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Abstract: Management of brain tumors is based on clinical and radiological information with pre-
sumed grade dictating treatment. Hence, a non-invasive assessment of tumor grade is of paramount
importance to choose the best treatment plan. Convolutional Neural Networks (CNNs) represent one
of the effective Deep Learning (DL)-based techniques that have been used for brain tumor diagno-
sis. However, they are unable to handle input modifications effectively. Capsule neural networks
(CapsNets) are a novel type of machine learning (ML) architecture that was recently developed to
address the drawbacks of CNNs. CapsNets are resistant to rotations and affine translations, which is
beneficial when processing medical imaging datasets. Moreover, Vision Transformers (ViT)-based
solutions have been very recently proposed to address the issue of long-range dependency in CNNs.
This survey provides a comprehensive overview of brain tumor classification and segmentation
techniques, with a focus on ML-based, CNN-based, CapsNet-based, and ViT-based techniques. The
survey highlights the fundamental contributions of recent studies and the performance of state-of-the-
art techniques. Moreover, we present an in-depth discussion of crucial issues and open challenges.
We also identify some key limitations and promising future research directions. We envisage that this
survey shall serve as a good springboard for further study.

Keywords: brain cancer; magnetic resonance imaging; machine learning; deep learning; capsule
neural networks; vision transformers

1. Introduction

Brain tumors are expansile lesions that originate in the brain [1,2]. They can be divided
into benign (non-cancerous) and malignant (cancerous) according to their aggressiveness,
and classified into four grades using the WHO classification for Central Nervous System
(CNS) tumors ranging from 1 to 4, according to their malignancy [1]. Non-cancerous tumors
rarely spread to healthy surrounding cells, examples are meningiomas and pituitary tumors,
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often of lower grades [3]. Malignant brain tumors infiltrate the surrounding parenchyma
with variable aggressiveness. Glioblastoma (GBM) is the most common and aggressive
type of malignant brain tumor, commonly classified as a grade 4 CNS tumor with dismal
survival [3,4]. Brain tumors can also be categorized according to their origin into primary
and secondary brain tumors, with the former originating in the brain and the latter usually
in a distant site [3].

At present, diagnosis and management are based upon clinical and radiological
information. Magnetic Resonance Imaging (MRI) is the mainstay for the assessment of
patients with brain tumors [5], although conventional imaging has significant limitations
in evaluating tumor extent, predicting grade, and assessing treatment response [6]. Novel
acquisition techniques are under development to improve lesion characterization, therapy
assessment and management [7]; however, novel approaches to image analysis have been
gaining traction thanks to the wealth of information possessed by radiological images [8].

In this context, brain tumor classification and segmentation have become pivotal
for image analysis. Brain tumor classification can be performed with different methods,
including manual classification and computer-aided classification. Manual classification
of brain tumors is very time-consuming [9], and prone to error [10]. However, manual
classification cannot be ignored, as it is still the reference standard both for clinical care and
used as a comparison for other techniques [11].

Computer-aided diagnosis has proven to be useful in supporting medical practi-
tioners [12]. It can be performed using different techniques including classical machine
learning (ML) [13,14] (such as clustering [15]), Convolutional Neural Network (CNN)
approaches [16,17], recently considering also capsule neural networks (CapsNets) [18,19],
and Vision Transformers (ViTs) [20].

This paper presents a survey on brain tumor segmentation and classification tech-
niques, with a particular emphasis on ML-based, CNN-based, CapsNet-based, and ViT-
based techniques.

The primary objective of this survey is to highlight the current state-of-the-art of
ML-based, CNN-based, CapsNet-based, and ViT-based brain tumor segmentation and
classification methods. This paper also highlights recent achievements, relevant research
challenges, and future research directions. This survey is different from the existing
surveys [9,21–23] in the following ways:

1. Most review papers considered one or two types of ML-based techniques, while
we included four types of brain tumor segmentation and classification techniques:
classical ML algorithms, CNN-based techniques, CapsNet-based techniques, and ViT-
based techniques. This survey summarizes the current state-of-the-art in brain tumor
segmentation, grade estimation, and classification. It outlines the advances made
in ML-based, CNN-based, CapsNet-based, and ViT-based brain tumor diagnosis
between 2019 and 2022.

2. Most of the previous studies [9,21–23] presented an overview of either CNN-based
techniques, ML-based techniques, or both ML- and CNN-based approaches. In
addition to CNN-based and ML-based techniques, we present a summary of CapsNet-
based, and ViT-based brain tumor segmentation and classification techniques. Cap-
sNet is one of the state-of-the-art techniques for brain tumor segmentation and classi-
fication. The findings of this survey show that CapsNet outperformed CNN-based
brain tumor diagnosis techniques, as they require significantly less training data
compared to CNNs. Moreover, CapsNets are very robust to different rotations and
image transformations. Furthermore, unlike CNN, ViT-based models can effectively
model local and global feature information, which is very critical for accurate brain
tumor segmentation and classification.

3. Some review papers did not provide a comprehensive discussion and pertinent
findings. This survey presents significant findings and a comprehensive discussion
of approaches for segmenting and classifying brain tumors. We also identify open
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problems and significant areas for future research, which should be beneficial to
interested scholars and medical practitioners.

The remainder of this manuscript is structured as follows: Section 2 introduces
some fundamental concepts necessary for an accurate understanding of this manuscript.
Section 3 introduces the material and methods used for this survey. Section 4 provides an
in-depth review of recently published ML, CNN, CapsNet, and ViT-based brain tumor
classification and segmentation techniques. Section 4 also highlights the core contributions
and performance of various studies. Section 5 discusses several open research problems
and critical issues related to brain tumor segmentation and classification. Section 5 also
presents a performance analysis of brain tumor diagnosis techniques, as well as details
on several popular datasets. Section 6 concludes the paper with some final thoughts and
potential research directions.

2. Background
2.1. Brain Tumors and Magnetic Resonance Imaging

Brain tumors can be intra-axial (e.g., gliomas) or extra-axial (e.g., meningiomas or
pituitary adenomas). Intra-axial brain tumors are particularly difficult to treat, especially at
advanced stages, when they are usually discovered due to the symptoms caused by the
mass effect on the surrounding brain [5]. Treatment failure can be due to several factors,
including the limited capacity of current imaging modalities to identify the boundaries
of the lesion within the normal appearing brain parenchyma [24]. Hence, more advanced
imaging techniques for assessment of brain tumors and surrounding structures is critical
to improve overall management [5,24,25]. Extra-axial brain cancers also require special
attention, as these tumors (such as pituitary adenoma and meningiomas) can result in
complications and long-term impairment [26–28].

MRI is the workhorse for brain tumor imaging in clinical practice providing structural,
microstructural, functional, and metabolic information [29]. Moreover, novel advanced
imaging techniques are continuously developed to improve identification, characterization,
and response assessment of brain tumors [6]. Hence, many artificial intelligence (AI)
applications in brain tumor imaging have been based on MRI. For more information on
brain tumors, kindly refer to [5].

2.2. Deep Learning

Deep Learning (DL) is a subfield of ML that is concerned with techniques inspired
by neuroscience [30]. However, Goodfellow et al. [31] noted that neuroscience is no
longer the primary source of inspiration for deep learning. Recently, DL algorithms have
established themselves as a critical component of medical image analysis tasks, such as
object recognition, classification, and segmentation. CNNs represent the most often utilized
DL algorithm for developing brain tumor classification and segmentation techniques [3].
CNNs can learn the spatial relationships between voxels in an MRI scan. In CNNs, multiple
filters are hovered on an input image with the objective of learning different features that
characterize the image. A typical CNN model mainly consists of the following components:
(i) input layer, (ii) convolution layer, (iii) activation function, (iv) pooling layer, (iv) fully
connected layer, and an (v) output layer. The input layer is used to feed the input image
into the network for processing by the successive layers. Convolution, pooling, and
activation functions are used to extract high-level features from the image [3], whilst
the fully connected layer is used for image classification, object segmentation, or object
detection. The output layer is used to generate the network’s final prediction or results.
Figure 1 illustrates the general structure of a CNN.
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Figure 1. General architecture of a Convolutional Neural Network (CNN).

2.3. Vision Transformers

CNNs have demonstrated state-of-the-art performance in computer vision tasks, such
as brain tumor segmentation and classification over the last few years. However, CNNs
cannot efficiently capture long-range information or dependencies due to their small kernel
size [32]. Long-range dependencies are those in which the desired output depends on
image sequences presented at distant times. Due to the similarity of human organs, many
visual representations in medical images are organized in sequence [33]. Destruction of
these sequences will significantly affect the performance of a CNN model. This is because
the dependencies between medical image sequences (such as modality, slice, and patch)
contain significant information [33]. These long-range dependencies can be effectively
handled by techniques that can process sequence relations. A self-attention mechanism in
ViTs [20] has the capacity to model long-range dependencies which is very important for
precise brain tumor segmentation. They achieve this by modeling pairwise interactions
between token embeddings, thus enabling ViT-based models to learn local and global
feature representations [34]. ViT has demonstrated promising performance on a variety of
benchmark datasets [32,35].

Figure 2 depicts a high-level overview of a ViT model. As shown in the scheme, an
image is partitioned into N small patches (e.g., 9 patches). Each of the image patches
contains n × n pixels (e.g., 16 × 16 pixels). After partitioning, each image patch is flattened,
such that the input sequence will consist of a flattened vector of pixel values. Moreover,
each of the flattened image patches is fed into a linear projection layer to obtain a lower-
dimensional linear embedding. Moreover, positional embeddings are added to the sequence
of image patches to ensure that each image keeps its positional information. Finally, the
input sequences and position embedded sequence are fed into a standard transformer
encoder for training. The training can be conducted by a multilayer perceptron (MLP) or
CNN head stacked on top of the transformer. For more information on ViT, please refer
to [20].

2.4. Capsule Neural Networks

Despite the remarkable success of CNNs, there are some drawbacks associated with
them. First, CNNs require vast datasets for training. Second, CNNs are typically not
robust to affine rotations and transformations [36]. Additionally, the routing mechanism
employed by CNN’s pooling layers is distinct from that employed by the human visual
system. The CNN pooling layer routes all the information extracted from the image to
all the neurons in the subsequent layer, neglecting essential details or little objects in the
image [37]. Hinton et al. [38] designed the CapsNet to address the drawbacks of CNN. The
general structure of a CapsNet is depicted in Figure 3. A CapsNet is a three-layer network
composed of convolutional, primary capsule, and class capsule layers [39]. The primary
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capsule layer is typically the first one, followed by an undetermined number of capsule
layers. The capsule layer is followed by the class capsule layer. The convolutional layer
is used to extract features, which are then transmitted to the primary capsule layer. The
primary capsule performs a series of operations and transmits the resulting feature map to
the digit capsule. Typically, the digit capsule is composed of a n × m weight matrix, where
n denotes the number of classes and m the size of each digit capsule. The digit capsule is
used to classify the input image before it is fed into the decoder. The decoder consists of
three fully connected layers that are used to reconstruct or decode the selected digit capsule
into an image.

Figure 2. Overview of a Vision Transformers (ViT) model. The image is partitioned into N small
patches (e.g., 9 patches). Each of the image patches contains n × n pixels (e.g., 16 × 16 pixels). After
partitioning, each image patch is flattened: each of the flattened image patches is fed into a linear
projection layer to obtain a lower-dimensional linear embedding. Moreover, positional embeddings
are added to the sequence of image patches to ensure that each image keeps its positional information.
The input sequences and position embedded sequence are fed into a standard transformer encoder for
training. The training can be conducted by an MLP or CNN head stacked on top of the transformer.
The “*” symbol refers to an additional learnable (class) embedding that is appended to the sequence
based on the position of the image patch. This class embedding is used to predict the class of an input
image after self-attention updates it.

Figure 3. General scheme of a capsule neural network (CapsNet). A CapsNet is a three-layer network
composed of convolutional, primary capsule, and class capsule layers. The primary capsule layer is
typically the first one, followed by an undetermined number of capsule layers. The capsule layer is
followed by the class capsule layer. The convolutional layer is used to extract features, which are
then transmitted to the primary capsule layer. The primary capsule performs a series of operations
and transmits the resulting feature map to the digit capsule.
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CapsNet can recognize spatial and hierarchical relationships among objects in im-
ages [40]. They are resistant to rotation and image transformations [38]. Additionally, as
shown in [41], CapsNet requires substantially less training data than CNN [18]. Moreover,
results reported in the literature [41] show that CapsNet has the potential to improve the
accuracy of CNN-based brain tumor diagnosis using a very small number of network
parameters [42].

It is worth noting that the pooling operation in CNNs makes it robust to small input
transformation. However, for CNN to perform well, it must be trained on augmented
data in terms of scale, rotation, and varying perspective. Despite this, results reported in
the literature [39,43] indicate that, in some cases, CapsNet performs comparably to CNN
models trained on augmented datasets. CapsNet does not need to be trained on large-scale
or augmented data to produce very good results. This makes it a suitable model for medical
image datasets, which are typically small. For more information on CapsNet, please refer
to [38].

3. Materials and Methods

This review includes papers published between 2019 and 2022. A few studies that
were published before 2019 are also covered in this paper. Specifically, we focused on
papers that developed brain tumor classification and segmentation approaches using ML,
CNN, CapsNet, and ViT. The following databases for scientific literature were queried to
find relevant articles: PubMed, Google Scholar, and ScienceDirect. We also queried the
online database of the Multidisciplinary Digital Publishing Institute (MDPI) for journal
articles. The following search terms were used for our queries: brain tumor, segmentation,
classification, and DL. In addition, the union of the outlined search terms was used with a
set of terms relating to DL brain tumor segmentation and classification including classic
machine learning, convolutional neural networks, capsule networks, and transformers.
The following inclusion criteria were used in this survey: conventional brain segmentation
and classification techniques, deep learning, capsule networks, vision transformers, MRI
images, and peer reviewed. Ph.D. theses, M.Sc. theses, and case study papers were
excluded from this study. Figure 4 shows the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) diagram used for this survey. Figure 5a,b illustrate
the percentage of articles reviewed in this study and their publication year, respectively.

Figure 4. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram
of the proposed review on AI applications to brain tumor MRI.
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Figure 5. (a) percentage of reviewed articles; (b) number of reviewed articles and their
publication year.

3.1. Datasets

The Medical Image Computing and Computer Assisted Intervention (MICCAI) Society
has funded numerous events and open challenges over the years to stimulate the develop-
ment of DL tools and medical devices for computer-aided diagnosis. Most studies used
the datasets provided by the MICCAI Society to evaluate the efficiency of their techniques.
Details of the other datasets are also shown in Table 1. As shown in the table, most of the
benchmark datasets are small, making it challenging to build DL models from end-to-end.

Table 1. Summary of Dataset used in the literature.

Dataset Name Dataset Details Reference

BraTS 2012 30 MRI, 50 simulated images (25 Low Grade Glioma (LGG) and 25 High
Grade Glioma (HGG)) [44]

BraTS 2013 30 MRI (20 HGG and 10 LGG), 50 simulated images (25 LGG and 25 HGG) [45]
BraTS 2014 190 HGG and 26 LGG MRI [46]
BraTS 2015 220 HGG and 54 LGG MRI [47]
BraTS 2016 220 HGG and 54 LGG; Testing: 191 images with unknown grades [48]
BraTS 2017 285 MRI scan. Contains full masks for brain tumors. [49]

BraTS 2018 Training dataset: 210 HGG and 75 LGG MRI scans. The validation dataset
includes 66 different MRI scans [50]
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Table 1. Cont.

Dataset Name Dataset Details Reference

BraTS 2019 259 HGG and 76 LGG MRI scans from 19 institution. [51]

BraTS 2020

2640 MRI scans from 369 patients with ground truth in four sequences
(T1-weighted (T1w), T2-weighted (T2w), post-gadolinium-based contrast

agent (GBCA) T1w (T1w post GBCA), Fluid Attenuated Inversion
Recovery (FLAIR))

[52]

BraTS 2021 8000 MRI scans from 2000 cases [53]

TCIA 3929 MRI scans from 110 patients. 1373 tumor images and
2556 normal images. [54]

Radiopedia 121 MRI [55]
Contrast Enhanced Magnetic

Resonance Images (CE-MRI) dataset 3064 MRI T1w post GBCA images from 233 patients [56]

Brain MRI Images 253 MRI images, 155 tumor images, 98 non-tumor images [57]
Br35H dataset 3000 MRI images, 1500 tumor images, and 1500 non-tumor images [58]
MSD dataset 484 multi-modal multi-site MRI data (FLAIR, T1W, T1w post GBCA, T2W) [59]

3.2. Image Pre-Processing Techniques

Image pre-processing techniques can be used to improve the performance of DL-based
techniques. Thaha et al. [17] introduced a skull stripping and image enhancement technique
for image pre-processing. Skull stripping is used to remove signals from outside the brain,
removing unwanted information and, therefore, facilitating learning tasks. Image enhance-
ment techniques are also utilized to further increase the image’s quality, allowing for the
identification of essential features in the image. Sérgio et al. [60] introduced an intensity
normalization technique for image pre-processing. Results obtained in the study showed
that intensity normalization combined with data augmentation produced good results.

One of the key challenges encountered by researchers applying quantitative analyses
to MRI scans is the presence of background interference, such as thermal noise, and/or
scanner-related artifacts. Thermal noise is typically triggered by random fluctuations
within the MRI system, radiofrequency coils in the MRI scanner [61], and small movements
of the patient during the scanning process [62]. The presence of noise in an MR scan can
reduce the quality of the image [63]. Training a CNN on noisy images can affect its ability
to effectively extract tumor-related features, which will consequently affect its accuracy and
generalization performance. In view of this, some studies [64,65] adopted denoising and
contrast enhancement techniques [66,67] as a pre-processing step to improve the quality of
MRI scans before training CNN models. Some studies also developed other techniques for
reducing noise in MR images including modified median noise filter [68], Wiener filter [69],
and non-local means approach [70,71]. More robust and effective denoising techniques are
still required [72].

3.3. Performance Metrics

Several metrics were used to evaluate the performance of ML and DL techniques.
Most studies [10,17,73,74] used the Dice similarity coefficient to evaluate the performance
of brain tumor segmentation techniques. The coefficients determine the amount of spa-
tial overlap between the ground truth segmentation (X) and the network segmentation
(Y) [74]. Some studies used average Hausdorff Distance [73] for brain tumor segmentation.
Many studies [17,19,40,62,75] used classification accuracy, precision (or recall), sensitivity,
and specificity to evaluate brain tumor classification techniques. Kindly note that, when
sensitivity is used along with precision, it is commonly referred to as recall.

4. Literature Survey

Brain tumors can be located anywhere in the human brain and assume virtually
any shape, size, or contrast (dissimilarity) [10]. This shows that ML-based solutions that
can effectively and automatically classify and segment brain tumors are needed. The
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introduction of powerful computing devices and lower hardware prices have prompted
the scientific community to develop numerous techniques for brain tumor segmentation
and classification. Some of the techniques were designed with classical ML algorithms,
while other techniques were designed with CNN algorithms and CapsNet. This section
presents a review of ML-based, CNN-based, CapsNet-based, and ViT-based techniques for
brain tumor segmentation and classification. It is expected that these techniques will assist
medical practitioners in improving the accuracy and consistency of diagnosis.

4.1. Classical Machine Learning Based Techniques

Numerous brain diagnostic systems have been developed using classical ML algo-
rithms including Support Vector Machines (SVMs), Random Forests (RFs), k-Nearest
Neighbor (k-NN), to list a few. These algorithms are used alone or in combination with
other ML algorithms or feature selection techniques. This section presents a survey of
ML-based brain classification and segmentation techniques.

4.1.1. Brain Tumor Classification and Segmentation Using Hybrid Texture-Based Features

The texture of an image is an important feature that can be used to identify different
regions of interest. The texture of a region in an image is determined by the distribution
of Gray levels across the image pixels [15]. Jena et al. [15] proposed a brain tumor classi-
fication and segmentation technique using texture features and multiple ML algorithms.
The technique is divided into two stages: tumor classification and tumor segmentation.
In the tumor classification stage, the MRI scans are pre-processed, and texture features
are extracted from the images using different texture extraction techniques. The following
texture-based features were explored in the study: first-order statistical feature [76], Gray-
level co-occurrence matrix (GLCM) feature [77], Gray-level run length matrix (GLRLM)
feature [78], Histogram-oriented gradient (HOG) feature [79], Local binary patterns (LBP)
feature [80], Cross-diagonal texture matrix (CDTM) feature [81], and simplified texture
spectrum feature [82]. All the features were extracted from 100 tumor and 100 non-tumor
images. The extracted features were combined to form a feature vector matrix of size
200 × 471. Subsequently, the feature vector matrix was used to train five ML algorithms:
SVM, k-NN, binary decision trees, RF, and ensemble methods. The ensemble methods
consist of seven algorithms, namely: Adaboost, Gentleboost, Logitboost, LPboost, Robust-
boost, RUSboost, and Totalboost. After training, the tumorous images were identified
and used as input to a hybrid tumor segmentation technique designed in the study. The
hybrid technique consists of k-NN and fuzzy C-means clustering algorithms. The hybrid
technique was used to segment the tumor regions in the images, and it was evaluated on
two datasets based on the following performance metrics: average Dice similarity coeffi-
cient (DSC), average Jaccard similarity coefficient, and average accuracy. The dataset used
to evaluate the model include: BraTS2017, BraTS2019, and the Cancer Imaging Archive
(TCIA). Experiments show that the ensemble methods produced the best result, achieving a
classification accuracy of 96.98% and 97.01% for BraTS2017 + TCIA and BraTS2019 + TCIA,
respectively. RF produced the second-best result, achieving an accuracy of 96.5% and
96.99% for BraTS2017 + TCIA and BraTS2019 + TCIA, respectively. The results also show
that the segmentation technique produced a Dice similarity score and accuracy of 90.16%
and 98.4%, respectively for BraTS2017.

4.1.2. Brain Tumor Classification Using GoogleNet Features and ML

Sekhar et al. [14] proposed a tumor classification model using a modified GoogleNet
pre-trained CNN model [83] and two ML algorithms: SVM and k-NN. In the study, the
last three fully connected layers of GoogleNet network were modified and fine-tuned
on brain tumor images. After fine-tuning, the 1024 feature vector from the last average
pooling layer was extracted and used to train SVM and k-NN classifiers. The technique was
evaluated on the CE-MRI dataset [56] containing 3064 T1w post GBCA brain MR images
from 233 patients. Experimental results show that GoogleNet produced precision and
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recall of 96.02% and 97.00% for glioma, respectively, using softmax activation function. The
performance of the model was improved by over 2.5% when the SVM classifier was used.
It achieved precision and specificity of 98.76% and 98.93% for glioma, respectively. The
performance of GoogleNet was also improved by over 2.3% when the k-NN classifier was
used. It produced precision and specificity of 98.41% and 98.63% for glioma, respectively.
This shows that features extracted from pre-trained CNN models can be used to build
effective ML-based classifiers.

4.1.3. Brain Tumor Classification Using Ensemble of Deep Features and ML Classifiers

Kang et al. [84] proposed a method for brain tumor classification using an ensemble
of deep features. The technique consists of three stages. In the first stage, input images
are pre-processed, and more images are generated using data augmentation. The pre-
processed images are then used as input to 13 pre-trained CNN models, namely: ResNet-
50 [85], ResNet101 [85], DenseNet-121 [86], DenseNet-169 [86], VGG-16 [87], VGG-19 [87],
AlexNet [88], Inception-v3 [89], ResNeXt-50 [90], ResNeXt-101 [90], ShuffleNet-v2 [91],
MobileNet-v2 [92], and MnasNet [93]. The pre-trained CNN models are used to extract
features from the images. In particular, the features are extracted from the fully connected
layers of the pre-trained models. The extracted features are used to train nine ML classifiers,
namely: Gaussian Naïve Bayes, Extreme Learning Machine (ELM), Adaptive Boosting
(AdaBoost), k-NN, RF, SVM and neural networks with a fully connected layer. Moreover,
the pre-trained models that produced the three best results are identified, and the extracted
features from the three best pre-trained models are combined into one sequence. Finally, the
combined features are used to train the nine ML classifiers. The technique was evaluated
on three brain MRI datasets downloaded from Kaggle websites. Results showed that
DenseNet-169, Inception-v3, and ResNeXt-50 produced the best features, achieving an
accuracy of 96.08%, 92.16%, and 94.12%, respectively.

4.1.4. Brain Tumor Detection Using Metaheuristics and Machine Learning

Kaur et al. [94] introduced a brain tumor classification technique using multiple meta-
heuristic and ML algorithms. In the study, brain MRI was pre-processed, and features were
extracted from the images using Principal Component Analysis (PCA) and Independent
Component Analysis (ICA). The extracted features were further reduced by using different
optimization algorithms, including cuckoo search, lion optimization, and bat optimization
algorithms. Furthermore, the optimized dataset was used to train two ML algorithms: NB
algorithm and Residual Neural Network (ResNet50). Three case studies were considered
in the study. In the first case study, PCA was used for feature selection, the firefly algorithm
was used for image smoothing, and the naïve Bayes (NB) classifier was used for image
classification. In the second case study, ICA was used for feature extraction, the cuckoo
search algorithm was used for image smoothing, and the NB classifier was used for tumor
classification. In the third case study, ICA was used for feature extraction, the combination
of lion and bat optimization algorithms was used for image smoothing, and RNN was used
for tumor classification. Experiments performed on the Cancer Imaging Archive (TCIA)
dataset show that PCA + firefly algorithm + NB algorithm outperform ICA + cuckoo search
+ NB algorithm, achieving an accuracy of 96.59%. The results also show that ICA + lion
optimization + bat optimization + RNN produced the best accuracy of 98.61%.

4.1.5. Categorization of Brain Tumor Using CNN-Based Features and SVM

Deepak and Ameer [13] proposed an automated system for brain tumor categorization
using SVM and CNN. In the study, a CNN was used to extract image features from MRI
images. The CNN consists of five convolutional layers and two fully connected layers.
The feature maps from the fifth convolution layer and the 1st fully connected layer are
extracted and used separately to train SVM for multiclass classification. The activations of
the fifth convolution layer contain 3136 feature vectors, while the activations of the 1st fully
connected layer contain 10 feature vectors. No feature selection algorithm was used in the
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study. The technique was tested on the FigShare dataset. The dataset consists of 3064 T1w
post GBCA MR images (from 233 patients) belonging to three classes of brain tumors:
glioma, meningioma, and pituitary tumor. The proposed technique achieved an accuracy
of 95.82% when trained on the 10 feature vectors extracted from the fully connected layer.
The accuracy reduced to 93.83% when it was trained on the 3136-feature set extracted from
the fifth convolution layer. This shows that SVM models trained on small-scale feature sets
have the potential to produce better results than those trained on large-scale feature sets.
CNN produced an accuracy of 94.26% when it was trained as a standalone classifier.

The summary of all the ML-based algorithms is presented in Table 2. Furthermore, the
building blocks of a typical ML-based brain tumor segmentation and classification model
are shown in Figure 6.

Table 2. Summary of classical ML-based techniques.

Ref. Year Method Classes
Considered Main Highlight Dataset Performance

[84] 2021

13 pre-trained
CNN models and

nine ML
classifiers

Normal and
tumor images

Concatenated three deep
features from pre-trained
CNN models and trained

nine ML classifiers.

Three brain
MRI datasets

[56–58]

DenseNet-169,
Inception-v3, and

ResNeXt-50 produced
the best deep features,

achieving an accuracy of
96.08%, 92.16% and
94.12%, respectively.

[14] 2021

SVM, k-NN,
and modified

GoogleNet
pre-trained
architecture

Glioma,
meningioma,
and pituitary.

Extracted features from
modified GoogleNet

pre-trained architecture
and used it to train SVM

and k-NN

CE-MRI dataset

SVM and k-NN
produced a specificity of

98.93% and 98.63%,
respectively.

[15] 2022

SVM, k-NN,
binary decision

tree, RF, ensemble
methods.

FLAIR, T1w, T1w
post GBCA, and

T2w

Developed multiple ML
models on six

texture-based features.
Applied a hybrid of
k-NN and C-means
clustering for tumor

segmentation.

BraTS 2017 and
BraTS 2019

Classification accuracy of
96.98% and 97.01% for
BraTS 2017 and 2019,
respectively. DSC and

accuracy of 90.16% and
98.4%, respectively.

[94] 2022

NB, RNN, bat
and lion

optimization,
PCA, ICA, and
cuckoo search.

Tumor and
normal images

Designed hybrid
techniques model using

the combination of
metaheuristics and ML

algorithms.

TCIA Classification accuracy
of 98.61%.

[13] 2021 SVM and CNN
Glioma,

meningioma, and
pituitary tumor

Proposed a hybrid
technique using

CNN-based features
and SVM.

FigShare
dataset 95.82% accuracy

Figure 6. Building blocks of a typical ML-based brain tumor classification and segmentation model.
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4.2. Deep Learning-Based Brain Tumor Classification Techniques

This section discusses some of the CNN-based brain tumor classification techniques
that have been developed in the literature.

4.2.1. Brain Tumor Multi-Grade Classification

Sajjad et al. [16] proposed a CNN-based multi-grading technique for brain tumor
classification. The technique is divided into three stages: brain tumor segmentation,
data augmentation, and fine-tuning. In the first stage, the authors used a CNN-based
architecture (called InputCascadeCNN [10]) to segment brain tumors from the MRI images.
The architecture consists of 7 × 7 feature maps for extracting local features (small details of
the tumors) and 11 × 11 feature maps for extracting global features. In the second stage,
the authors applied four different data augmentation techniques to the segmented brain
tumors for geometric transformation invariance, including flipping, rotation, skewness,
and shears. The authors also applied another set of four data augmentation techniques
for noise invariance: sharpening, Gaussian blur, emboss, and edge detection. Finally, in
the third stage, the authors used the VGG-19 architecture to fine-tune the augmented
data. The technique was evaluated on two datasets: Radiopedia [55] and a brain tumor
dataset collected by Cheng et al. [56]. For the Radiopedia dataset, before data augmentation,
the technique produced an accuracy of 90.03%, 89.91%, 84.11%, and 85.50% for grades
I, II, III, and IV, respectively. After data augmentation, the accuracy for the four grades
increased to 95.5%, 92.66%, 87.77%, and 86.71%. In addition, for the brain tumor dataset,
the technique produced a sensitivity and specificity of 84.51% and 93.34%, respectively,
before data augmentation. The sensitivity and specificity increased after data augmentation
to 88.41% and 96.12%, respectively. This underscores the usefulness of data augmentation
in improving the accuracy and generalization performance of CNN models.

4.2.2. MR Brain Image Classification Using Differential Feature Maps

Isselmou et al. [95] proposed a CNN technique for MR brain image classification
using differential deep CNNs. In traditional CNNs, normal feature maps are created using
random initialization or transfer learning. However, in this study [95], differential feature
maps were produced by applying user-defined hyperactive values and a differential op-
erator introduced by Lei et al. [96]. The produced differential convolution maps are used
to analyze the directional patterns of voxels and their neighborhoods by calculating the
difference between pixel activations. Readers can learn more about differential feature
maps from [95]. The technique was evaluated on 17,600 normal and abnormal MR images
collected from Tianjin Universal Center of Medical Imaging and Diagnostic (TUCMD).
Several data augmentation techniques were proposed in the study to improve the gener-
alization performance of the classification model. The data augmentation increased the
size of the dataset to 25,000. Results show that the differential feature maps improved the
performance of the model. The results also show that the proposed technique can classify
many MR images with high accuracy. The technique achieved a classification accuracy,
sensitivity, and specificity of 99.25%, 95.89%, and 93.75%, respectively.

4.2.3. Brain Tumor Classification for Multi-Class Brain Tumor Image Using Block-Wise
Fine-Tuning

Swati et al. [97] introduced a block-wise fine-tuning technique for multi-class brain
tumor MR images. They considered three classes of abnormal brain tumors: (i) glioma,
(ii) meningioma, and (iii) pituitary tumors. In the study, the VGG-19 pre-trained network
was used to initialize the weights of the CNN model designed in the study. Additionally,
rather than fine-tuning the VGG-19 pre-trained network all at once, the previous layers of
the CNN were fine-tuned using a block-wise approach. In this approach, the 19 layers of
the VGG-19 architecture were divided into six blocks. The first and second blocks consist of
two convolutional layers and one pooling layer. The third, fourth, and fifth blocks consist
of four convolutional layers and one pooling layer. The last block consists of two fully
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connected layers and one output layer. The block-wise fine-tuning is initiated by fine-
tuning the layers in the last block and freezing the weights of the layers in the other blocks.
A similar approach is taken until the whole six blocks were fine-tuned. The block-wise
fine-tuning technique was evaluated on the CE-MRI dataset [56]. Results showed that the
technique achieved a classification accuracy of 94.82% using the 5-fold cross-validation.

4.2.4. Multi-Scale 3D CNN for MRI Brain Tumor Grade Classification

Many of the two-dimensional (2D) CNN models do not totally learn volumetric in-
formation in MR images. They are most capable of extracting features from 2D slices.
Mzoughi et al. [62] tackled this problem by developing a multi-scale three-dimensional
(3D) CNN architecture for grading MRI brain tumors into LGG and HGG. The proposed
architecture consists of eight 3D convolutional layers, three fully connected layers, and
small 3D kernels at each convolutional layer. The 3D convolutional layers provide a de-
tailed feature map that can explore the volumetric information on MRI [62]. The 3D feature
map also learns both local and global features with high classifying power. The small 3D
kernels (3 × 3) were used to improve the computational complexity of the network and
reduce the number of weights in the network. Additionally, the authors [62] developed a
technique for removing thermal noise and distortions generated by the magnetic field and
minor movements of the patients during the scanning procedure. The technique is based
on intensity normalization [60] and adaptive contrast enhancement [98]. Data augmenta-
tion was also used in the study to generate more images and improve the generalization
performance of the model. The technique was evaluated on the BraTS2018 dataset, and it
produced a classification accuracy of 96.49% with data augmentation and 82.4% without
data augmentation. The results also show that max-pooling outperforms average pooling
and small kernel size performs better than large kernel size for brain tumor grade classifi-
cation. This shows that data augmentation, small kernel size, and max-pooling play a role
in improving the performance of the 3D brain tumor grading model.

4.2.5. Brain Tumor Classification Using Pairwise Generative Adversarial Networks

Ge et al. [75] tackled the problem of small-scale datasets using augmented brain
MR images. They used a pairwise generative adversarial network (GAN) to generate
synthetic MR images for four types of MRI’s techniques, namely: T1w, GBCA, T1w (T1w
post GBCA), T2w, and T2 fluid-attenuated inversion recovery (FLAIR). In the study, 2D
MRI slices were extracted from the three views of 3D volume images: coronal, axial, and
sagittal. The extraction is performed for each of the four modalities: T1w, T1w post GBCA,
T2w, and FLAIR. The extracted 2D MRI slices were divided into training, validation, and
testing subsets. Furthermore, a pairwise GAN model was used to generate synthetic MRI
for the training subset. The pairwise GAN used a pair of inputs in two streams. It is
designed to handle the following two scenarios: (a) generate synthetic images of fake
patients with the objective of enlarging the training subset; (b) generate synthetic images for
patients with missing modalities of MRI. The synthetic images are generated from another
modality of MRI for the same patient to replace the missing modality. A two-stage training
technique was introduced in the study based on the findings that the distributions of
synthetic images vary from the distribution of real images. The two-stage training is carried
out in the following manner: firstly, the entire network was trained on the augmented
images for glioma subtype classification. Afterwards, the real MR images are used to
refine the network. The U-Net architecture was adopted in the study. The final output
of the architecture is the glioma class for each slice in an MR image. In view of this, for
each patient, the subtype for each MRI slice was taken into consideration, and the final
diagnosis or subtype classification for the patient will be made based on a majority vote.
The network was evaluated on a dataset containing 3D brain volume images obtained
from the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) collection [99] and
the Cancer Genome Atlas Low Grade Glioma (TCGA-LGG) [99] collection using 5-fold
cross-validation. Different case studies were considered in the experiments, and the case
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study that produced the best result achieved an average classification accuracy, sensitivity,
and specificity of 88.82%, 81.81%, and 92.17%, respectively.

The flow for most of the proposed CNN-based brain tumor classification technique is
shown in Figure 7. The summary of all the CNN-based brain classification algorithms is
presented in Table 3.

Table 3. Summary of CNN-based classification techniques.

Ref. Year Classes
Considered Method Main Highlight Dataset Performance

[16] 2019 Grades I–IV

InputCascadeCNN
+ data

augmentation +
VGG-19

Adopted four data
augmentation techniques.

Also used
InputCascadeNN

architecture for data
augmentation and VGG-19

for fine-tuning.

Radiopedia
and Brain

tumor dataset

Classification accuracy
of 95.5%, 92.66%,

87.77%, and 86.71%.
for Grades I–IV,
respectively on

radiopedia dataset.
Sensitivity and

specificity 88.41% and
96.12%, respectively,

on the brain
tumor dataset.

[95] 2021 T1w, T2w and
FLAIR images

Differential deep
CNN + Data

augmentation

Applied user-defined
hyperactive values and a
differential operator to

generate feature maps for
CNN. Proposed several

data augmentation
techniques.

TUCMD
(17,600 MR

brain images)

Classification accuracy,
sensitivity, and

specificity of 99.25%,
95.89%, and 93.75%,

respectively

[97] 2019
Glioma,

meningioma, and
pituitary tumor

VGG-19

Introduced a block-wise
fine-tuning technique for
multi-class brain tumor

MRI image.

CE-MRI [56]
3064 images

from 233
patients.

Classification accuracy:
94.82%

[62] 2020 LGG and HGG 3D CNN

Proposed a multi-scale 3D
CNN architecture for
grade classification

capable of learning both
local and global brain

tumor features. Applied
two image pre-processing
techniques for reducing

thermal noise and
scanner-related artifacts in

brain MRI. Used data
augmentation.

BraTS2018:
Training-209
HGG and 75

LGG from
284 patients.
Validation:
67 mixed
grades.

Classification
accuracy: 96.49%

[75] 2020
T1w, T1w post

GBCA, T2w,
FLAIR

U-Net architecture,
GANs

GANs was used to
generate synthetic images
for four modalities of MRI:

T1, T1e, T2, FLAIR.

TCGA-GBM
[99] and

TCGA-LGG
[99].

Average classification
accuracy, sensitivity,

and specificity of
88.82%, 81.81%, and
92.17%, respectively

[17] 2019
Complete, core,
and enhancing

tumors

Custom CNN
architecture, Bat

algorithm

Used BAT algorithm to
optimize the loss function
of CNN. In addition, used
skull stripping and image
enhancement techniques
for image pre-processing.

BraTS2015

Accuracy, recall (or
sensitivity), and

precision of 92%, 87%,
and 90%, respectively
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Figure 7. Workflow of deep learning (CNN)-based brain tumor classification techniques.

4.3. Deep Learning-Based Brain Tumor Segmentation Techniques

This section summarizes some of the CNN-based brain tumor segmentation techniques
that have been published in the literature.

4.3.1. Enhanced CNN and Bat Algorithm for Brain Tumor Classification

Thaha et al. [17] introduced a strategy for segmenting brain tumors using an enhanced
CNN coupled with the Bat algorithm. The Bat algorithm was used to optimize the loss
function (cross-entropy). The loss function is adjusted with the goal of improving the
segmentation accuracy. In the experiments, MR images were preprocessed using a skull
stripping and image enhancement technique. The authors added a central-point-enhanced
layer in the study to address misclassification concerns. The approach was evaluated, and
the results indicated that the improved CNN achieved a precision, recall (or sensitivity),
and accuracy of 87%, 90%, and 92%, respectively, compared to the standard CNN, which
achieved 82%, 85%, and 89%, respectively.

4.3.2. Encoder–Decoder Architecture for Brain Tumor Segmentation

Zeineldin et al. [41] introduced a CNN architecture (called deepSeg) for detection
and segmentation of brain tumors using MRI. The architecture consists of two segments,
namely: a contracting path (or encoder) and an expansive path (decoder). The encoder
is composed of two 3 × 3 convolutional layers, each followed by a pooling and rectified
linear unit (ReLU). The feature map from the encoder unit is passed to the decoder, which
upsamples the feature maps. The decoder consists of deconvolution layers, one 2 × 2
up-convolution layer, one concatenation layer, two 3 × 3 convolution layers, and one ReLU.
Data augmentation was used in the study to improve the model’s performance. Batch
normalization was introduced between each convolution and ReLU layer to enable each
layer to learn features independently from other layers. The technique was evaluated on
the BraTS2019 dataset. The dataset was obtained from different scanners, protocols, and
19 institutions. In view of this, the training images may be noisy. Therefore, the N3 bias
correction tool [100] was used in the study to normalize the image vectors and correct the
bias. Results from the experiments show that the proposed technique produced a DSC,
sensitivity, and specificity of 0.814, 0.783, and 0.999, respectively.

4.3.3. Patching-Based Technique for Tumor Segmentation

AlBadawy et al. [73] proposed a patching-based technique for brain tumor segmen-
tation using CNNs. They assessed the impact of CNN training on datasets from various
institutions. Forty-four GBM patients from two centers were considered to construct three
CNN models. The first CNN was trained using data from patients at the first institution,
whereas the second CNN used data from patients at the second institution. The last CNN
was trained on patients’ data from the two institutions. Each CNN was composed of four
convolution layers and two fully connected layers. Patches of equal size were extracted
from the dataset and grouped into three classes, namely: tumor patches, healthy patches
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near the tumor, and other healthy patches. Based on patient data, the authors further
categorized the tumor images into six classes: 0 (normal), 1 (ground truth region based on
a combination of classes 2–5), 2 (enhancing region), 3 (necrotic region), 4 (T1-abnormality),
and 5 (T2-abnormality). The models were evaluated using DSC and the Hausdorff distance.
The performance metric was utilized to compare the ground truth with the automatic
segmentation. The performance of several techniques was compared using 10-fold cross-
validation method. The results demonstrated that CNN models achieved the following
Dice coefficients when it was evaluated on different institutional data: 0.68 ± 0.19 and
0.59 ± 0.19, respectively. The performance declined when CNN was trained on the same
institutional data. It produced a Dice coefficient of 0.72 ± 0.17 and 0.76 ± 0.12, respec-
tively. The authors stated that further research is necessary to determine the cause of this
performance decrease.

4.3.4. Two-Path or Cascade Architecture for Brain Tumor Segmentation

Havaei et al. [10] introduced a DNN technique for segmenting LGG and HGG from
MRI scans. The network was designed to simultaneously learn both local and global fea-
tures. A two-pathway architecture comprised of two streams was proposed to accomplish
this task. The two-pathway architecture was introduced so that two factors will impact
the prediction of a pixel’s label: the visual details of the area surrounding the pixel and
its larger context, or the patch’s position in the brain. The first pathway consists of 7 × 7
convolutional filters that are used to segment localized or minute aspects of the tumor
(focuses on small details of the tumor at the local scale or local detailed feature). The second
pathway utilizes larger convolution filters 13 × 13 to learn larger details of the brain tumor
(it focuses on global contextual features). The segmented image is created by concatenating
the output (or feature maps) from the two pathways. The concatenated feature map is then
fed into the output layer.

Havaei et al. [10] noted that one disadvantage of the two-pathway network is that it
predicts each segmentation label independently of the others, in contrast to the majority
of segmentation methods which introduce joint segmentation models that account for the
direct dependencies between spatially adjacent labels. Typically, these types of approaches
require more computation than a simple feed-forward approach. Havaei et al. [10] ad-
dressed this issue by developing a cascade architecture. The architecture investigates the
efficiency of CNNs and models the segmentation dependencies between adjacent labels.
The cascade architecture consists of two CNNs. The first CNN’s output probabilities are
used as an additional input to the second CNN’s layers. The output of the first CNN
is simply concatenated with any of the layers of the second CNNs in this scenario. The
authors [10] noted that the model’s belief about the value of nearby labels had an effect on
the network’s final prediction.

In the study, Havaei et al. [10] examined three cascade architectures. In the first cascade
architecture, the output of the first CNN is directly concatenated with the input of the
second CNN. The output is treated as a second image channel in the patch’s input. In the
second cascade architecture, the output of the first CNN is concatenated with the output of
the first hidden layer in the second CNN. In the third architecture, the output of the first
CNN is concatenated with the output of the second hidden layer of the second CNN. The
three architectures were tested on an unbalanced dataset. In addition, 98% of the total labels
are healthy, while the remaining are pathological voxels: necrosis (0.18%), edema (1.1%),
non-enhancing tumor (0.12%), and enhancing tumor (0.38%). Overfitting will occur if a
network is trained on this skewed dataset. As a result, the authors developed a two-stage
training technique. The authors began by creating a dataset (dubbed the patches dataset)
in which all labels had the same probability. On the constructed dataset, the networks were
trained. The second training phase involved retraining the network’s output layer with
a more representative label distribution. The previous layers of the pre-trained network
were fixed during re-training. The preceding layers account for class diversity, while the
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output layer takes care of calibrating the output probabilities (thanks to the re-training that
was performed on the output layer).

The un-cascaded and cascaded models were subjected to a variety of experiments.
Results from the un-cascaded models indicated that the double-pathway models generated
the best results. The results also indicated that adding a second training phase considerably
improved the model’s performance. Additionally, training the local and global routes con-
currently produced better outcomes than training each pathway separately and averaging
the results. The results from the cascaded models showed that the first cascade architecture
produced the best Dice similarity of 0.88. The models increased the Dice similarity scores
for all tumor regions.

4.3.5. Triple CNN Architecture for Brain Tumor Segmentation

Training three separate networks for different binary segmentation tasks is less time-
consuming and computationally demanding than training a single network for multiclass
segmentation, which is more time-consuming and computationally demanding. On this
basis, Yogananda et al. [74] developed a triple network architecture for brain segmentation
based on CNN. Three distinct network topologies were created in the experiment to simplify
the multiclass segmentation problem to a single binary segmentation problem for each of
the three networks. Each model was trained independently to perform a binary task of
predicting Whole Tumor (WT), Tumor Core (TC), and Enhanced Tumor (ET). The output
of the three networks is combined using a triple volume fusion to create a segmentation
volume with multiple classes. The input images (T1w, T2w, FLAIR, and T1w post GBCA)
were processed through a single initial convolution layer for each model. The convolution
layer generates 64 feature maps, which are then used to form seven dense blocks. Each
dense block is composed of five interconnected layers. Each of the five layers contains four
sublayers that are connected sequentially. These sublayers include batch normalization,
ReLU, three-dimensional convolution, and three-dimensional spatial dropout. Each layer’s
input was utilized to build different feature maps, which were then concatenated with
the next layer’s input. Numerous studies were conducted to determine the network’s
efficacy. In addition, 3-fold cross-validation was performed on the BraT2018 dataset to
increase the network’s generalization performance. Using 75% overlapping patches, the
technique produced an average DSC of 0.90, 0.82, and 0.79 for WT, TC, and ET, respectively.
Additionally, it produced a DSC of 0.92, 0.84, and 0.80 for WT, TC, and ET, respectively,
when 85% of the patches overlapped.

4.3.6. Brain Tumor Classification and Segmentation Using a Combination of YOLOv2
and CNN

Sharif et al. [101] proposed a framework for brain tumor analysis using MR images.
The framework is divided into four stages: tumor enhancement, feature extraction and
selection, localization, and tumor segmentation. In the first stage, a homomorphic wavelet
filter was used to remove noise from the brain MRI. Afterwards, the processed images
were transferred to an inception-v3 pre-trained model [89] for feature extraction. The
features are extracted from the fully connected layers of the pre-trained model. The
extracted feature vectors are also passed to the non-dominated sorted genetic algorithm
(NSGA) [102] for feature selection. Furthermore, the optimized features are transferred
to different classical ML algorithms for classification. The classifiers considered in the
study are decision trees, Classification and Regression Tree (CART), linear discriminant
analysis (LDA), SVM, k-NN, and softmax. After classification, the identified tumors were
transferred to inception-v3 for feature extraction. The features are extracted from the depth
concatenation (mixed-5) layer of inception-v3. The extracted features are then transferred
to YOLOv2 for localization. The localized features are finally transferred to McCulloch’s
Kapur entropy [103] for 3D segmentation of the brain tumor. The proposed framework was
evaluated on five ML algorithms and three benchmark datasets: BraTS2018, BraTS2019,
and BraTS2020. Experiments show that SVM produced the best classification accuracy of
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98%, 99%, and 99% for BraTS2018, BraTS2019, and BraTS2020, respectively. The results also
show that the YOLOv2-inception-v3 model produced a mean average precision (mAP) of
0.98, 0.99, and 1.00 for BraTS2018, BraTS2019, and BraTS2020, respectively.

The general workflow for CNN-based brain tumor segmentation is shown in Figure 8.
Moreover, Table 4 shows the summary of all the CNN-based brain tumor segmentation
techniques surveyed in this study.

Table 4. Summary of CNN-based segmentation techniques.

Ref. Year Classes
Considered Method Main Highlight Dataset Performance

[73] 2018
Metastasis,

meningiomas
gliomas

CNN

Designed a patching-based
technique for brain tumor
segmentation. Evaluated

the impact of
inter-institutional dataset.

TCIA

DSC-Same institution:
0.72 ± 0.17 and

0.76 ± 0.12. Different
Institution: 0.68 ± 0.19

and 0.59 ± 0.19

[10] 2017 Necrosis, edema,
non-ET, ET. CNN

Designed a two-pathway
architecture for capturing
global and local features.

Also designed three
cascade architectures.

BraTS2013 DSC: 0.88

[74] 2020 WT, TC, and ET

Triple CNN
architecture for

multi-class
segmentation.

Developed a triple
network architecture to
simplify the multiclass

segmentation problem to a
single binary

segmentation problem.

BraT2018
dataset

DSC: 0.90, 0.82, and
0.79 for WT, TC, and

ET, respectively

[41] 2020
T1w, T1w post

GBCA, T2w, and
FLAIR

Modified U-Net
architecture, Data

augmentation, batch
normalization using

the N3 bias
correction tool [100].

Developed an
encoder-decoder

architecture for brain
tumor segmentation.

BraTS 2019

DSC, sensitivity, and
specificity of 0.814,

0.783, 0.999,
respectively.

[101] 2021 HGG and LGG

Inception-v3, NSGA,
LDA, SVM, k-NN,

softmax, CART,
YOLOv2, and

McCulloch’s Kapur
entropy

Designed a CNN-based
hybrid framework for
tumor enhancement,

feature extraction and
selection, localization, and

tumor segmentation

BraTS 2018,
BraTS2019,

and BraTS2020

Classification accuracy
of 98%, 99%, and 99%

for BraTS2018,
BraTS2019, and

BraTS2020,
respectively.

[17] 2019
Complete, core,
and enhancing

tumors

Custom CNN
architecture, Bat

algorithm

Used BAT algorithm to
optimize the loss function
of CNN. In addition, used
skull stripping and image
enhancement techniques
for image pre-processing.

BraTS2015

Accuracy, recall (or
sensitivity), and

precision of 92%, 87%,
and 90%, respectively
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Figure 8. Workflow for CNN-based brain tumor segmentation.

4.4. Vision Transformers for Brain Tumor Segmentation and Classification

This section presents some recent transformer-based brain tumor classification and
segmentation techniques.

4.4.1. Brain Tumor Segmentation using Bi Transformer U-Net

Jia et al. [104] proposed a network for segmenting brain tumors based on CNNs
and transformers. The network is composed of a decoder and a three-dimensional CNN
encoder with an attention module. In the study, the input MRI scans are fed into a stack of
convolutional layers. The resulting feature maps were fed into a 3 × 3 × 3 convolutional
block to increase the channel dimension of the feature maps from K to d. The spatial
and depth dimensions of the convolutional block’s feature map are flattened to a single
dimension of size N. This partitions the feature map into d-dimensional tokens of size N. In
addition, positional embedding is added to the flattened feature map. Following feature
embedding, the tokenized feature representation and position embedded sequence is fed
into a transformer block. The block is composed of multiple transformer layers. The output
of the transformer layers is reshaped and passed through another 3 × 3 × 3 convolutional
block to reduce the channel dimension from d to K. Additionally, five 3D CNN layers are
used to upsample the reduced feature maps. Moreover, skip connections are introduced
into the network by concatenating the outputs of the first three 3D CNN downsampling
layers with the inputs of the final three upsampling layers. The technique was evaluated
on the BraTS2021 dataset, and it obtained an average DSC of 0.823, 0.908, and 0.839 for ET,
WT, and TC, respectively.

4.4.2. Multi-Modal Brain Tumor Segmentation Using Encoder–Transformer–Decoder
Structure

Developing a neural network capable of learning global dependencies is critical for
segmenting brain tumors. Transformer-based networks can be used to model both the
local features of images and their long-range dependencies. Wang et al. [35] designed
a ViT-based network for segmenting three-dimensional brain tumors. The network is
composed of two primary components: a three-dimensional CNN and transformers. The
3D CNN is made up of a 3D encoder and a 3D decoder. The encoder is used to extract
volumetric features from three-dimensional brain tumor images. Additionally, the 3D CNN
encoder is utilized to downsample the brain tumor images to efficiently collect the images’
local 3D features. The feature map from the encoder was fed into the transformer to capture
the images’ global features. Furthermore, the resultant feature embeddings are passed into
the 3D decoder, which upsamples them and generates the segmented image. The technique
was evaluated on the BraTS2019 and BraTS2020 datasets. It produced a DSC of 90% for WT,
78.93% for ET, and 81.84% for TC in BraTS2019. In addition, it achieved a DSC of 90.09%,
78.73%, and 81.73% for WT, ET, and TC, respectively, for the BraTS2020 dataset.
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4.4.3. Brain Tumor Segmentation Using Transformers Encoders and CNN Decoder

Some of the ViT-based techniques used CNN for encoding. Ali et al. [105] intro-
duced a ViT-based technique for 3D image segmentation that uses ViT for encoding. The
transformer encoder directly accepts a one-dimensional sequence of 3D image patches as
inputs. The image sequence was created by dividing the input images into non-overlapping
patches of uniform size. For each layer in the transformer model, the extracted patches are
projected into an N-dimensional embedding space. Moreover, a one-dimensional positional
embedding was added to the embedding space to preserve the spatial information of the ex-
tracted patches. Additionally, the output was routed through a stack of transformer blocks
for encoding. During the encoding, sequence representations at different resolutions are
extracted from the transformer and reshaped into a tensor of a specific size. Convolutional
and normalization layers are used to project the reshaped tensors from the embedding space
into the input space at each image resolution. The output of the transformer’s final layer is
fed into a CNN decoder. The CNN decoder employs deconvolutional layers to increase
the resolution of the feature maps by a user-defined factor. All of the transformer blocks’
feature maps are concatenated and fed into another set of convolutional layers. The feature
map from the convolutional layers is fed into a deconvolutional layer for upsampling. This
procedure is repeated for all the layers. The final output is fed into a 3D convolutional
layer with a softmax activation function to construct the predicted segmented image. On
the Medical Segmentation Decathlon (MSD) dataset [59], the technique produced a DSC of
0.789, 0.585, and 0.761 for WT, ET, and TC, respectively.

4.4.4. Brain Tumor Segmentation Using Swin Transformers

Hatamizadeh et al. [32] developed a technique for segmenting brain tumors (Swin
UNEt TRransformers (UNETR)) based on Swin transformers developed by Liu et al. [106].
Swin transformer (Swin stands for Shifted window) is a hierarchical transformer that
computes its representation using shifted windows [78]. The shifted window improves
the performance of a model by restricting self-attention computation to non-overlapping
windows while permitting cross-window communication [106]. The input to Swin UNETR
model is a sequence of 3D image tokens with a specific dimension. Each of the 3D tokens
was evenly partitioned into distinct and non-overlapping regions at each layer of the
transformer. The non-overlapping windows ensure that token interactions are modeled
efficiently. The window region for each layer is shifted by a specific number of voxels using
a shifting mechanism described in [78]. Following that, the partitioned 3D tokens are sent
to the Swin UNETR encoder. The encoder is composed of four stages, each having two
transformer blocks. Throughout the four stages, a linear embedding layer is employed to
generate 3D tokens of varying sizes. Additionally, a patch merging layer is employed to
lower the feature representation’s resolution. Moreover, a patch merging layer is utilized
to organize and concatenate several patches. A linear layer is used to further reduce the
resulting feature map. The feature map is reshaped and fed into a two-layer convolutional
residual block. The resultant feature map is fed into the Swin UNETR decoder. The decoder
uses deconvolutional layers to boost the resolution of the feature map. The decoder outputs
from the four stages are concatenated and fed into another residual block. The final tumor
segmentation is computed using a convolutional layer and a sigmoid activation function.
The technique was evaluated on the BraTS2021 dataset using 5-fold cross-validation. It
achieved an average DSC of 0.891, 0.933, and 0.917 for ET, WT, and TC, respectively.

4.4.5. Convolution-Free 3D Brain Tumor Segmentation Using Vision Transformers

The majority of transformer-based techniques were designed to accept patches of
two-dimensional or three-dimensional slices. Peiris et al. [107] developed the VT-UNet
transformer architecture, which is capable of directly processing 3D volumetric data for
semantic segmentation. The architecture is composed of one encoder and decoder module.
The encoder module is composed of three layers: a three-dimensional patch partition-
ing layer, a linear embedding layer, a three-dimensional patch merging layer, and two
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transformer encoder blocks. The 3D patch partitioning layer is used to divide the three-
dimensional input volume into non-overlapping three-dimensional patches. The authors
proposed two techniques for partitioning volumetric data into non-overlapping patches.
The partitioned 3D tokens are fed into the linear embedding layer, which converts each
token to a vector space of N dimensions. Additionally, the 3D patch merging layer is used
to generate feature representation hierarchies. The encoder module’s output is passed to the
decoder module. The module consists of a transformer encoder block, a 3D patch expand-
ing layer, and a classifier. The decoder block is used to compute cross and self-attention
independently. Self-attention is used to exploit global interactions between encoder fea-
tures, whereas cross-attention is used to filter out local or non-semantic features. The
3D patch expanding layer is used to transform the encoded feature maps into a format
compatible with the input image’s spatial resolution. The classifier layers are composed
of a single 3D convolutional layer that is used to map the feature representations to the
specified segmentation classes. The technique was evaluated on the BraTS2021 dataset,
and it achieved a DSC of 85.59%, 87.41%, and 91.20% for ET, TC, and WT, respectively.

The workflow for a ViT-based brain tumor segmentation technique is shown in
Figure 9. Furthermore, the summary for the ViT-based techniques reviewed in this study is
shown in Table 5.

Table 5. Summary of ViT-based techniques.

Ref. Year Classes
Considered Method Dataset Main Highlight Performance

[35] 2021 ET, WT, EC Transformers and
3D CNN

BraTS2019 and
BraTS2020

Developed a
transformer-based

network for 3D brain
tumor segmentation.

BraTS2020-DSC of
90.09%, 78.73%, and

81.73% for WT, ET, and
TC, respectively.

BraTS2019–DSC of
90%, 78.93%, and

81.84% for WT, ET, and
TC, respectively DSC
of 90%, 78.93%, and

81.84% for WT, ET, and
TC, respectively

[32] 2022 ET, WT, and TC Swin transformers
and CNN BraTS2021

Developed a technique for
multi-modal brain tumor

images using Swin
transformers and CNN.

DSC of 0.891, 0.933,
and 0.917 for ET, WT,
and TC, respectively.

[105] 2022 WT, ET, and TC Transformers and
CNN MSD dataset

Developed a segmentation
technique for multi-modal
brain tumor image using
transformers and CNN.

DSC of 0.789, 0.585„
and 0.761 for WT, ET,
and TC, respectively.

[104] 2021 WT, ET, and TC Transformers and
3D CNN BraTS2021

Designed a
CNN-transformer

technique for multi-modal
brain MRI scan
segmentation.

DSC of 0.823, 0.908,
and 0.839 for ET, WT,
and TC, respectively.

[107] 2021 WT, ET, and TC Transformers and
3D CNN BraTS2021

Developed a U-Net shaped
encoder-decoder technique

using only transformers.
The transformer encoder

can capture local and
global information. The

decoder block allows
parallel computation of
cross- and self-attention.

DSC of 85.59%, 87.41%,
and 91.20% for ET, TC,
and WT, respectively
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Figure 9. General workflow for ViT-based brain tumor segmentation techniques.

4.5. Capsule Neural Network-Based Brain Tumor Classification and Segmentation

Many studies used CNNs for brain tumor segmentation and classification. Very few
studies explored CapsNet. This section presents some of the recent CapsNet-based brain
tumor segmentation and classification techniques developed in the literature.

4.5.1. Brain Tumor Classification Using Capsule Neural Network

Afshar et al. [18] designed a brain tumor classification technique using CapsNet. They
explored different architectures of CapsNet with the goal of identifying the architecture
that will produce the best classification accuracy. In the study, they investigated the effects
of input data on CapsNet by training them on different inputs: the (i) whole brain image,
and (ii) the segmented tumor region. They also adopted an early stopping approach [31] to
handle the overfitting problems of CapsNet. Finally, the authors developed a visualization
paradigm for the capsule network’s output to further explain the features that the model
learned from the input. The authors designed and compared the performance of the
following capsule network architectures: (i) two convolutional layers with 64 feature
maps each, (ii) one convolutional layer with 64 feature maps, (iii) one convolutional
layer + 64 feature maps and 16 primary capsules, (iv) one convolutional layer + 64 feature
maps and 32 primary capsules containing four dimensions, (v) three fully connected layers
containing 1024, 2048, and 4096 neurons, respectively. Experimental results show that
the capsule network with one convolutional layer and 64 feature maps produced the best
predication accuracy of 86.56%. The results also revealed that CapsNet performed better
when trained on segmented tumors than when trained on the entire brain image. The
authors also compared the performance of CNNs and CapsNets, and the results show
that CapsNet outperform CNN by 14.43%. CNN and CapsNet produced a classification
accuracy of 72.13% and 86.56%, respectively.

4.5.2. Brain Tumor Classification Using Bayesian Theory and Capsule Neural Network

CapsNet, like other standard DL networks, suffers from model uncertainty [108].
Model uncertainty refers to the degree to which a model is uncertain about its weights and
predictions. Developing a network that models uncertainty is important because it serves
as a medium for returning the uncertain predictions to experts for further verification. Most
CNN networks use the softmax activation function. However, the output of the softmax
does not reflect the degree of uncertainty of a model’s prediction [108]. Afshar et al. [40]
proposed a brain tumor classification network (called BayesCap) using Bayesian theory
and CapsNet. Bayesian theory is used to model the uncertainty associated with predictions
of the model. The technique was evaluated on the CR-MRI dataset [56] consisting of
3604 brain MR images from 233 patients. The results show that the technique produced an
accuracy of 68.3%. The same authors [40] in another study [18] evaluated CapsNet on the
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same dataset, and the results show that CapsNet (without Bayesian theory) outperforms
the Bayesian variant, producing a classification accuracy of 78%. The reduced accuracy
was expected because the Bayesian variant was developed with the objective of modeling
the uncertainty and learning the posterior of the model’s weights rather than improving
the classification accuracy [40]. Overall, the results show that Bayesian theory improves
the interpretability of a network, which is very important for medical applications.

4.5.3. CapsNet-Based Brain Tumor Classification Using an Improved Activation Function

The ReLU activation function is popularly used in most neural network-based algo-
rithms, including CNN and CapsNet. However, ReLU does not activate a neuron if its
derivative is zero. Furthermore, the performance of a ReLU-based CapsNet brain tumor
classification system requires improvement [19]. Therefore, Adu et al. [19] proposed a new
activation function called parametric scaled hyperbolic tangent (PSTanh), for improved
brain tumor classification. Adu et al. [19] noted that the proposed activation function
facilitates faster optimization and improves the standard hyperbolic tangent by avoiding
the vanishing gradient problem. In the study, a CapsNet architecture was developed for
brain tumor classification. The architecture consists of four units. The first unit is the input
layer, while the second unit consists of seven convolution layers stacked to each other.
The seven-stacked convolutional layer is used to replace the single convolutional layer
in the standard CapsNet. Each convolution layer is followed by the PSTanh activation
function. The second unit is used to replace the standalone convolutional layer in standard
CapsNet. The output feature map of the second unit is passed to the third unit. The third
unit contains the primary capsule layer, while the last unit is the output capsule layer.
The CapsNet model was evaluated on a brain tumor dataset (from Kaggle.com (accessed
on 27 June 2022)) containing 3264 T1W images. Results show that the proposed PSTanh
activation function outperforms the ReLU function by 7.11%, achieving a classification
accuracy of 96.70%. The proposed activation function was compared to eight existing
activation functions and was found to outperform them all.

4.5.4. Brain Tumor Classification Using a Dilated Capsule Neural Network

The quality or resolution of an image is usually reduced during the feature extraction
phase of CNN. The input images are typically downsampled to a point where the image
loses its spatial recognizability. This loss can affect the classification performance of Cap-
sNet. The loss can also affect scenarios where models are transferred to applications that
require accurate and complete information of images. Adu et al. [109] developed a CapsNet-
based technique using dilation with the objective of maintaining the high-resolution of the
images for accurate classification. In the study, dilation was used to eliminate upsampling
and to maintain high-resolution feature maps in the convolutional layers. More informa-
tion on the dilated convolution is provided in [109]. The proposed framework consists of
three convolutional layers, one primary capsule layer, one-digit capsule layer, and three
fully-connected layers. The proposed technique was evaluated on a brain tumor dataset,
and it produced a classification accuracy of 95.54%. The results also show that dilation
reduced the network parameters and the training time.

4.5.5. CapsNet-Based Image Pre-Processing Framework for Improved Brain Tumor
Classification

Kurup et al. [110] presented a performance analysis on the effect of image pre-
processing on CapsNet for brain tumor segmentation. They designed a CapsNet-based
framework consisting of two main stages: image pre-processing and classification. The
image pre-processing technique consists of two steps: rotation and patching. For image
rotation, three different angles were used: 90◦, 180◦, and 270◦. In addition, for patching,
two patches of size 300 × 300 were extracted from each image. The augmented images
and image patches were passed to CapsNet for classification. The CapsNet architecture
comprises a convolutional layer, a primary capsule layer, a digit capsule layer, a fully
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connected layer, and an output layer with three neurons, one for each of the three output
classes. The CapsNet was evaluated on the CE-MRI dataset. The dataset was used to train
the CapsNet before and after image pre-processing. Results reported in the study show
that the proposed technique produced an accuracy of 87% and 92.6%, before and after
pre-processing, respectively. This shows that the pre-processing improved the accuracy of
CapsNet by 5.6%.

4.5.6. Brain Tumor Segmentation Using a Modified Version of Capsule Neural Network

Aziz et al. [37] introduced a CapsNet-based technique for segmenting brain tumors.
They used the modified version of the original CapsNet architecture called SegCaps [42].
SegCaps was first proposed by Lalonde and Bagci [42] to address CapsNet’s [37] runtime
and memory constraint issues. The routing method is one of the primary distinctions
between CapsNet and SegCaps. In the SegCaps design, routing between lower layer
capsules and upper layer capsules takes place entirely within a single spatial window, and
transformation matrices are also shared between capsules of each layer. The proposed
technique was evaluated on the BraTS2020 dataset. Twenty percent of the tumor slices
were randomly selected and utilized to train SegCaps in the studies. Additionally, 85% of
tumor slices were randomly chosen and used to train the U-Net architecture. Results show
that SegCaps surpassed the U-Net architecture by 3%, obtaining a DSC of 87.96%. SegCaps
accomplished this improvement by using 95.4% fewer parameters than U-Net.

The workflow for a typical CapsNet-based brain tumor segmentation technique is
shown in Figure 10. Moreover, the summary of all the CapsNet-based techniques reviewed
in this study is presented in Table 6.

Figure 10. Workflow for a Capsule Network (CapsNet)-based brain tumor segmentation technique.

Table 6. Summary of CapsNet-based brain tumor segmentation module.

Ref. Year Classes
Considered Method Dataset Main Highlight Performance

[40] 2020
Meningioma,
glioma, and

pituitary.

CapsNet and
Bayesian theory. Cancer dataset [56]

Designed a DL technique
that can model uncertainty
associated with predictions

of CapsNet models.

Classification
accuracy: 68.3%

[19] 2021
Meningioma,

Glioma, Pituitary,
normal

CapsNet

Brain tumor dataset.
Meningioma
(937 images),

Glioma (926 images),
Pituitary

(901 images),
normal (500)

Introduced a new
activation function for

CapsNet, called PSTanh
activation function.

Classification
accuracy of 96.70%.
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Table 6. Cont.

Ref. Year Classes
Considered Method Dataset Main Highlight Performance

[109] 2019
Meningioma,

Glioma, Pituitary,
normal

CapsNet, dilation
convolution

Brain tumor dataset
[56]. 3064 images
from 233 patients.

Meningioma
(708 slices), Glioma

(1426 slices),
Pituitary (930 slices),

normal

Developed a
CapsNet-based technique
using dilation convolution

with the objective of
maintaining the high

resolution of the images
for accurate classification.

Classification
accuracy: 95.54%.

[110] 2019 Meningioma,
Glioma, Pituitary

CapsNet;
classification; Data

pre-processing

Brain tumor dataset:
3064 [56].

Presented a performance
analysis on the effect of

image pre-processing on
CapsNet for brain tumor

segmentation.

Classification
accuracy: 92.6%

[37] 2021
T1w, T2w, T1 w
post GBCA and

FLAIR

SegCaps–Capsule
network; brain

tumor
segmentation

BraTS 2020
Designed a modified

version of CapsNet using
SegCaps network.

DSC of 87.96%.

[18] 2018
Meningioma,
Pituitary, and

Glioma
Capsule network Brain tumor dataset

proposed by [56]

Developed different
CapsNet for brain tumor

segmentation. Investigated
the performance of input
data on capsule network.

Developed a visualization
paradigm for the output of

capsule network.

86.5% for
segmented tumor,
and 78% for whole

brain image

5. Discussion

Different ML-based, CNN-based, CapsNet-based, and ViT-based techniques have
been developed so far. Generally, most of the techniques are divided into two stages:
segmentation and classification stage. The segmentation stage is used to identify the
specific region where the tumor is located and the subregions within the tumor, while the
classification stage is used to identify the specific type or grade of the segmented tumor.
Most of the techniques were developed to distinguish the different classes of CNS tumors
including meningioma, pituitary tumors, glioma, and metastases. SVM, DT, NB, Bayesian
algorithm, k-NN, ANNs, and CNN are the most widely used ML and DL algorithms for
brain tumor classification and segmentation.

Brain tumors can be diagnosed using different types of medical images, such as CT
and MRI. However, MRI is the reference standard in the clinical routine. This is due to
the multiparametric nature of MRI. This section presents a discussion on the design and
development of various brain tumor classification and segmentation techniques.

5.1. Machine Learning-Based Brain Tumor Classification and Segmentation Techniques

Brain tumor segmentation is basically a voxel-level classification task [10]. Therefore,
classical ML algorithms are typically trained on voxel-based features extracted from differ-
ent regions of interest [10,111]. ML algorithms are also trained on other types of features
including tumor shape, image brightness, and Gabor features [112]. Some studies [15]
introduced new features, such as texture-based features and Gabor features. Texture-based
features can be used to identify different regions of interest in an image. Jena et al. [15]
introduced seven texture-based features for classifying brain tumors. They combined
the seven features to form a feature matrix and used the feature matrix to train five ML
algorithms. Experiments performed in the study show that the texture-based features can
effectively determine the location of tumors in an MRI scan.
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Feature engineering is a very important step when building ML models. Manually
designing robust features for ML algorithms can be very demanding and time-consuming.
Therefore, some studies [13,14,84] used deep features to build brain tumor classification
models. Deep features refer to features that are extracted from CNN models. These features
are typically extracted from the convolutional and fully connected layers of pre-trained
CNN models and used to train classical ML algorithms. Kang et al. [84] concatenated
different deep features from pre-trained models and used the resultant feature maps to
build ML models. Most of the pre-trained models were originally trained on a subset of the
ImageNet dataset [113], consisting of over 1.2 million high-resolution labelled images in
over 1000 classes. Some of the pre-trained network architectures that has been used in the
literature include AlexNet [88], VGG [87], GoogleNet [83], ResNet [85], Inception-v3 [89],
DenseNet [86], ShuffleNe-v2 [91], MobileNet-v2 [92], and MnasNet [93]. Results reported
in the literature show that classical ML algorithms trained on deep features outperformed
pre-trained models. For example, results reported by Sekhar et al. [14] show that GoogleNet
produced precision and specificity of 96.02% and 96.00%, respectively using the softmax
classifier. The results also show that the performance of GoogleNet was improved by over
2.5% and 2.3% when SVM and k-NN classifiers were used. This shows that the features
extracted from CNN pre-trained models can be used to build effective ML-based models
for brain tumor classification.

Training ML algorithms on many features will result in overfitting. Moreover, training
ML algorithms on many features can be computationally expensive and may complicate
the classification task. In some cases, classical ML algorithms yield better classification
accuracy when trained on small-scale features compared to large-scale features. As a
result, many studies used feature selection techniques to reduce the feature size used for
training. PCA, LDA, and genetic algorithm (GA) are the most often used feature reduction
techniques. Other feature selection techniques that are used in the literature include SVM-
RFE and discrete wavelet transform (DWT). Sasikala and Kumaravel [114] introduced a
wavelet-based feature selection technique, and results reported in the study indicated that
the wavelet-based feature selection technique reduced the feature size by 83.34% (from
29 features to four features), and simultaneously achieved a classification accuracy of 98%.

5.2. Deep Learning-Based Brain Tumor Segmentation and Classification Techniques

Nowadays, DL approaches (such as CNNs) are acquiring greater prominence in the
classification of brain images than ML techniques. In CNN, the images are used as di-
rect input into the network. CNN and other DL methods generate translation-invariant
and deformation-resistant features from images, resulting in more accurate segmentation.
CNN is commonly used for brain image analysis in a variety of applications, including
brain tumor segmentation and categorization. Most of the CNN network architecture
designed in the literature can only effectively learn information from 2D MRI slices. They
do not have the capacity to effectively extract volumetric information in 3D MRI slices.
Mzoughi et al. [62] designed a 3D network architecture consisting of different 3D convolu-
tional layers and small 3D kernels in each of the convolutional layers. The small 3D kernels
(3 × 3) were used to improve the computational complexity of the network and reduce the
number of weights in the network.

Some studies developed effective CNN-based techniques for brain tumor segmenta-
tion. AlBadawy et al. [73] introduced a patching-based technique for segmenting brain
tumors obtained from multiple institutions. The results obtained in the study indicated
that the performance of CNN declined when it was trained on brain scans from different
institutions compared to the same institution. Havaei et al. [10] introduced two-pathway
techniques that can both learn to segment small details (localized features) of brain tumors
and global-scale features (contextual features). The first pathway uses 7 × 7 convolutional
filters to learn the localized features and 13 × 13 to learn the global-scale features. The study
also introduces a cascade architecture that can segment dependencies between adjacent
labels. Finally, the study introduced a two-phase training strategy to handle the issue of
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data imbalance in many datasets. Results obtained in the study show that training the
model on local and global features concurrently produced better outcomes than training
separately and averaging the results.

A few authors [41,60] investigated the usage of small kernels with the goal of con-
structing deeper networks that do not overfit. Results achieved by the studies show that
small kernels produce effective brain segmentation results. Furthermore, some studies
designed effective multi-purpose frameworks for brain tumor diagnosis. For example,
Sharif et al. [101] designed a multi-purpose framework that can perform different functions
including tumor enhancement, feature extraction and selection, localization, and tumor seg-
mentation. In the study, homomorphic wavelet filter, inception-v3 model, non-dominated
sorted genetic algorithm (NGSA), YOLOv2, and ML algorithms were used for tumor en-
hancement, feature extraction, feature selection, localization, and tumor segmentation,
respectively. Experiments performed in the study show that the multi-purpose framework
produced good results. This type of framework will be very useful to medical practitioners,
as it can help them to handle multiple tasks effectively.

Most of the CNN-based and CapsNet-based architectures developed in the literature
used the ReLU activation function. The performance produced by ReLU-based networks
can be improved [19]. Adu et al. [19] introduced a new activation function for improved
tumor classification and segmentation, called PSTanh. Results reported in the study show
that PSTanh activation function outperformed ReLU by 7.11%.

5.3. Vision Transformer-Based Tumor Segmentation and Classification

Most studies in the literature adopted the popular CNN-based “U-shaped” architec-
ture. However, the kernel size of CNNs limits their ability to learn global or long-range
information. Transformer architecture has been the de facto standard for natural language
processing (NLP) [20]. However, its application to medical image processing is limited [20].
Some studies [32,35] developed ViT-based models for 2D or 3D image segmentation and
classification. Some of them used ViT in conjunction with CNNs. They combined the
advantage of CNNs and ViT to create models capable of capturing both local and global
contextual representations. To be more precise, some studies [35,104] employed CNN ar-
chitectures for both encoding and decoding. The CNN encoder is typically used to capture
local contextual features. The captured features are passed into a ViT, which captures global
semantic features. The global information is fed into a CNN decoder, which gradually
upsamples them until a full resolution segmented image is recovered. Finally, a skip con-
nection is employed to combine the features of the encoder and decoder network. Some
studies [32,107] explored alternative approaches. Some of them used ViT for encoding and
CNN for decoding [32], while others used ViT for both encoding and decoding [107]. The
ViT-based encoders accept three-dimensional image patches as input. They directly process
3D volumetric data for semantic segmentation.

Transformers are quite difficult to apply to computer vision tasks. This is because of
the distinctions between computer vision and NLP, such as the higher resolution of images
compared to words and the wide range of scales of visual entities [106]. In light of this,
Liu et al. [106] proposed Swin transformers to address this issue. Swin is a hierarchical
transformer that computes its representation through the use of shifted windows [106]. The
shifted window improves the performance of a model by restricting self-attention compu-
tation to non-overlapping windows while allowing cross-window communication [106].
Some studies [32] used Swin transformers to segment 3D multi-modal brain tumors and
obtained promising results.

5.4. Capsule Neural Network-Based Brain Tumor Classification and Segmentation Techniques

Many CNN-based image classification techniques have been introduced in the litera-
ture, and most of them produced state-of-the-art results. CNNs can automatically learn
high-level and low-level features from images without the need for feature engineering.
However, CNNs require large datasets for training. Additionally, CNNs are incapable of
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correctly distinguishing between inputs of different rotations and transformations [40].
Hinton et al. [38] addressed these drawbacks by introducing CapsNet. CapsNet are very
robust to different rotations and image transformation. Additionally, CapsNet require
significantly less training data compared to CNN.

Different CapsNet-based brain tumor diagnosis techniques have been proposed in the
literature, but most of them focused on brain tumor classification. Very few studies designed
CapsNet-based techniques for brain tumor segmentation. CapsNet will be particularly
useful for brain tumor segmentation because of their efficacy in object detection and image
segmentation. They will also perform very well because they require small-scale datasets
for training, which is the case for most of the benchmark datasets used for evaluating
brain tumor classification and segmentation techniques. Moreover, CapsNet requires
lesser computational complexity than CNNs. Aziz et al. [37] is one of the few studies that
explored CapsNet for brain tumor segmentation. Results reported in the study [37] show
that CapsNet outperformed CNN by 3%. In addition, results reported by Afshar et al. [18]
show that CapsNet outperformed CNN by 14.43%. Moreover, experiments performed by
Aziz et al. [37] demonstrate that CapsNet require significantly fewer parameters compared
to CNNs. In their experiment, CapsNet used 95.4% fewer parameters than CNN and
simultaneously outperformed CNN by 3% [37]. The experiments also show that CapsNet
performs better when trained on the segmented tumor images compared to the whole
brain MRI.

CNN algorithms normally use the max-pooling operation after a convolutional layer.
The max-pooling operation is used to create downsampled feature maps that highlight
the relevant feature maps in an image. However, downsampling can affect the quality or
resolution of an image to a point where the image loses its spatial recognizability. This
reduced image quality can affect the classification performance of CapsNet-based and
CNN-based models. The loss can also affect scenarios where models are transferred to
applications that require accurate and complete information of images. Adu et al. [109]
tackled this problem by designing a CapsNet-based technique using dilation convolution
to eliminate upsampling and to maintain high-resolution feature maps in the convolutional
layers. Experiments performed in the study show that dilation reduced the number of
network parameters and training time. The technique achieved a classification accuracy
of 95.54%.

Traditional CNN and ML algorithms have the problem of model uncertainty.
Afshar et al. [40] proposed a CapsNet-based technique that can handle model uncertainty.
They used Bayesian theory to model the uncertainty associated with predictions of CapsNet
models. Results reported in the study show that Bayesian theory improves the interpretabil-
ity of a network, which is very important for medical applications.

5.5. Hybrid Brain Tumor Classification and Segmentation Techniques

Most studies [40,41,60,109] used one DL or ML algorithms to design tumor segmen-
tation techniques. Few studies used a combination of different algorithms (i.e., hybrid
techniques). Moreover, most studies used CNN or other popular ML algorithms, such as
RF, SVM, and NB. Few studies explored the use of clustering algorithms for tumor segmen-
tation. Jena et al. [15] designed a hybrid technique consisting of k-NN and fuzzy C-means
clustering. They used the hybrid technique for tumor segmentation, and the experiment
performed in the study shows that the hybrid technique produced promising results. Some
researchers used the combination of bio-inspired techniques and CNN to design tumor
segmentation techniques. Thaha et al. [17] used the BAT algorithm to optimize the loss
function and consequently improve the segmentation accuracy of CNN. Results obtained
showed that BAT algorithm improved the precision, recall (or sensitivity), and accuracy of
CNN by at least 4%. Bio-inspired optimization algorithms are very good algorithms that
can be combined with DL and ML algorithms to improve their performance.

Some researchers used ensemble-based classifiers to design tumor classification tech-
niques. Ensemble-based classifiers are techniques that generate multiple models, which are
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then combined to produce improved results. Jena et al. [15] designed a tumor classifica-
tion technique using a combination of seven algorithms, namely: Adaboost, Gentleboost,
Logitboost, LPboost, Robustboost, RUSboost, and Totalboost. Results reported in the study
show that the ensemble method produced the best classification accuracy compared to
stand-alone classification algorithms, such as RF.

5.6. Small-Scale and Imbalance Dataset

CNN algorithms do not perform very well when they are trained on small-scale and
imbalanced datasets. Unfortunately, most of the benchmark datasets used in the literature
are small and very imbalanced. For example, 98% of the dataset used by Havaei et al. [10]
belong to one class, while the remaining 2% belong to four other classes: necrosis, edema,
non-ET, and ET. Obviously, training a CNN model on such imbalanced datasets will lead
to overfitting. Some studies introduced techniques that can be used to solve the overfitting
issue. Afshar et al. [18] used a regularization criterion (early stopping approach [31]) to
handle the overfitting problems of CapsNet. Some studies [16,41,84] used data augmenta-
tion to handle small-scale and overfitting issues. Sajjad et al. [16] applied eight different
data augmentation techniques to CNN for multi-grade brain tumor classification, including
flipping, rotation, skewness, shear, sharpening, Gaussian blur, emboss, and edge detection.
The techniques were applied to improve the geometric transformation and noise invariance
of CNN. Results reported in the study [16] showed that data augmentation improved the
classification accuracy of CNN from 90.03% to 95.5%.

5.7. Multi-Class and Binary Classification

One of the major challenges with existing classification techniques is binary classifi-
cation [16]. Most of the existing techniques were developed to classify brain tumors into
two classes, namely: benign and malignant. Sajjad et al. [16] is one of the few studies that
developed a multi-grade classification technique. Robust multi-grade classification tech-
niques can improve the decision-making and diagnosis of radiologists and other medical
practitioners.

Yogananda et al. [74] noted that training a single network for multi-class segmenta-
tion is more time-consuming and computationally expensive compared to training three
networks for individual binary segmentation. In view of this, Yogananda et al. [74] sim-
plified the multiclass segmentation problem to a single binary segmentation problem and
developed three distinct network architectures for each of the segmentation problems. The
output of the three networks was concatenated using a triple volume fusion to create a
segmentation volume with multiple classes. Experiments show that the proposed method
produced promising results.

5.8. Network Architectures and Data Augmentation

Most of the studies used state-of-the-art network architectures to improve the accuracy
and generalization performance of their results.

Most studies used the U-Net architecture. The U-Net architecture is a CNN architecture
that was designed for fast and precise segmentation of biomedical images. The architecture
is designed by Ronneberger et al. [115] to localize and distinguish borders by classifying
each pixel, ensuring that the input and output have the same size. The U-Net architecture is
comprised of nine blocks of layers. The first four blocks are referred to as the contracting or
downsampling block/segment. It has two convolution layers and one max-pooling layer.
The last four blocks are known as expansive or upsampling block. It has two convolution
layers and one 2d convolutional layer that has been transposed. It is used to resize (or
reconstruct) the feature map produced by the downsampling block to the original size of
the input image, such that the size of the input image and output image are the same. This
enables the architecture to do pixel-level image segmentation. The U-Net architecture was
designed using Keras with Tensorflow as the backend [116,117].
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In addition to the U-Net architecture, the following network architectures are widely
used in the literature: ResNet, VGG-19, and InputCascadeCNN. The VGG-19 architecture
is pre-trained on the ImageNet dataset [118] consisting of 1.2 million high-quality images.
It consists of 16 convolutional layers and three fully connected layers. The InputCas-
cadeCNN architecture [10] is designed to extract local and global contextual features. It
consists of 7 × 7 feature maps for extracting local features (small details of the tumors) and
11 × 11 feature maps for extracting global features.

Some researchers introduced novel fine-tuning techniques for brain tumor classifi-
cation and segmentation. Swati et al. [97] introduced a block-wise fine-tuning technique
using the VGG-19 network architecture. They divided the layers of the VGG-19 network
into different blocks and fine-tuned each block sequentially. While the layers in one block
are fine-tuned, the layers in the other blocks are frozen. Experiments show that this tech-
nique produced promising results. Thus, more fine-tuning approaches can be developed to
improve the performance of brain tumor diagnosis systems.

Most studies also applied data augmentation techniques to increase the dataset size
and consequently improve the performance of CNN models. Some of the data augmenta-
tion techniques used in the literature include flipping, rotation, skewness, shears, sharpen-
ing, Gaussian blur, emboss, and edge detection. Some studies [16,95] used a combination of
these techniques. Results reported in the literature show that data augmentation techniques
improved the performance of DL-based brain tumor segmentation and classification mod-
els. In addition to data augmentation, some studies [75] used data enrichment techniques,
such as GANs, to generate synthetic MR images. Many studies did not explore the use of
advanced data enrichment techniques, and it is still an active research area.

5.9. Performance Overview of Brain Tumor Classification and Segmentation Techniques

The performance of the brain tumor segmentation and classification techniques is
highly dependent on several characteristics, including similarity measures, image content,
and algorithm optimization. Figures 11–15 show the performance of the segmentation and
classification techniques reviewed in this study. For studies that used the same algorithm,
we selected the algorithm that produced the best performance. As shown in Figure 11, the
SVM model designed by Sekhar [14] produced the best performance for ML-based tumor
classification. In the study [14], SVM was trained on features extracted from the GoogleNet
pre-trained model [14]. The technique produced a classification accuracy of 98.93%. This
shows that features extracted from CNN pre-trained models can be used to build good
ML models with satisfactory accuracy. Figure 11 also shows that the RNN constructed by
Kaur et al. [94] generated the second-best result for ML-based brain tumor classification.
In this study, ICA was utilized for feature extraction, while a combination of the LO and
BO algorithms was utilized for image smoothing. This highlights the need for feature
extraction and image smoothing for traditional ML techniques.

Furthermore, as shown in Figure 12, the technique developed by Isselmou et al. [95]
achieved the best performance for CNN-based brain tumor classification. Instead of using
classical convolution feature maps, the authors [95] used user-defined hyperactive val-
ues and a differential operator to develop differential convolution maps. The technique
achieved a classification accuracy of 99.25%. This demonstrates the potential of using dif-
ferential feature maps for CNN models. Figure 12 also shows that the techniques proposed
by Mzoughi et al. [62] yielded the second-best classification accuracy. Mzoughi et al. [62]
developed a multi-scale CNN architecture with 3D convolutional layers for brain tumor
grading. The authors also developed a technique for removing thermal noise and distor-
tions in MRI images based on intensity normalization. This shows that 3D convolutional
layers and intensity normalization can be used to design improved CNN-based brain tumor
grade classification techniques.

Figure 13 shows the performance overview of the CNN-based brain tumor segmenta-
tion techniques reviewed in this paper. This plot shows that the technique developed by
Havaei et al. [10] outperformed all the CNN-based brain tumor segmentation techniques
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presented in this study. The authors introduced a two-pathway architecture that can learn
to segment both localized and global-scale features of the brain. This shows that building
a model that can learn both local and global features concurrently will produce better
outcomes compared to building separate models and averaging their results. Figure 13 also
shows that the patching-based technique developed by AlBadawy et al. [73] produced the
worst result, by achieving a DSC of 0.68.

Figure 14 shows the performance overview of the ViT-based techniques reviewed in
this study. As shown in Figure 14, the ViT-based technique developed by
Hatamizadeh et al. [32] produced the best result, achieving a WT, ET, and TC of 93.3%,
89.1%, and 91.7%, respectively. In the study [32], the authors developed a U-shaped ar-
chitecture consisting of CNN and Swin. Moreover, the ViT-based technique developed
by Jia et al. [104] produced the second-best result. The authors designed a UNet-based
architecture for multi-modal MRI scans using CNN and ViT.

Figure 15 shows the results of the CapsNet-based brain tumor segmentation and
classification techniques surveyed in this paper. As shown in this plot, the technique
proposed by Thaha et al. [17] yielded the best result for CapsNet-based brain tumor
segmentation and classification. The technique achieved a classification accuracy of 96.7%.
In the study, the authors [17] developed a loss function optimization technique using the
BAT algorithm. This demonstrates how bio-inspired algorithms can be used to improve
CapsNet-based models. Figure 15 also shows that the method developed by Adu et al. [19]
produced the second-best result. The authors [19] used a new activation function with
CapsNet, and it achieved a classification accuracy of 95.54%.

Figure 11. Summarized results for classical ML-based brain tumor classification techniques. For
studies that used the same algorithm, we selected the algorithm that produced the best performance.
The SVM model designed by Sekhar et al. [14] produced the best performance for ML-based tumor
classification. The RNN constructed by Kaur et al. [94] generated the second-best result for ML-
based brain tumor classification. The remaining competitors include the DenseNet-169 proposed in
Kang et al. [84], the ensemble approach exploited by Jena et al. [15], and the work of Deepak and
Ameer [13] that combined SVM with CNN.
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Figure 12. Performance overview of CNN-based brain tumor classification techniques. The tech-
nique developed by Isselmou et al. [95] achieved the best performance for CNN-based brain tumor
classification. The techniques proposed by Mzoughi et al. [62] yielded the second-best classification
accuracy. The remaining competitors include the work of Sajjad et al. [16], the VGG19-based approach
of Swati et al. [97], the work of Ge et al. [75] based on UNet and GAN, and, finally, the combination
of CNN and BAT proposed by Thaha et al. [17].

Figure 13. Performance overview of CNN-based brain tumor segmentation techniques. The tech-
nique developed by Havaei et al. [10] outperformed all the CNN-based brain tumor segmentation
techniques presented in this study. The remaining competitors include the patching-based technique
developed by AlBadawy et al. [73], the encoder-decoder architecture proposed by Zeineldin et al. [41],
and the triple network architecture developed by Yogananda et al. [74].
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Figure 14. Performance overview of ViT-based techniques. The ViT-based technique developed
by Hatamizadeh et al. [32] produced the best result, achieving a WT, ET, and TC of 93.3%, 89.1%,
and 91.7%, respectively. The remaining competitors include the ViT-based technique developed by
Jia et al. [104], the work of Peiris et al. [107], the study of Wang et al. [35], and the method proposed
by Ali et al. [105].

Figure 15. Performance overview of CapsNet-based brain tumor techniques. The technique proposed
by Thaha et al. [17] in 2020 yielded the best result for CapsNet-based brain tumor segmentation
and classification. The method developed by Adu et al. [19] produced the second-best result. The
remaining competitors include the work of Afshar et al. [40], the studies of Kurup et al. [110] and
Aziz et al. [37], and the method proposed by Afshar et al. [18] in 2018.

6. Conclusions and Future Research Directions

The use of CNN methods to segment brain tumors is a worthwhile, but challenging,
endeavor. Numerous ML and CNN approaches have been successfully applied in the
literature to handle this difficult task. In this study, relevant ML-based, CNN-based,
CapsNet-based, and ViT-based techniques for brain tumor classification and segmentation
were examined, and a comprehensive survey of these techniques was presented accordingly.
The possible future research directions are presented in what follows:

1. Most of the current research is devoted to brain tumor detection, segmentation, or
grade estimation. Most studies did not develop frameworks that can perform these
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three tasks simultaneously. Moreover, most studies focused on binary-grade classifi-
cation with less attention paid to multi-grade classification. Designing a framework
that can handle brain tumor segmentation, tumor classification (benign versus malig-
nant), and multi-grade estimation would be valuable in improving the decisions and
accuracy of medical practitioners when diagnosing brain tumors.

2. Generally, feature maps in CNNs are generated using transfer learning or random
initialization. Few studies developed techniques that can be used to generate feature
maps for CNNs. Isselmou et al. [95] combined user-defined hyperactive values and
a differential operator to generate feature maps for CNN. Results show that the
differential feature maps improved the accuracy of the CNN model. Future research
can develop more techniques that can generate effective feature maps for improved
CNN-based brain tumor segmentation and classification.

3. Most of the existing DL brain tumor techniques are based on CNNs. However, these
architectures require a huge quantity of data for training [9]. They are also incapable
of correctly distinguishing between inputs of different rotations [10]. In addition,
obtaining and labelling large-scale datasets is a demanding task [9]. Unfortunately,
most publicly available brain cancer datasets are small and imbalanced. The accuracy
and generalization performance of a CNN model will be affected if it is trained on
small-scale or imbalanced datasets. CapsNet [11] is a recently developed network
architecture that has been proposed to address the above-mentioned shortcomings
of CNNs. CapsNet are particularly appealing because of their robustness to rotation
and affine transformation. Additionally, as demonstrated in [2], CapsNets require
significantly less training data than CNN, which is the case for medical imaging
datasets such as brain MRI images [3]. Moreover, results reported in the literature [2]
show that CapsNets have the potential to improve the accuracy of CNN-based brain
tumor diagnosis using a very small number of network parameters [12]. Most studies
did not explore the use of CapsNet for brain cancer diagnosis.

4. While ViT has demonstrated outstanding performance in NLP, its potential has not
been fully explored for medical imaging analysis, such as brain tumor segmenta-
tion [33]. Future research can focus on improving the effectiveness of ViT-based
approaches for classifying and segmenting brain tumors, as this is an active research
area. Additionally, future research could further investigate the use of Swin trans-
formers, as they seem to perform better than standard ViTs.

5. Most studies focused on 2D network architecture for tumor segmentation and classifi-
cation. However, few studies explored 3D network architectures. 3D convolutional
layers provide a detailed feature map that can explore the volumetric information in
MRI scans [62]. The 3D feature map can also learn both local and global features with
high classifying power [62]. Future researchers can explore 3D network architectures
for improved brain tumor segmentation and classification.

6. Most of the techniques developed in the literature do not tackle the problem of model
uncertainly in CNN-based and CapsNet-based models. Developing a network that
can handle model uncertainty is important because it serves as a medium for returning
the uncertain predictions to experts for further verification. Most CNN networks use
the softmax activation function. However, the output of softmax does not reflect the
degree of uncertainty of a model’s prediction [108]. Afshar et al. [40] developed a
CapsNet-based technique that can handle model uncertainty using Bayesian theory.
However, experiments performed in the study show that CapsNet (without Bayesian
theory) outperformed the Bayesian variant. This confirms that more work is still
required. Future research could focus on developing robust techniques that can
effectively handle model uncertainty without affecting the performance of the models.

7. Most of the CNN-based and CapsNet-based architectures developed in the literature
used the ReLU activation function. Few studies explored the use of other activation
functions. Results reported by Adu et al. [19] show that PSTanh activation function
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outperformed the ReLU activation function. Future research could explore more acti-
vation functions for improved brain tumor classification and segmentation methods.

8. The max-pooling operation used in network architectures normally affects the image
quality and resolution of an image, and consequently the accuracy of a network.
Very few studies developed techniques that maintain high-resolution feature maps.
Further work is therefore required in this area. Future research can develop effective
techniques that can preserve the quality and spatial recognizability of an image.

9. Most of the currently available CNN-based approaches were developed for a specific
form of cancer. A general-purpose DL-based framework that can diagnose different
types of cancer will be very useful to medical practitioners

10. Most datasets cited in the literature suffer from data imbalance problems. For instance,
98% of samples in one of the benchmark datasets–Brain Tumor Segmentation (BraTS)
dataset–belong to a single class, whereas the remaining 2% belong to another class.
Clearly, building a model on such an imbalanced dataset will result in overfitting. Fur-
thermore, most studies did not explore the use of advanced data enrichment methods,
such as GANs, for improving the performance of brain tumor diagnosis. In addition,
most studies did not investigate the performance of different data augmentation
techniques for brain cancer diagnosis. Moreover, most studies did not investigate
the use of different state-of-the-art pre-trained networks for brain cancer diagnosis.
The problem of data imbalance and small-scale dataset in brain tumor diagnosis may
be addressed by developing techniques that combine advanced data augmentation
techniques and state-of-the-art pre-trained network architectures.

11. AlBadawy et al. [73] reported that there was a significant decrease in the performance
of CNN models when they were trained for patients from the same institution com-
pared to when they are trained for patients from different institutions. The reason
behind the reduced performance requires systematic investigations.

12. The fusion of multi-modal data can improve the performance of brain tumor diagnosis
models. Utilizing complementary information from multiple imaging modalities has
sparked a rise in recent research interest in cross-modality MR image synthesis. Recent
studies [119,120] have developed multi-modal brain tumor segmentation systems
that can learn high-level features from multi-modal data. Future research can design
enhanced multi-modal diagnostic frameworks for brain tumors.

13. Correct classification of multi-modal images of brain tumors is a vital step towards
accurate diagnosis and successful treatment of brain tumors. However, resolving
incomplete multi-modal issues is a challenging task in brain tumor diagnosis. Some
techniques [121,122] have been proposed to address this difficulty, but more research
is still required.

14. An important aspect that deserves further investigation is the development of inte-
grative approaches, by considering clinical and multiomics data along with imag-
ing [123,124], such as autoencoders [125] and variational autoencoders [126].
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