n = 102), and 32.36 min for polytrauma
(n = 122), which is comparable to our data (chest: 15.84 min, n = 32,797; abdomen:
17.92 min, n = 22,805; foot: 10.96 min, n = 937; lumbar spine: 9.14 min, n = 881; poly-
trauma: 39.2 min, n = 2127).

However, reporting time also has a natural variance. Reporting time will also be
extended in difficult cases in need of case discussion with colleagues, literature research, or
lack of clinical information.
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Therefore, simulation for outlier reduction seems to be reasonable. This allows for
the assessment of workload changes using statistical tests based on mean values or nor-
mal distribution. Using this method, even smaller samples can be compared with the
institution’s own generated reference reporting time after introducing a change in the
workflow. This might be useful in assessing changes in the radiology report format [13],
the implementation of artificial intelligence [14], and analyses of confounding factors such
as fatigue [15].

There are some limitations to this study. The recorded timestamps were not recorded
for the purpose of the study and the prospectively collected evaluation data set is relatively
small. However, since most RIS with integrated speech recognition use the timestamps
described herein, in our opinion this increases the reproducibility of our study. Another
limitation is the assumption of a normal distribution for the reporting time. However, in
comparison to the use of simple cutoffs, this can reduce an a priori exclusion of plausible
long reporting times in difficult cases which, e.g., require discussion with colleagues or
literature research. Additionally, the radiological reading times might be unique to our
department due to complex tertiary level cases (e.g., postoperative head CT). Nevertheless,
this study’s aim is not to compare absolute times to other institutions, but rather to provide
a method to quantify and compare reporting times. The evaluated times in this study
do not represent the total workload of a radiologist. Rather, they provide approaches to
estimate the reporting time based on dictation time entries of routine cases, especially
since the time of the first viewing of the images might differ from the start of the dictation.
Lastly, recorded timestamps are dependent on the software used and data availability is
dependent on the Graphical User Interface (GUI). However, GE provides features common
in alternative providers.

In summary, timestamp analyses enable large sample-size analysis for cost–benefit
analysis, but harper contextual outliers, where a simulation by normal distribution is
feasible to improve data quality. Experience and anatomical region were identified as
cofounders of reporting time.

In future research, we would like to use the timestamp analyses prospectively for
workflow changes. Specifically, we want to introduce different deep learning applications
for cardiothoracic imaging [16,17] as well as multimedia enhanced reports (with hyperlinks
to the image findings) and investigate their influence on the current reporting time.

5. Conclusions

Simulating the reporting time by a normal distribution can minimize contextual
outliers like interruptions. This enables a robust estimate of routine reporting time with no
extra costs based on large sample sizes.
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Appendix A

R Script (the following code can be used for modelling of timestamps assuming a
normal distribution):

#data= your timestamps
N<-length(data)
t_max<-max(data)
## function,to optimize:
optL <- function(l.vec, m, s)

{
error <- rep(NA, length(l.vec))
for(i in c(1:length(l.vec)))

{
sim.df <- data.frame(x1 = rnorm(N,mean=m, sd=s), x2 = rexp(N, l.vec[i]))
sim <- apply(sim.df, 1, min)
# plot(density(sim))
error[i] <- sum((sort(data) - sort(sim))ˆ2)
}

return(l.vec[which.min(error)])
print(l.vec)

}

## function to optimize m
optM <- function(m.vec,l,s)

{
error <- rep(NA,length(m.vec))
for(i in c(1:length(m.vec)))

{
sim.df <- data.frame(x1=rnorm(N,m.vec[i]),sd=s, x2 = rexp(N, l))
sim <- apply(sim.df,1,min)
error[i] <- sum((sort(data)- sort(sim))ˆ2)
}

return(m.vec[which.min(error)])
print(m.vec)

}
## function to optimize SD
optS <- function(m,l,s.vec)

{
error <- rep(NA,length(s.vec))
for(i in c(1:length(s.vec)))

{
sim.df <- data.frame(x1=rnorm(N,m,sd=s.vec[i]), x2= rexp(N,l))
sim <- apply(sim.df,1,min)
error [i] <- sum((sort(data)-sort(sim))ˆ2)
}

return(s.vec[which.min(error)])
print(s.vec)

}

## Define range for search vector for l,m,s:
my.vec <- function(x,i){

x.min <- x-(x/(iˆ2))
x.max <- x+(x/(iˆ2))
my.vec <-seq(from = x.min, to = x.max, length.out = 100)
return(my.vec)
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}
### prepare iteration
## set variables: m,s,l, i=iteration step
m<-30
s<-10
l<-0.03
#set.seed= reproducibility
set.seed(50)
###iteration start:
for(i in c(1:1500)){
## optimize l with m, s
my.l <- my.vec(l, i)
my.l <- my.l[my.l >0 and my.l < 1]
l <- optL(my.l,m, s)

## optimize m with l, s
my.m <- my.vec(m, i)
my.m <- my.m[my.m >0 and my.m < 120]
m <- optM(my.m,l = l, s = s)
## optimize s with l,m
my.s <- my.vec(s, i)
my.s <- my.s[my.s >0 and my.s < 120]
s <- optS(my.s,l = l, m = m)
## plot each 100 iteration
if(i %% 100 == 0){

sim.df <- data.frame(x1=rnorm(N,m,sd=s), x2= rexp(N,l))
sim <- apply(sim.df,1,min)
norm <- sum(sim.df[, 1] == sim)
error <- sum((sort(sim) - sort(data))ˆ2)
mypath<-file.path("D:/expo/PETCT/",paste("histogram_iteration_",i,".jpg",sep=""))
jpeg(file=mypath)
hist(sim,

main = paste("Iteration", i,"von N(my,s):", norm,", m =", sprintf("%.2f", m), ", s =",
sprintf("%.2f", s), ", l =",

sprintf("%.2f",l), "error = ", error),
xlim = c(0,t_max/3), ylim = c(0,t_max/3),
col = "blue",
breaks=300,xlab="time(min)",ylab="frequency")

par(new = TRUE)
hist(data,

main = "",
xlim = c(0,t_max/3), ylim = c(0, t_max/3),
breaks = 300,xlab="",ylab="")

dev.off()
}

}
write.table(

paste("medium:",m,
"n(total):",N,
"n(norm):",norm,
"standard deviation:",s,
"lambda exponential:",l,
"iteration:",i),"D:/expo/PETCT/results/information.txt",sep="\t")

library(truncnorm)
x <- rtruncnorm(n = 118, a = 0, b = Inf, mean = m, sd = s)
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y<-summary(sim.df)
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