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Abstract: We propose a generic depth-refinement scheme based on GeoNet, a recent deep-learning
approach for predicting depth and normals from a single color image, and extend it to be applied
to any depth reconstruction task such as super resolution, denoising and deblurring, as long as
the task includes a depth output. Our approach utilizes a tight coupling of the inherent geometric
relationship between depth and normal maps to guide a neural network. In contrast to GeoNet, we
do not utilize the original input information to the backbone reconstruction task, which leads to a
generic application of our network structure. Our approach first learns a high-quality normal map
from the depth image generated by the backbone method and then uses this normal map to refine
the initial depth image jointly with the learned normal map. This is motivated by the fact that it is
hard for neural networks to learn direct mapping between depth and normal maps without explicit
geometric constraints. We show the efficiency of our method on the exemplary inverse depth-image
reconstruction tasks of denoising, super resolution and removal of motion blur.

Keywords: deep learning; depth image; denoising; super resolution; deblurring

1. Introduction

High-quality depth maps are required in a wide variety of tasks in computer vision
and graphics, such as RGB-D scene reconstruction [1,2], augmented reality [3–5] and
autonomous driving [6–8]. Compared to standard RGB-sensors, depth sensors often
produce noisy images, which makes depth-reconstruction tasks especially challenging,
since every task also has to account for the different task-specific depth uncertainties or
deficiencies. Some classes of sensors have types of artifacts that are not common in that
form for typical color sensors. For example, artifacts from motion relative to the camera are
a particular problem for Time-of-Flight (ToF) cameras because they capture multiple phase
images in sequence. Solutions for these problems require specialized algorithms such as
the ones outlined in [9].

Even though approaches that are well known in the realm of color-image enhancement,
such as energy minimization methods or deep learning, can often be translated one-to-one
to depth enhancement tasks, usually by just interpreting the depths as grayscale values.
This fails to incorporate the inherent geometric structure of depth maps. While research
on depth-only enhancement exists [10,11], a majority of recent work has focused on some
form of intensity or RGB-guided depth enhancement, e.g., for super resolution [12–15],
denoising [16,17] or motion blur removal [18,19]. While this greatly improves the quality
of the resultant depth images, these additional RGB sensors are not always available.
Moreover, none of the examples above explicitly incorporate surface normal information,
which is geometrically tightly linked to the depth map information. However, in the area
of depth estimation from a single RGB-image, there have recently been works that not only
produce normal maps as an additional output, but also successfully use them to enhance
the quality of the final depth map [20–24]. Most notably, Qi et al. [20,21] introduce the
GeoNet/GeoNet++ network architecture to estimate a depth and a normal map from a
single RGB image. Their approach toggles between depth-to-normal that utilizes a least
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squares approach, and normal-to-depth estimation based on kernel regression to enforce
geometric consistency between the two domains. Their approach can be seen as a weak
coupling between normals and depth, as the two stages operate independently. Still,
GeoNet++ outperforms standard CNN approaches that learn direct mapping between
depth and surface normals, both in terms of accuracy and normal-depth consistency. In an
ablation, the authors show that CNNs have problems to learn a direct mapping between
depth and surface normals in general [21]. Since it is already hard to learn this mapping in a
supervised setting with normals as output, we hypothesize that neural networks also have
difficulties including surface normal information in their latent representations without
explicit geometric constraints.

In this paper, we develop a generic depth refinement scheme that takes surface nor-
mals into account but makes no assumptions about the specific task that is to be solved,
except that the output is a depth map. Based on the GeoNet/GeoNet++ concept, our
approach computes high-quality normal maps in an intermediate step, which are then
used to refine an initial depth estimate provided by the backbone method. Contrary to
GeoNet/GeoNet++, we do not utilize the original input to the backbone method, making
our approach generic to many existing reconstruction methods. Moreover, we use a tighter
coupling between the depth and the normal domain by linking both stages using skip
connections, making full normal and depth information available in both stages.

Our experiments show that this approach improves the quality compared to existing
methods in a variety of different tasks, namely depth-only super-resolution, RGB-guided
super-resolution, additive Gaussian noise removal and deblurring.

2. Related Work

In this section, we will give a brief overview of research in different areas of depth
reconstruction. We will roughly split the methods into classical variational methods and
deep-learning-based methods.

Specialized variational and classical non-learning-based approaches for depth recon-
struction generally aim to improve depth data with additional sensor data like color images.
Huhle et al. [25] use a non-local means (NLM) approach to remove outliers from depth data
by computing an additional color-based weight in their NLM formulation. Ferstl et al. [26]
use a variational approach to compute higher-resolution depth images with the help of
already high resolution intensity images. Some approaches specialize in specific sensor
types: Shen and Cheung [27] introduce a probabilistic model using a Markov random
field for denoising and completing depth maps from structured light sensors. Another
work on structured light sensors was presented by Fu et al. [28], who specifically target the
spatiotemporal denoising of the Microsoft Kinect camera.

In recent years, like in any other field of computer vision and graphics, there has been
substantial amounts of deep-learning research for depth reconstruction. Sterzentsenko et al. [16]
used self-supervision to train a deep autoencoder to combat the lack of real world datasets
with noise-free ground truth depths. The work from Tourani et al. [18] deals with the
removal of motion artifacts from rolling shutters, which are common in structured sensors
such as the Kinect. Li et al. [19] use a two-branched CNN to simultaneously remove
motion blur from a color and a depth image. The problem of depth-only super-resolution,
i.e., without additional color data, was tackled by Li et al. [11] who extend ideas from
deep Laplacian pyramid networks [29], which were originally proposed for RGB super-
resolution, to depth. They put their work into the context of 3D reconstruction, which
they show can greatly benefit from higher-resolution depth-maps. Research in the area of
color-guided depth super-resolution is more widespread. Zhao et al. [30] jointly upscale
depth and color images by using a generative adversarial neural network (GAN). Another
deep-learning-based approach was proposed by Kim et al. [13] in the shape of deformable
kernel networks (DKN) for joint image filtering. Apart from guided depth image super-
resolution their approach can also be applied to saliency map upsamling, cross modality
image restoration and texture removal. Recently Tang et al. [14], inspired by progress
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in neural implicit representations, introduced joint implicit image functions (JIIF) and
interpreted the problem of guided depth super-resolution as a neural implicit interpolation
task. Another recent deep-learning-based approach is by Zhong et al. [31] who used an
attention-based network design to fuse the most important features from depth and color
images and then used those features to guide an upscaling network. There have also
been hybrid methods which combine classical approaches with deep-learning techniques,
e.g. Riegler et al. [10] who combined traditional variational methods with a deep neural
network to improve the accuracy of depth super-resolution without the need for additional
color sensors.

Even though the experiments in our manuscript do not include depth prediction from
single-color tasks, works from this field that use explicit surface normal information are
also related to our approach. Apart from GeoNet by [20,21], which our work directly
extends and we will discuss in more detail in the upcoming sections, we will list some
other research in that direction. Eigen and Fergus [22] tackle the task of depth and normal
prediction and semantic segmentation from RGB images in a single deep neural network.
Xu et al. [23] first predict initial depth, surface normal, semantic segmentation and contour
maps and then fuse them into a final depth-map. However in both of these works, there is
no enforcement of consistency between the predicted normal and depth images. A more
tightly coupled approach was proposed by Wang et al. [24], who introduced an orthogonal
compatibility constraint between normals and surface points that lie in a common planar
region. However, their computations are very costly and the method might fail in non-
planar regions of the scene.

3. Method

In this section, we introduce our generalized depth-enhancement framework for
arbitrary image-reconstruction tasks. First, we will briefly review the main ideas from
Qi et al. [20,21] in Section 3.1. In Section 3.2, we introduce our general depth-enhancement
network. Finally, we discuss the loss functions used in Section 3.3 and implementation
details in Section 3.4.

3.1. GeoNet

Originally, GeoNet is a method for estimating a normal and a depth map from a single
RGB image. In the following explanations of GeoNet, it is assumed that initial normal and
depth estimates, by whichever means, e.g., another CNN, have already been computed.
The initial normal at pixel i is denoted as ninitial

i and the initial depth at pixel i as zinitial
i .

Further following the notation of Qi et al. [20,21], we denote pixel coordinates as (ui, vi)
and corresponding 3D coordinates as (xi, yi, zi). The mapping between the the two is
determined by the perspective projection equations

xi = (ui − cx)zi/ fx

yi = (vi − cy)zi/ fy
(1)

where f. and c. are the intrinsic camera parameters.
The main idea of [20] is now to refine the initial normal map by using the geometric

constraints given by the depth map, and vice versa. This is motivated by the fact that both
representations have an inherent geometric relationship with each other that is hard to
learn directly through a network. We will now discuss both paths—depth refinement using
normals and normal refinement using depth—separately.

3.1.1. Normal Refinement

To refine the initial normal map ninitial , first, an additional normal map that is consis-
tent with the initial depth-map is computed. To avoid confusion, we will denote normals
from this auxiliary normal map as ndepth

i . By using the assumption that surface points

in a local neighborhood approximately lie on the same plane, ndepth
i can be computed
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from zinitial
i by first projecting the local neighborhood back into 3D using Equation (1) and

then computing the normal using least squares. The neighborhood of size β around i is
defined as

Ni =
{
(xj, yj, zj)||ui − uj| < β, |vi − vj| < β, |zi − zj| < γzi

}
, (2)

where γ is a parameter to filter out depths which deviate too much from the center depth.
Writing the points of this neighborhood into a matrix

A =


x1 y1 z1
x2 y2 z2
...

...
...

xK yK zK

 ∈ RK×3, (3)

enables the calculation of the normals as the least squares solution

ndepth
i =

(A>A)−1 A>1
||(A>A)−1 A>1||

. (4)

Here 1 is the K-dimensional constant vector with only 1 s. Since this normal is prone to
noise, it is further refined by a residual network that also takes ninitial as input. In [21], it is
defined as

n f inal = N2((N1(ndepth) + ndepth) ◦ ninitial), (5)

where N1 and N2 are CNNs and ◦ means concatenation along the channel dimension. The
output of this network n f inal

i is the refined normal map. In our experiments we additionally
tried to replace the least squares normals with cross product normals which unfortunately
resulted in very high noise and unsatisfactory results. All methods in this paper therefore
use least squares normals, as seen in [20] as described above.

3.1.2. Depth Refinement

Analogous to the previous section, the first step is to compute a depth map znormal

that is consistent with the initial normal map. The assumption is the same: points in a close
neighborhood lie on the same plane. The neighborhood around pixel i is defined as

Mi =
{
(xj, yj, zj)||ui − uj| < β, |vi − vj| < β, n>j ni > α

}
. (6)

Instead of filtering out large depth deviations, normals with a large angular difference to
the center normal are filtered out.

Given only the center depth, the depth for each point in the neighborhood can now be
estimated as

z′ji =
njxxj + njyyj + njzzj

(ui − cx)njx/ fx + (vi − cy)njy/ fy + njz
. (7)

These depth estimates are then aggregated by weighting them with the angular difference
of their normal to the center normal by kernel regression

zdepth
i =

∑j(n>j ni)z′ji
∑j(n>j ni)

. (8)

Again, these rough estimates are further refined with a CNN

z f inal = N3(zdepth ◦ zinitial). (9)
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Note that all operations above, particularly computing least squares solutions and kernel
regression, are differentiable, which means all networks, including the upstream RGB-to-
depth network, can be trained end-to-end.

3.2. General Depth Enhancement Network

We will now explain how we extend the ideas from GeoNet [21] from its RGB-to-depth
estimation task to arbitrary depth-to-depth refinement tasks. We assume that we have some
generic algorithm G (such as a neural network) that maps the input x (e.g., a low-resolution
depth-map) to an initial depth-map estimate of its specific task (such as super-resolution).

zinitial = G(x). (10)

We refer to G as backbone (network), but note that, despite our experiments only including
neural networks as choices for G, we make no assumptions on the structure or differen-
tiability, i.e., it could in theory also be a classical image-reconstruction method such as
non-local means or energy minimization.

Unlike GeoNet, which also requires an additional backbone for initial normal com-
putation, we only require a generic backbone that maps x to an initial depth estimate.
Moreover, our approach does not utilize the original input data x to the backbone network
G, making it independent from the underlying refinement task. Instead of having the
two independent depth and normal refinement branches, we propose a single sequential
refinement scheme in which we first compute a high-quality normal map from the initial
depth-map and then use this normal map to refine the depth map again.

We use Equation (4) to calculate a rough normal estimate ndepth. Unlike in Equation (5)
we also concatenate the initial depth to the refinement network and add additional skip
connections. Compared to GeoNet++, these skip connections enforce a tighter handling of
depth and normal information in both stages.

n f inal = N2((N1(ndepth) + ndepth) ◦ zinitial) + ndepth. (11)

These normals are then used to refine the depth map again. The idea here is that first
guiding the network to learn accurate normals might help it to find geometric structure
that it would have otherwise missed.

We use Equations (7) and (8) to compute a intermediary depth estimation znormal

which is further refined into our final result by applying a CNN. Again, we add additional
skip connections and concatenate the normal map to improve results:

z f inal = N3(znormal ◦ n f inal ◦ zinitial) + zinitial . (12)

The overall architecture of our scheme is visualized in Figure 1. Most parts of the
architecture are fixed weight and not learnable, which makes the training converge quickly.
The concrete implementation of the CNNs like the number of layers of kernel sizes will be
discussed in Section 3.4.

Ba
ck

bo
ne

x zinitial
 Least
Squares ndepth nfinal

znormal Kernel
Regressionzfinal

Figure 1. The proposed network architecture. Red—normal refinement module; blue—depth-
refinement module; yellow—CNNs with learnable parameters
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3.3. Loss Functions

Analogously to GeoNet, every operation from the initial depth estimate zinitial to the
refined estimate z f inal is differentiable. This means all networks (including the backbone,
if it is also a neural network) can potentially be trained in an end-to-end fashion. However
in the experiments in this paper, to showcase the generality of our approach, we pretrain
the backbones and freeze their weights before training our remaining network. We compute
loss functions on the intermediate results and sum up the individual losses to the total
loss function l = lnormal + ldepth. More specifically, our normal loss function is the same as
in [21]:

lnormal =
1
K

(
∑

i
||n f inal

i − ngt
i ||

2
2 + λ ∑

i
||ndepth

i − ngt
i ||

2
2

)
. (13)

For the depth loss, we make a few modifications. We do not include a loss function on
the direct output of the backbone, since its weights are frozen. Instead, we also compute
a loss on znormal . Even though there is only the kernel regression step with no learnable
parameters between the computations of n f inal and znormal , we found in our experiments
that it is still beneficial to have this additional loss function to pass gradients to the upstream
networks. We use the Charbonnier loss-function [32] instead of L2 loss:

ldepth =
1
K

(
∑

i

√
(z f inal

i − zgt
i )2 + ε + η ∑

i

√
(znormal

i − zgt
i )2 + ε

)
. (14)

To pretrain the backbone networks, we use the same Charbonnier loss-function (here of
course only with one summand).

Note that even though we need ground truth normal maps during training, at no
point do we need normal map inputs during inference. This allows us to put our network
on top of any arbitrary backbone as long as it outputs depth images.

3.4. Implementation Details

We use the same network architecture on top of each backbone. Each CNN in our
scheme (see Figure 1) consists of just four convolutional layers with kernel size 3 and
hidden dimension 64, which results in 235K additional learnable parameters. Table 1 shows
the parameter and runtime overhead of our network compared to different backbones.
We use ReLUs as our activation functions. We choose η = 0.5 and λ = 10−3 for the
loss-weighting hyperparameters and ε = 10−6 as the parameter of the Charbonnier loss.
We set the neighborhood size to 9× 9 in Equation (2) and Equation (6) and choose γ = 0.05
and α = 0.95. We center crop images to a size of 256× 256, randomly flip images along
the vertical axis for data augmentation and train with a batch size of 16. As mentioned
before, we freeze the weights of the backbones in all our experiments. In general, only
2–3 additional epochs are needed for our model to converge.

Table 1. Learnable parameters and timings of the networks in our experiments. Timings were
measured using a NVIDIA Tesla V100 and AMD EPYC 7452 on a single 640× 480 image (output size)
from the NYU v2 dataset [33].

Network DnCNN ADNet ResNet DLapSRN DKN +Ours

Parameters 556K 519K 556K 435K 1.4M +235K

Time (ms) 26 28 26 10 126 +34

4. Training and Tasks

We demonstrate the effectiveness of our method on a variety of classical image-
reconstruction tasks. To show the general nature of our approach, we add it and compare
it to several different state-of-the-art backbone networks. All backbone networks were
trained from scratch using code provided by the authors, using the training data provided
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by Qi et al. [20]. The dataset is based on the NYU v2 dataset [33] and contains 30,816 frames
with real-world depth and color images taken with a Microsoft Kinect, as well as high-
quality normal maps that we used as ground truth. For more details on this training set,
refer to [20]. The input to the networks was simulated from the ground truth images with
the respective forward operators of the different tasks and will be further detailed in the
following sections.

4.1. Denoising

The first task we used for comparison was the removal of additive Gaussian noise with
known variance. We compared it against the two state-of-the-art deep-learning methods
DnCNN [34] and the attention-based ADNet [35]. We added randomly sampled Gaussian
noise with a moderate standard deviation of 0.5 m to our ground truth depth images and
trained the networks with default parameters.

4.2. Deblurring

We convolved the ground truth depth with a 25 × 25 blur kernel that contained
zeros everywhere except on the main diagonal, where it was constant 1/25. This roughly
simulated motion blur of a far-away scene when the camera was rotated diagonally from
the top left to the bottom right. We used a 17-layer ResNet as backbone, with a similar
architecture to DnCNN [34].

4.3. Super-Resolution

We covered methods from both depth-only super-resolution as well as color-guided
super-resolution in our experiments. For the former, we used DLapSRN [11], which itself
is based on Laplacian pyramid networks [29]. Our backbone for color-guided super-
resolution is the recent deformable kernel network (DKN) [13]. We used bilinear filtering
to sub-sample the ground truth depth images to a factor of 1/4. Again, we trained the
networks with default parameters until convergence.

In order to gauge how our network deals with inputs of lower quality, we also trained
it together with a simple bilinear interpolation backend. This also showcases how our
method is not limited to learning-based backends.

5. Results

We evaluated the different methods on a separate 654 image subset of the common
benchmark dataset NYU v2 [33], which is often used to evaluate super-resolution tasks [10,13,14].
To the best of our knowledge, there are no such commonly used benchmark datasets
for depth-map Gaussian denoising and deblurring. For this reason, we evaluated all
tasks on the same datasets. Quantitative results can be seen in Table 2. Our add-on
network consistently improved the results of all backbone networks both in terms of root-
mean-square-error (RMSE) and mean-absolute-error (MAE). Since we used the exact same
backbone as a stand-alone network in the comparison, this improvement has to be a result
of our depth-refinement scheme. The improvements of our network ranged from 3% for
ADNet to 20% for DLapSRN in terms of average RMSE and from 6% to 20% in terms of
MAE. This discrepancy could be explained with the quite challenging noise level of 0.5 m
in our denoising experiments. Since the outputs of the backbones still included many
defects, our initial normal computation could output low-quality normals that are not as
helpful to the depth refinement network. Note that our add-on-like approach with a skip
connection between the backbone output and the final result helps our method to be at
least of the same quality as the backbone output, because in the worst case the network
could just learn to output the initial depth-map. In terms of the structural similarity index
(SSIM) [36], the deblurring experiment is slightly worse than the baseline, but in general
the margins are lower, with the exception of the DnCNN experiments. Note that we did
not explicitly optimize the networks for perceptual quality.
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To show that our network is able to generalize to new datasets, we also evaluated
30 images of the Middlebury stereo dataset [37] without fine tuning our networks. The Mid-
dlebury dataset contains pixel disparity images which other authors [10,11,13,14] directly
interpret as depth values before feeding them into their method. Since we needed to repro-
ject depth values in order to compute our initial normal maps, we first needed to convert
the disparity images into real depth images before inputting them into the backbones.
To make our results comparable to other methods, we converted the final depth-maps back
into disparity values before computing evaluation metrics. The results in Table 3 show that
our network consistently outperformed the baseline methods. Since the Middlebury uses
stereo images, as opposed to the training set, which uses structured light [33], we conclude
that all tested networks can generalize to different types of sensors.

Table 2. Quantitative comparison of depth-map reconstruction for different tasks on the NYU v2
dataset [33]. Values are given in centimeters (RMSE and MAE) and averaged over all test set images.

Task Method RMSE ↓ MAE ↓ SSIM ↑

Denoising

DnCNN [34] 4.07 2.84 0.9663
DnCNN [34] + Ours 3.81 2.57 0.9757

ADNet [35] 3.64 2.47 0.9730
ADNet [35] + Ours 3.55 2.34 0.9743

Deblurring ResNet [38] 3.14 2.14 0.9897
ResNet [38] + Ours 2.97 2.00 0.9896

Super-resolution
(Depth only)

Bilinear 3.63 1.09 0.9821
Bilinear + Ours 3.07 0.93 0.9849
DLapSRN [11] 2.85 0.88 0.9863

DLapSRN [11] + Ours 2.26 0.71 0.9889

Super-resolution
(RGB guided)

DKN [13] 1.68 0.61 0.9931
DKN [13] + Ours 1.59 0.59 0.9936

Table 3. Quantitative comparison of depth-map reconstruction for different tasks on the Middlebury
dataset [37]. Values are given in pixel disparity as provided by the dataset.

Task Method RMSE ↓ MAE ↓ SSIM ↑

Denoising

DnCNN [34] 6.21 4.49 0.8932
DnCNN [34] + Ours 5.55 3.82 0.9427

ADNet [35] 5.32 3.70 0.9200
ADNet [35] + Ours 5.09 3.44 0.9383

Deblurring ResNet [38] 3.06 1.74 0.9574
ResNet [38] + Ours 2.96 1.67 0.9581

Super-resolution
(Depth only)

Bilinear 2.54 1.00 0.9629
Bilinear + Ours 2.35 0.93 0.9663
DLapSRN [11] 2.03 0.85 0.9696

DLapSRN [11] + Ours 1.69 0.74 0.9749

Super-resolution
(RGB guided)

DKN [13] 1.23 0.61 0.9805
DKN [13] + Ours 1.09 0.60 0.9806

We show qualitative results in Figures 2–5. For better visualization, we show pixel-
wise absolute difference to ground truth depth inside the insets. The areas of the highest
improvement differ between tasks. Our method improved the denoising backbones mostly
in planar regions (Figure 2). We assume that here, our windowed least-squares normal
computation acted as an additional low-pass filter. Nevertheless, sharp edges were still
preserved by our network. In contrast, the deblurring (Figure 3) and super-resolution
backbones (Figures 4 and 5) already output high-quality planar regions and the improve-
ments of our network were predominantly located at the edges. The differences in results
for RGB-guided super-resolution in Figure 5 are more subtle. DKN can already achieve
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very sharp edges by utilizing color-image information, and our method seemed to mostly
improve some outliers at those edges.

Input GT DnCNN DnCNN + Ours ADNet ADNet + Ours

Figure 2. Denoising results. Insets show absolute difference to ground truth. The first two rows are
examples from the NYU v2 [33] test set and the third row from the Middlebury dataset [37]. Note
that while we, like other authors, show input and result of the Middlebury example as pixel disparity
values, we add the noise to the converted depth maps.

Input GT ResNet ResNet + Ours

Figure 3. Deblurring results. Insets show absolute difference to ground truth. The first two rows are
examples from the NYU v2 [33] test set and the third row from the Middlebury dataset [37].
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Input GT DLapSRN DLapSRN + Ours

Figure 4. Depth-only super-resolution results. The input is upscaled for visualization purposes.
Insets show absolute difference to ground truth. The first two rows are examples from the NYU
v2 [33] test set and the third row from the Middlebury dataset [37].

Input GT DKN DKN + Ours

Figure 5. RGB-guided super-resolution results. The input is upscaled for visualization purposes.
Insets show absolute difference to ground truth. The first two rows are examples from the NYU
v2 [33] test set and the third row from the Middlebury dataset [37].

To verify our normal refinement module, we show exemplary normal map visual-
izations from our denoising results using the ADNet backbone in Figure 6. As suggested
above, the normal computation for the denoising task is more challenging than for the
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other tasks. Our final normal maps are less noisy than the normal map that was directly
computed with least squares. Especially at the edges, the initial normals show high levels
of noise. They are also better in terms of mean angular error. Note that we focused more on
high-quality depth-maps when we fine tuned our hyperparameters, and in general, treat
the normal maps as auxiliary data to improve those depth maps. Since our loss function
is a weighted average of depth and normal loss and depth information can also propa-
gate through the normal refinement module, the network could learn to output slightly
lower-quality normals if it, in turn, helps to improve the depth map and lead to a lower
local minimum.

(1.286) (1.268)

(1.302) (1.292)

(1.357) (1.341)
GT Initial Normal Final Normal

Figure 6. Visualization of normal map quality on three scenes of the NYU v2 dataset using the ADNet
backbone. Values directly under the image are mean angular error to ground truth.

6. Conclusions

In this paper, we have introduced a generic depth enhancement framework for a
potentially wide variety of depth-reconstruction tasks. Our method is able to improve
on several state-of-the-art deep-learning-based methods by adding just a few additional
learnable parameters. Our approach has the nice side effect that it also computes high-
quality normal maps that can be utilized in some tasks, e.g., 3D reconstruction.

There are multiple possible directions for future work. Since we froze the weights
of all pretrained backbone networks while training our depth-enhancement network, it
would be interesting to see if improvements could be made by training them in tandem.
We also speculate that our model can be rather easily used for transfer learning because the
output of the backbones is already very similar. Another possible direction is to apply our
depth-enhancement scheme iteratively, similar to the considerations from Qi et al. in the
GeoNet++ paper [21]. In essence, the enhanced depth-map can again be used to compute
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a higher-quality normal map, which in turn can be used to get an even more improved
depth-map, and so on.
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