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Abstract: The 64Cu-labeled chelator was analyzed in vivo by positron emission tomography (PET)
imaging to evaluate its biodistribution in a murine model at different acquisition times. For this
purpose, nine 6-week-old female Balb/C nude strain mice underwent micro-PET imaging at three
different time points after 64Cu-labeled chelator injection. Specifically, the mice were divided into
group 1 (acquisition 1 h after [64Cu] chelator administration, n = 3 mice), group 2 (acquisition 4 h
after [64Cu]chelator administration, n = 3 mice), and group 3 (acquisition 24 h after [64Cu] chelator
administration, n = 3 mice). Successively, all PET studies were segmented by means of registration
with a standard template space (3D whole-body Digimouse atlas), and 108 radiomics features were
extracted from seven organs (namely, heart, bladder, stomach, liver, spleen, kidney, and lung) to
investigate possible changes over time in [64Cu]chelator biodistribution. The one-way analysis of
variance and post hoc Tukey Honestly Significant Difference test revealed that, while heart, stomach,
spleen, kidney, and lung districts showed a very low percentage of radiomics features with significant
variations (p-value < 0.05) among the three groups of mice, a large number of features (greater than
60% and 50%, respectively) that varied significantly between groups were observed in bladder and
liver, indicating a different in vivo uptake of the 64Cu-labeled chelator over time. The proposed
methodology may improve the method of calculating the [64Cu]chelator biodistribution and open the
way towards a decision support system in the field of new radiopharmaceuticals used in preclinical
imaging trials.
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1. Introduction

Before moving into clinical trials, the use of animal models is essential. Nowadays,
different types of animal models are used in preclinical stages of experimentation and
a well-defined murine model, based on the goal that must be achieved, is used for each
specific experimental stage. For example, murine toxicology studies are required for radio-
pharmaceutical dose characterization. In spite of that, pharmacological and toxicological
studies can be translated into experimental studies on human primary tumors with the
aim of selecting new therapeutic targets, starting from orthotopic mouse models of specific
human tumors [1]. This type of orthotopic transplantation in a murine immunodeficiency
model is the cause of the development of metastases mainly in organs such as liver, lungs,
and bones. This last type of metastasis can generally also be induced using intravenous or
intracardiac cell injection [2–4]. These assumptions justify the choice of our murine model
in this study, since our next studies on a new radiopharmaceutical biodistribution on mice
inoculated with tumor cells will be conducted on the same animal model used here.

In this context, molecular imaging plays a fundamental role, in particular with positron
emission tomography (PET). Furthermore, dual-mode imaging, such as PET/computed
tomography (CT) imaging, allows the integration of anatomical with physiological charac-
teristics of the disease. Radio-metallic nuclides are the basis of nuclear medicine studies for
diagnostic and therapeutic applications [5]. These nuclides can be contained in the structure
of special kinds of drugs, namely, radiopharmaceuticals [5]. Radiopharmaceuticals used in
diagnosis or therapy are characterized by different and specific types of nuclear profiles.
Radionuclides used in the diagnostic field emit positrons (β+) or gamma rays (γ) such as
Fluorine-18 (18F), Zirconium-89 (89Zr), and Gallium-68 (68Ga), which are among the most
used in PET imaging. Radionuclides used in the therapeutic field emit alpha (α), beta (β−)
particles, or Auger electrons. These kinds of particles act by inducing potential cytotoxicity
on target tissues (such as tumor tissues) through a specific ionization process that causes
damage to the Deoxyribonucleic Acid (DNA) of tumor cells. Generally, a diagnostic radio-
pharmaceutical is coupled to a therapeutic radiopharmaceutical. This underlies the concept
of theranostics, according to which the radionuclides used in diagnosis and therapy are
considered as a matched pair. An already-known example of theranostic Copper (Cu)
radiopharmaceuticals is represented by the pair formed 64Cu/67Cu [5]. 64Cu is used in PET
(diagnosis) and in radionuclide therapy thanks to its physical characteristics and its special
decay profile (T1/2 =12.7 h; β+: 19%, β−: 38%), and therefore it is considered an excellent
candidate in the theranostic approach [6]. 64Cu enables high-quality and -contrast PET
images and guarantees reliable absorption and distribution, thanks to its long half-life. 64Cu
can be linked to different targeting systems such as antibodies, peptides, proteins, and other
biologically important small molecules [7], and it is very promising for tumor-targeted
radiotherapy [8]. The 64Cu chelator considered in our study is DO2A2S, a derivative of
DOTA extensively discussed in [9]. The advantage of using this new in vivo chelator is
represented by the fact that 64Cu-labeled DOTA derivatives [10] are more stable in vivo
than those based on 64Cu-labeled TETA [10]. In particular, DO2A2S is known to be capable
of exploiting the 2+ and 1+ oxidation state of copper to coordinate, respectively, with the
two carboxylated arms and the two sulfured arms [9]. Consequently, preclinical research
is deeply involved in animal experimentation to validate the efficacy of new chelators
for 64Cu. For this reason, the aim of this study is to present a new preclinical decision
support system based on micro-PET/CT images to identify several mouse organs and to
assess, through a radiomics analysis, the biodistribution of [64Cu] chelator at the three time
points after the injection. Usually, radiomics studies aim to reflect the tumor pathophysi-
ology and, potentially, the development of the disease through the implementation of a
predictive model based on the extraction of relevant features from medical images and
the use of statistical models, i.e., [11]. In this study, radiomics is used in an innovative
way, i.e., with the aim of implementing an operator-independent tool to study the 64Cu-
labeled tracer biodistribution in PET imaging over time. To achieve this goal, nine mice
divided into group 1 (acquisition 1 h after [64Cu] chelator administration, n = 3), group
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2 (acquisition 4 h after [64Cu] chelator administration, n = 3), and group 3 (acquisition
24 h after [64Cu] chelator administration, n = 3) were analyzed. Successively, radiomics
features were extracted from different organs (namely, lungs, heart, bladder, stomach,
spleen, liver, kidneys) to evaluate changes over time of [64Cu] chelator biodistribution.
Unlike qualitative analysis, where PET images are visually interpreted, radiomics analyses
identify a large number of quantitative PET parameters linked to measurable aspects of
the physiological behavior of human or animal bodies. On the other hand, the radiomics
feature-extraction process is strongly linked to the target region (i.e., organ) delineation.
When target segmentation is performed manually, this process becomes user-dependent.
Repeatable results can be obtained by radiomics studies only if the segmentation process is
automatic or semi-automatic [12,13]. Therefore, the organ delineation process is crucial to
avoid distortions during the feature-extraction task [14]. Furthermore, while conventional
segmentation methods can be used for the automatic delineation of tumors in animals,
such as in the studies reported in [15], automatic organ segmentation is a prohibitive task
due to the impossibility of recognizing the various organs on our CT images (see Figure 1).
Consequently, the only way to identify the organs is through the use of an atlas. In our
study, all PET images were aligned with the 3D whole-body Digimouse atlas [16]. Starting
from this co-registration, radiomics features were extracted from each organ of interest,
and statistical analyses were conducted to evaluate the [64Cu] chelator biodistribution at
different time points after injection.

Figure 1. PET/CT images of three mice injected with the 64Cu-labeled chelator at the three acquisition
times via micro-PET/CT (Albira Si micro-PET/CT). (a) Mouse scanned 1 h after administration of
the radioactive compound; (b) mouse scanned 4 h after administration of the radioactive compound;
(c) mouse scanned 24 h after administration of the radioactive compound.

The remainder of this article has the following structure. Section 2 presents the image
dataset, applied data-preparing operations, the proposed radiomics workflow, and the
adopted evaluation metrics. Section 3 presents the results and related discussions, and
Section 4 concludes the manuscript and indicates future directions for research.
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2. Materials and Methods

2.1. 64Cu Chelator and Labeling

Radiopharmaceutical compounds generally consist of four main parts: (1) a transport
molecule, (2) a linker, (3) a bifunctional chelator, and (4) a metal radionuclide. The chelating
fraction acts as a trapping site for the radionuclide, and as an anchor for biomolecules
(Figure 2). In our biodistribution study, the component labeled with 64Cu is represented only by
the chelator. In vivo testing of the whole molecule will be planned in subsequent experiments.

Figure 2. Structure of a radiopharmaceutical having a bifunctional chelator (BFC) incorporated
within it.

In particular, 1,7-bis(2-(methylsulfanyl)ethyl)-4,10,diacetic acid-1,4,7,10-tetraazac
yclododecane (DO2A2S), a sulfur-containing derivative of tetraazacyclododecane (cyclen),
described in the work conducted by Tosato et al. [9] and synthesized in the context of the
“ISOLPHARM” project devoted to producing novel radiopharmaceuticals, was used to
chelate 64Cu in our preliminary preclinical study of new chelating-radiometal complexes
biodistribution on a murine model. DO2A2S was coupled with 64Cu to achieve high radio-
labeling yield (>98%), and the labeling was carried out at the Cannizzaro Hospital (Catania,
Italy). The complexation reaction required harsh reaction conditions, such as acidic pH
(about 4.5) and temperature of 90 ◦C, to be fast (10 min), as shown in Figure 3.

Figure 3. Labeling reaction through 64Cu.

2.2. Dataset

Nine 6-week-old female Balb/C nude (CAnN.Cg-Foxn1nu/Crl-Charles River/Envigo)-
strain mice weighing 18.0 ± 0.7 g were used. Animals were randomly housed in IVC cages,
using a stocking density of 3 mice per cage in individual IVC cages at a constant temper-
ature (23–25 ◦C) with ad libitum access to food and water. All animals were scanned on
Albira Si micro-PET/CT for the in vivo biodistribution analysis of [64Cu] DO2A2S at the
three time points after injection. A standard diet was given to the mice in the days leading
up to the experiment. On the day of injection of the [64Cu] chelator, the animals were anes-
thetized with isoflurane (4% for induction, 2% for maintenance) and the 64Cu complex was
injected intravenously in the tail with an activity of about ∼=7 MBq in a maximum volume
of 50 µL. The PET acquisition was performed in three pre-established times (1 h, 4 h, and
24 h), and the main vital parameters were constantly monitored. Mice were divided into
three groups: group 1 (micro-PET/CT acquisition after 1 h from the administration of the
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64Cu complex, n = 3), group 2 (micro-PET/CT acquisition after 4 h from the administration
of the 64Cu complex, n = 3), and group 3 (micro-PET/CT acquisition after 24 h from the
administration of the 64Cu complex, n = 3). No suffering occurred after the radiotracer
injection procedure. In addition to the PET scan, a morphological diagnostic test (CT) was
performed which, through a co-registration with PET images, made it possible to associate
the metabolic information with the organ to be studied. The mice were sacrificed by cervical
dislocation at the end of the planned follow-up. The organs were preserved in paraffin for
subsequent analyses that will not be discussed in this article. All the experiments were
carried out after approval by the Italian Ministry of Health (decree: No. 44/2021-PR), and
were conducted in accordance with the principle of the Basel Declaration as well as with
European and Italian regulations (European Union Directive 2010/63/EU, and Legislative
Decree no. 26/2014). All efforts have been made to replace, reduce, and refine the use
of laboratory animals. The study also was conducted in accordance with the recommen-
dations of the local committee for animal welfare (OPBA, University of Catania, Catania,
Italy); the protocol was approved by the OPBA and the Italian Ministry of Health.

2.3. PET/CT Image Acquisition

Micro-PET/CT datasets were acquired using a preclinical micro-PET/CT (Albira Si,
Bruker), made available by the CAPiR laboratory (Center for Advanced Preclinical Research
in vivo), University of Catania, Italy. The CT datasets were acquired using 600 views in a
low-resolution configuration, an initial horizontal position of 37 mm, an FOV of 64 mm,
X-ray energy of 35 kV, a current of 200 µA, and the size of each CT-voxel was equal to
500 × 500 × 500 µm3. The DICOM (Digital Image Communications in Medicine) images
were obtained using a 3D-based FBP algorithm. The PET images were re-constructed
using the 3D-MLEM algorithm with a total of 12 iterations. PET-voxel was equal to
500 × 500 × 500 µm3.

2.4. Atlas Co-Registration

All PET/CT scans were spatially pre-processed and segmented through co-registration
with a standard template space as follows. First, a custom-made MATLAB® [17] algorithm
was implemented to rescale the CT image intensity range (from the Hounsfield scale to
an 8-bit grayscale format), as well as to segment and remove every non-mouse-related
structure from the CT scans, such as the animal holder. After image cleaning, a three-
step registration to overlap the 3D whole-body Digimouse atlas [16] with CT scans was
performed. This template was assessed to be more appropriate for this study due to the
similarity of the anatomical mouse model used, as well as the imaging modalities from
which it was constructed (i.e., PET, X-ray CT, and cryosection images of normal nude
mice). Despite the multimodal template, in our co-registration pipeline, only the CT part
of the atlas was used as its functional part relates to the uptake of a mixture of FDG and
18F¯ and therefore the involvement of such information implies an a priori biodistribution
pattern, which may alter our results. Figure 4 shows representative coronal sections of the
Digimouse atlas [16], together with the organ segmentation labels.

The registration procedure consisted of a semi-automated linear alignment, performed
through ITK-Snap software [18], followed by an automated non-linear warping, accom-
plished with the Elastix toolkit [19], which was further enhanced by small local refinements,
located by visual inspection and achieved by the landmark registration tool of 3DSlicer [20].
More in detail, for each mouse, the atlas was first manually pre-aligned to match the subject-
specific coordinate system, by means of a rigid roto-translation, so to ease the convergence
of the subsequent automated algorithm. Then, the optimal affine transform employing
mutual information as the similarity metric with a multi-resolution approach was estimated,
involving only half-resolution at the coarsest level and full resolution at the finest because
of the poor raw data quality. Afterwards, the non-linear intensity-based registration step
was performed by a B-spline deformation model, whose metric, optimization routine, and
other parameter settings were chosen as in [21]. This procedure enabled proper overlapping
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of the global mouse shape outline and it considerably improved the registration of the
main anatomical structures with the highest contrast, such as the spine, skull, and limbs;
nevertheless, the expected misalignments in highly low-contrast tissues of interest, such as
the bladder, as well as some slight residual differences in the lung contour, required some
local refinements; thus, a thin-plate spline mapping through multiple landmark definition,
where the fiducial markers were manually positioned by visual inspection, was generated.
Finally, all these estimated linear and non-linear transforms were exploited to warp the
binary masks of the selected regions of interest (ROIs) into each subject-specific space.

Figure 4. Digimouse Atlas [16].

2.5. Extraction of Radiomics Features

After atlas co-registration, organs of interest (i.e., heart, bladder, stomach, spleen, liver,
kidneys, and lungs) were identified and exported as binary masks (background 0, organ
of interest 1). Before proceeding to the feature-extraction process, the PET DICOMs were
modified to incorporate the standardized uptake value (SUV) as reported in [22,23]. The
SUV is the most common semi-quantitative parameter used to estimate biodistribution in
PET images. The SUV normalizes the voxel activity considering acquisition time, admin-
istered activity, and mouse weight. In other words, PET images were converted to SUV
images. In this way, PET images took into account factors that would otherwise be ignored
during radiomics analysis. At this point, both PET images and co-registered masks were
used to extract 108 radiomics features using an Image Biomarker Standardization Initiative
(IBSI) [24]-compliant analysis software, namely, PyRadiomics [25], since one of the main
points in radiomics studies is to increase the reproducibility of the extracted features [26].
In this way, through a large panel of engineered hard-coded algorithms, reproducible
radiomics features can be obtained. PyRadiomics is implemented in Python, a language
that has established itself as a popular open-source language for scientific computing,
and can be installed on any system. PyRadiomics provides a flexible analysis platform
with a back-end interface allowing automation in data processing, feature definition, and
batch handling. This software extracts different feature classes, namely, shape descrip-
tors, first-order statistics, and the following texture matrices: gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level dependence matrix
(GLDM), gray-level size-zone matrix (GLSZM), and neighboring gray-level dependence
matrix (NGLDM).

Shape descriptors are independent of the gray-level intensity distribution in the
image. They describe geometric aspects such as volume, maximum diameter, surface
area, compactness, and sphericity. In detail, the surface area is calculated through a
process that produces a net of triangles that completely cover the organ surface (namely,
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triangulation) and is used to calculate the surface–volume ratio, while compactness and
sphericity describe how the organ shape (from a functional point of view) differs from that
of a circle (2D) or a sphere (3D).

First-order statistical descriptors (or “histogram-based” features) describe the fre-
quency distribution of voxels within an organ through the analysis of the histogram of
gray-level intensity values. Among others are skewness which reflects the asymmetry of
the data distribution curve to lower (negative) or higher (positive) values than the mean,
kurtosis, which reflects the tail of data distribution with respect to a gaussian distribution
due to outliers, entropy, and uniformity.

Finally, texture features are used to evaluate the relative voxel positions within the
image, providing information on the spatial organization of gray-levels in the organ of
interest. These features are classified according to the following texture classes from which
they are obtained: (i) GLCM quantifies the incidence of voxels with the same intensities at
a predetermined distance along a fixed direction, (ii) GLRLM quantifies consecutive voxels
with the same intensity along fixed directions, (iii) GLDM quantifies the number of voxel
segments having the same intensity in a given direction, (iv) GLSZM quantifies the number
of connected voxels that have equal gray-level intensity, and (v) NGTDM quantifies the
spatial interrelationships between three or more voxels.

2.6. Statistical Analyses

The performance result of the proposed approach was obtained using the one-way
analysis of variance (ANOVA) and post hoc Tukey Honestly Significant Difference (HSD)
test. One-way ANOVA is used to determine whether there are any statistically significant
differences between the means of three or more independent groups by comparing the
variability within these groups with the variability between groups. In other words, the
one-way ANOVA compares the means among groups (in our case the three different time
points after the injection of the 64Cu-labeled chelator), determining if one of these means is
statistically different from the others.

Specifically, it tests the null hypothesis:

H0 = µ1 = µ2 · · · µk (1)

where µ = mean group, and k = number of groups. If the one-way ANOVA returns a
statistically significant result (p-value lower than 0.05), we accept the alternative hypothesis:
there are at least two group means that are statistically significantly different from each
other. Then, we considered the radiomics features with p-value < 0.05 in one-way ANOVA
to find the percentage of radiomics features (out of 108 overall radiomics features) different
between at least two groups. However, ANOVA does not give information on which
group is significantly different from the others, only that at least two groups are statistically
different. For this reason, the Tukey HSD test must be used. This is a post hoc test based
on the Studentized range distribution useful for identifying which of the group pairs are
significantly different from each other. A parameter for each pair is calculated, namely,
Tukey HSD Q-statistic, as:

Q − statistic =
Xi − Xj√

s2
w/n

(2)

where Xi and Xj are the means of the compared samples, n is the size of the sample, and
s2

w is the within-group variance. Then, the p-value of the comparison between observed
Q-statistic and Q-critical (this value can be found in the tables of the inverse Studen-
tized range distribution [27]) was calculated. Finally, radiomics features with Tukey HSD
p-value < 0.05 were considered to identify the percentage of radiomics features (out of 108
overall radiomics features) different between each of the three pairs of groups to identify
which of them showed a statistically significant difference.
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3. Results and Discussions

Figure 5 shows the 3D segmented skeleton of the Digimouse atlas overlapped with
a representative mouse, both before and after the registration procedure; quantitatively,
this workflow reached registration accuracies ranging from 87.5% to 91%, with a mean
performance of 89% ± 1%, in terms of intensity correlation between the warped atlas and
the original CT images.

Figure 5. Qualitative registration performance, assessed through the overlapping of standard (yellow)
and real (red) bone structures.

After atlas co-registration, radiomics features from PET images were extracted from
seven different targets: heart, bladder, stomach, liver, spleen, kidney, and lung.

ANOVA and HSD analyses showed different behavior according to the investigated
organ at the three different time points after the injection of the 64Cu-labeled chelator, as
shown in Figure 6 and Table 1. Specifically, in the heart and lung districts, less than 0.93%
of 108 features extracted showed significant variations (p-value lower than 0.05) among
the three groups of mice. This was a predictable result as uptake in these organs is very
low (SUVmax and SUVmean were 0.36 ± 0.98 and 0.12 ± 0.02 in the heart, 0.43 ± 0.09 and
0.13 ± 0.02 in the lung). An intermediate situation occurred in the stomach, spleen,
and kidney districts, where a maximum of 11.11% features were statistically different.
Additionally, in this case, the PET uptake was quite low in all three groups (SUVmax and
SUVmean were 0.53 ± 0.15 and 0.26 ± 0.11 in the stomach, 0.36 ± 0.11 and 0.16 ± 0.05 in
the spleen, and 0.51 ± 0.16 and 0.20 ± 0.06 in the kidney). In the stomach and kidney
districts, the greatest differences occurred between group 1 and group 2, while in the kidney
district the greatest differences occurred between group 2 and group 3. Finally, over 60%
and 51% of features were different in the bladder and liver districts, respectively. In these
districts, the uptake was much higher than in the other districts (SUVmax and SUVmean
were 4.54 ± 6.64 and 2.25 ± 3.34 in the bladder, and 0.86 ± 0.24 and 0.35 ± 0.08 in the liver),
and large variations occurred between group 1 and group 2, and group 1 and group 3 for
bladder, and between group 1 and group 2, and group 2 and group 3 for the liver.

Focusing on the two districts (i.e., bladder and liver) where most of the features
showed significant variations among the three groups of mice, a particular analysis was
performed considering the features divided into three feature classes (see Section 2.5): shape
(15 features), first-order (18 features), and texture (75 features). The least-susceptible class to
acquisition time was the shape, as expected. This feature class concerns geometric aspects
of the target of interest such as volume, maximum diameter, surface area, compactness,
and sphericity. Obviously, it does not concern the shape from the morphological point of
view (as in the CT images) but from the point of view of the [64Cu] chelator biodistribution.
Therefore, a minimal difference was to be expected (see Figure 7): two features (namely,
shape_Flatness and shape_LeastAxisLength) on 15 features showed a significant variation
in the three groups.
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Figure 6. ANOVA and HSD test analyses showing differences in the extracted radiomics features in
the three mouse groups (blue column) and differences considering pairs of groups: first group versus
second group (red column), first group versus third group (green column), and second group versus
third group (violet column).

Table 1. ANOVA and HSD test analyses based on the seven districts investigated. In each row is
reported the percentage of radiomics features that showed significant variations (p-value < 0.05)
between the three groups of mice.

Global Group 1 vs. Group 2 Group 1 vs. Group 3 Group 2 vs. Group 3

Heart 0.00% 0.00% 0.00% 0.00%

Bladder 60.19% 46.30% 54.63% 2.78%

Stomach 11.11% 10.19% 3.70% 4.63%

Spleen 7.41% 7.41% 0.93% 2.78%

Liver 51.85% 34.26% 7.41% 28.70%

Kidney 8.33% 3.70% 1.85% 7.41%

Lung 0.93% 0.00% 0.93% 0.00%

In the same way, the first-order class was analyzed (see Figure 8). This class concerns
“histogram-based” features describing the frequency distribution of voxels within the target
through the analysis of the histogram of gray-level intensity values. Contrary to the first
class examined, most of the features belonging to this group varied significantly in the
bladder district considering group 1 compared to other groups. This was due to the fact
that after one hour (mice of the first group) the chelator had not been eliminated from the
body. A much lower 64Cu concentration occurred at 4 and 24 h. Regarding the liver district,
more than 44% of the extracted features varied over time. Quite unexpectedly, there was
no variation between the first group and the third group. More in-depth investigations will
be needed to analyze this aspect.

Concerning the texture class, like the previous class, this one also strongly depends on
the gray levels and therefore on the [64Cu] chelator biodistribution. Especially, it provides
information on the spatial organization of gray levels in the organ of interest. For both
districts, more than 61% of the extracted features varied over time (see Figure 9), obtaining
results similar to the previous analysis (minimal difference between group 2 and 3 in the
bladder district, and between group 1 and 3 in the liver district).
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Figure 7. ANOVA and HSD test analyses showing differences in the shape feature group (15 features)
in the three mouse groups (blue column) and differences considering pairs of groups: first group
versus second group (red column), first group versus third group (green column), and second group
versus third group (violet column).

Figure 8. ANOVA and HSD test analyses showing differences in the first-order feature group
(18 features) in the three mouse groups (blue column) and differences considering pairs of groups:
first group versus second group (red column), first group versus third group (green column), and
second group versus third group (violet column).

Finally, a traditional SUV-based analysis was performed to assess its variations over
time. Specifically, SUVmax and SUVmean were considered and their variations in the differ-
ent organs are shown in Figures 10 and 11, respectively. For easier reading, we excluded
in Figures 10 and 11 the bladder, whose SUVs were higher than the other organs, making
them unreadable. Therefore, the SUV variations in the bladder are shown in Figure 12. As
expected, the SUVmax is susceptible to greater variation between groups but this is also due
to the noise [28]. As a matter of fact, the SUVmax corresponds to the maximum voxel value
in the target, and a single voxel may not be representative of the overall target uptake. This
value is most resistant to partial volume effect (PVE) and is operator-independent, but it is
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highly variable due to the high noise level in PET data [29]. Consequently, it is advisable
to also focus on the results of the SUVmean, which is more stable and whose behavior is in
line with the results obtained from the previous analysis based on the proposed decision
support system. Specifically, liver, bladder, and stomach showed the highest variations
in terms of SUVmean. Similarly, in the analysis based on the proposed decision support
system, SUVmax and SUVmean were among the features that showed significant variations
in these three organs. This has not happened in any other organ. Notably, SUVmax varied
significantly between group 1 and 2, and group 1 and 3 in the bladder, and between group
1 and 2, and group 2 and 3 in the liver. SUVmean varied significantly between group 2 and
3 in the bladder, between group 2 and 3 in the stomach, and between group 2 and 3 in
the liver.

Figure 9. ANOVA and HSD test analyses showing differences in the texture group (75 features) in
the three mouse groups (blue column) and differences considering pairs of groups: first group versus
second group (red column), first group versus third group (green column), and second group versus
third group (violet column).

Figure 10. SUVmax variations among groups in heart, stomach, spleen, liver, kidneys, and lung districts.
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Figure 11. SUVmean variations among groups in heart, stomach, spleen, liver, kidneys, and lung districts.

Figure 12. SUVmax and SUVmean variations among groups in the bladder districts.

4. Conclusions

In this study, we investigated a semi-automatic strategy, satisfying the increasing need
to obtain repeatable results in biomedical imaging studies [30,31], to identify several mouse
organs, and to investigate, through radiomics analyses, possible changes over time in
[64Cu] chelator biodistribution using micro-PET imaging. The automatic or semi-automatic
identification of the volume of interest is the first step of a radiomics analysis since, if the
target identification is performed manually, extracted features are characterized by high
inter-observer variability [32]. Although deep learning methods are more efficient than
classical statistical approaches, obtaining better performance in image segmentation of
several anatomic districts, such as in [33,34] where our group developed a deep learning
algorithm for biomedical images that requires limited hardware resource benefiting from
reduced training data requirements, in this study, it was not applicable due to the poor
resolution of the CT, where mouse organs were not easily recognizable. For this reason, an
alternative solution based on atlas co-registration was preferred. Our results demonstrated
the feasibility and efficacy of our approach, obtaining a good co-registration accuracy in
terms of intensity correlation between the warped atlas and the CT images. After this
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step, atlas masks were reported in PET images to automatically extract 108 features from
different organs, namely, heart, bladder, stomach, spleen, liver, kidneys, and lungs. In
this way, the [64Cu] chelator biodistribution over time in micro-PET examinations were
analyzed. Specifically, three-time points after radiotracer injection in mice that underwent
micro-PET/CT imaging were considered. The nine mice were divided into three groups of
equal size (n = 3); each group underwent micro-PET at a different acquisition time (1 h, 4 h,
24 h after radiotracer administration, respectively). A very low percentage of radiomics
features showed significant variations (p-value < 0.05) between the three groups of mice in
organs such as heart, stomach, spleen, kidney, and lungs as shown in statistical analyses.
This was an expected result as the accumulation of 64Cu activity in these organs remained
low. Vice versa, in liver and bladder districts, the biodistribution of [64Cu] chelator was
high, and high quantitative differences were noted in the three different acquisition times.

The lack of a correction method for the precise identification of small tissues should
be considered as a major limitation of this study: the PVE is the most important factor
impacting the quality and the quantitative accuracy in PET studies. The under-estimation of
PET activity due to the PVE cannot be assumed to be negligible [28]. The separation of target
(in our study, the different organs) and background voxels is difficult. A PVE correction
method should be used during DICOM-SUV conversion, as described in Section 2.5, to
improve quantitative measures [35].

In conclusion, this preliminary study is fundamental for subsequent preclinical studies
as an easily adaptable workflow has been implemented for future preclinical experiments.
Therefore, our innovative system may improve the method of observing the biodistribution
of other radiolabeled chelators, and open the way towards a decision support system in
the context of new radiopharmaceutical studies that will be conducted through preclinical
experiments using PET imaging. Furthermore, the analysis of the radiopharmaceutical
uptake curve from 0 to 4 h would be interesting to analyze with our innovative tool in
future studies.
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