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Abstract: Due to the exponential growth of medical information in the form of, e.g., text, images,
Electrocardiograms (ECGs), X-ray, and multimedia, the management of a patient’s data has become
a huge challenge. In particular, the extraction of features from various different formats and their
representation in a homogeneous way are areas of interest in medical applications. Multimedia Infor-
mation Retrieval (MMIR) frameworks, like the Generic Multimedia Analysis Framework (GMAF),
can contribute to solving this problem, when adapted to special requirements and modalities of
medical applications. In this paper, we demonstrate how typical multimedia processing techniques
can be extended and adapted to medical applications and how these applications benefit from em-
ploying a Multimedia Feature Graph (MMFG) and specialized, efficient indexing indexing structures
in the form of Graph Codes. These Graph Codes are transformed to feature relevant Graph Codes
by employing a modified Term Frequency Inverse Document Frequency (TFIDF) algorithm, which
further supports value ranges and Boolean operations required in the medical context. On this basis,
various metrics for the calculation of similarity, recommendations, and automated inferencing and
reasoning can be applied supporting the field of diagnostics. Finally, the presentation of these new
facilities in the form of explainability is introduced and demonstrated. Thus, in this paper, we show
how Graph Codes contribute new querying options for diagnosis and how Explainable Graph Codes
can help to readily understand medical multimedia formats.

Keywords: indexing; retrieval; explainability; semantic; multimedia; feature graph; graph code

1. Introduction and Motivation

In previous work on Multimedia Information Retrieval (MMIR), we demonstrated a
highly efficient and effective approach for multimedia feature extraction, the semantic rep-
resentation, annotation, and fusion of these features, and introduced information retrieval
metrics including explainability of multimedia feature graphs [1-3]. Based on this MMIR
research, further extensions and refinements are possible in the area of medical applications.
A detailed R&D white paper on Artificial Intelligence for Hospitals, Healthcare & Human-
ity (AI4H3) [4] targets these extensions and refinements together with corresponding use
cases. Furthermore, in the area of medical image processing and analysis, we have outlined
and defined the process and detail of feature extraction on mammography images and
their corresponding semantic representation [5-7]. Particularly, the use cases given in [4]
represent the motivation for the R&D approach herein.

Medical image processing has been of interest since Wilhelm Réntgen discovered
X-rays in 1895 [8]. The invention of Magnet Resonance Imaging (MRI) and Computer
Tomography (CT) scans in the 1970s directly led to the production of digital images of
a physical structure such as the human body [9,10]. Viewer applications such as the
Digital Imaging and COmmunications in Medicine (DICOM) Viewer [11] provide a 3D
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experience for viewing medical images and extracting their relevant medical features, and
hence offer innovative and accurate diagnostics. Medical image (and video) processing is
important in modern healthcare. Modern technologies, e.g., Machine Learning (ML) or big
data, are employed to detect, e.g., tumors or regions of interest automatically, which can
produce highly annotated multimedia assets. Doctors’ letters are written in digital form and
available for automated processing. Additionally, the quality and the Level of Detail (LOD)
of technologies such as X-rays have increased significantly since their discovery in 1895.
Analyzing X-ray images is increasingly supported by ML technologies. One example of
this is the detection of tumors or regions of interest in X-ray mammograms to detect breast
cancer [12]. As illustrated in Figure 1, medical images are typical examples of multimedia
content including markups, overlays, descriptors, and detected features.

ROI (Regions of Interest)

Original Mammogram (LMLO)

Figure 1. Example of a X-ray mammography with highlighted medical image features [7].

In the last 20 years, multimedia content has also become prominent in the area of
assistive and preventive healthcare. This topic includes training of healthcare staff, edu-
cation of patients, or patient rehabilitation programs, where multimedia content can be
used to support diagnostics and other medical processes. The invention of multimedia
devices, such as smartphones or tablets, has contributed significantly to digital workflows
in hospitals, as doctors and nurses can access patient multimedia content data directly on
devices and use such devices for medication, diagnostics, or documentation [13].

Furthermore, it must be considered that, in the medical domain, users have different
levels of computing knowledge. Doctors and nurses having medical backgrounds may have
limited knowledge in Multimedia Information Retrieval (MMIR) techniques. Hence, IR has
to be presented in a human-understandable way. This becomes even more important when
communication with patients should also be supported by MMIR techniques, as they might
additionally have limited knowledge in the medical area. The explanation of a diagnosis,
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for example, has to be presented in a medically correct and human-understandable way to
patients (see [4]) and with more medical detail and facts to nurses and doctors.

Therefore, in this paper, we address the overall problem that multimedia features de-
rived in a medical context must be represented in an easily accessible and, in the same way,
semantically understandable and explainable form. Two research questions correspond to
this problem: (1) how can various medical multimedia features be integrated with each
other? and (2) how can such medical feature information be represented semantically and
made explainable for humans?

The structure of this paper follows the problem-solving approach of . Nunamaker [14],
which divides a problem into Observation, Theory Building, Implementation, and Exper-
imentation phases, which are connected to each other. In Section 2 of this paper, the
Observations are presented in the form of the current state of the art including a summary
of the related technologies. Section 3 discusses the Theory Building (i.e., the modeling and
design) of the proposed solution. In Section 4, implementation detail and evaluation are
given, which correspond to the Implementation and Experimentation phases.

2. State of the Art and Related Work

This section provides an overview of current techniques and standards for multimedia
information retrieval and medical applications and summarizes related work. A foundation
is given based on existing approaches and the Graph Code concept is introduced as an
efficient and effective indexing technique, as well as a summary of semantic analysis and
intelligent information retrieval methods. Finally, in this section, the explainability of
Multimedia Information Retrieval (MMIR) feature graphs is summarized.

2.1. Information Retrieval

Following the terminology and introduction of Information Retrieval in [15], Figure 2
illustrates the uses cases, components, and processes that are part of an IR system. Accord-
ing to [15], the main component of an IR system is the Search Engine, which maintains
the information database including the locations of encoded objects (often referred to as
Documents). It also maintains the Index, which forms the data structure for searching and
relevance ranking and provides a mapping between terms (i.e., words) and the locations of
assets, in which these terms occur or which can be described by these terms. The process of
extracting terms from documents is called Indexing. The process of finding the correspond-
ing documents is called Retrieval. The search engine maintains the index and the document
collection, and must consider the deletion and addition of documents. Both tasks can be
system- or user-triggered (e.g., automated import vs. manual import). Typically, the User
has an Information Need when working with a Search Engine. Therefore, the user can
construct a Query, which is then processed in the search engine and will return Results.

Components of an Information Retrieval system

s A e N N [AD
User Search Engine D
C‘ D Query Index Additions

Information
Need

Documents Deletions

[
|§I Result D‘Tj
D

. J - J

Figure 2. Visualization of a IR system and the corresponding components.

To explain results selection, the Index is one of the most important components.
Such an index can be represented as a B-tree (e.g., in relational databases) and simply
provide sequential, ordered access to possible result elements. Indexes are extensive
for more complex information. In [16], for example, multimedia index structures have
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been introduced, which are multidimensional, hierarchical, or recursive data structures
to describe search-relevant features of multimedia assets. In many cases, these are stored
in the form of feature graphs [17,18]. In previous work [2,3], we presented a unifying
framework—the Generic Multimedia Analysis Framework (GMAF)—and data structure—
the Multimedia Feature Graph (MMFG)—to represent such multimedia features in ex-
tended detail. The GMAF utilizes selected existing technologies as plugins to support vari-
ous multimedia feature detection algorithms for text (e.g., social media posts, descriptions, tag
lines) [19-21], images (especially object detection and spatial relationships including the use of
machine learning) [18-20,22,23], audio (transcribed to text) [22,24], and video, including
metadata [25] and detected features [26,27].

In modern IR applications, the terms Weighting, Filtering, and Profiling are employed
to describe the need to reduce the list of possible results by applying additional criteria for
retrieval [28]. Weighting describes the (manual or automatic) task of assigning relevance
values to specific information types to increase or decrease their effect on retrieval. Filtering
means that certain collection elements are excluded from IR processing. Such filters can
be defined by users, administrators, or dynamically in terms of Relevance Feedback. The
reusable combination of Weighting and Filtering for distinct application domains is then
called Application Profiling, which means that such a set of weights and filters is applied to
any application of a certain domain to produce uniform and comparable IR results [18,28].

Another key topic in IR is the maintenance and classification of valid and invalid
information. This can be achieved by Truth Maintenance Systems [28], which in many cases
employ nonmonotonic reasoning [29] to calculate true or false information. The information
base can be represented by a so-called Default Theory [30] and can be defined according
to Poole [30,31]. Such a Default Theory Tp,e, = (F, D) is described by the set F of facts
(i.e., justified beliefs) and the set D of hypotheses (i.e., possible assumptions). The overall
goal is to increase the number of elements in F by applying rules or calculations to the
elementsin D (i.e., building Knowledge Extensions). This is achieved by defining a measure
for the Knowledge Validity KV of contained information. Based on this measure, reasoning
and inferencing can be introduced to MMIR applications. However, the calculation of such
a Knowledge Validity needs to be defined. In addition to valid and invalid information, in
some IR systems, the term Aboutness is also used, which describes the overall topic domain
of the MMIR application [32]. In the medical context, this might be, e.g., mammography,
orthopedics, and hematology.

2.2. Multimedia Features and Multimedia Feature Graphs

The GMAEF provides a flexible and extendable plugin architecture for the processing of
various multimedia asset types. Such a plugin is based on a simple API and can be written to
extract features from a special image, video, text, or audio format. These plugins contribute
their extracted features to the MMFG, where they can be further processed. When the LOD
of the given assets increases, the number of MMFG elements (i.e., nodes and edges) also
increases. To provide a fast and effective indexing solution for this, we introduced Graph
Codes (see Section 2.3). Further extensions of MMFGs lead to a semantic annotation (and
to Semantic Multimedia Feature Graphs (SMMFGs)) and even to Explainable SMMFGs
(ESMMEFGs), which are outlined in Section 3. However, even with these extensions and
annotations, the pure graph-based structure of an MMFG remains. As we showed in [2],
this graph-based structure leads to exponential processing time of some MMIR algorithms.
Particularly, for medical applications, it is important to integrate a high number of features
from various sources into such an MMFG and to increase the LOD to the best possible extent.
Therefore, exponential processing times are not acceptable and need to be mitigated by the
introduction of an improved processing model. This is outlined in the next subsection.

2.3. Graph Codes

Graph Codes [2,33] are a 2D projection of a multimedia feature graph based on
adjacency matrix operations [34], where the feature vocabulary terms of a feature graph are
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presented by row and column indices, and matrix positions represent relationships between
these features. It has been demonstrated that Graph Codes are efficient for similarity and
recommendation searches, as they basically use linear growing matrix operations instead
of exponentially growing graph-traversal-based algorithms. In Figure 3, a visualization
of an MMFG (see Figure 3a), a simple example for further illustration (Figure 3b), the
corresponding Graph Code in a table representation (Figure 3c), and the Graph Code
matrix GCey (3d) are illustrated. A “real-world” scenario of such a Graph Code is shown in
Figure 3e f.
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Figure 3. Multimedia features represented as a Graph Code index (a—d), example of a Graph Code
index and its matrix visualization for a text document (e, f).

Graph Codes contain a dictionary dictgc of feature vocabulary terms FVT (i.e., the
row and column descriptions) and represent the relationships between dictionary terms as
value of a matrix field m; ;. As Graph Codes represent multidimensional MMIR features,
a similarity metric triple Mgc = (Mg, Mg, Mgr) has been defined, containing a feature-
metric M based on the vocabulary, a feature-relationship-metric Mg based on the possible
relationships, and a feature-relationship-type-metric Mgt based on the actual relationship
types. This similarity metric can be applied for the calculation of MMIR results. In [1],
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we already introduced Semantic Graph Codes (5GCs), which contain additional semantic
structures by an annotation with semantic systems such as RDF, RDFS, ontologies, or
knowledge organization systems [35-37]. This semantic information can be utilized to
bridge the semantic gap between the technical representation of MMIR features and their
human-understandable meaning. This can be supported by the introduction of grammars
and is outlined in the next subsection.

2.4. Explainability of MMFGs Supported by Natural Language Grammars

In order to support explainability, the automated production of natural language text
and associated grammars [38] can be employed. On this basis, an algorithmic implemen-
tation can distinguish between valid and invalid statements of a given formal or natural
language. According to [38], a grammar G = (V, T, P, S) for a language L is defined by the
tuple of vocabulary terms V, the list of terminal symbols T, which terminate valid sentences
of L, and production rules P, which describe valid combinations of vocabulary terms and
a set of starting symbols S for sentences of L. In [39], PS-Grammars are employed as a
specialized form to generate language terms by production rules, in which the left side of
the rule is replaced by the right side. If, for example, « — f is a production rule in P, and
¢, p are literals in V, then ¢pap — ¢Pp is a direct replacement.

®  Veyw ={Sen, NP,VP,V,N,DET, PR} represents the variables of the grammar;
* T,y = {the, hat,is,above, head} is the set of terminal symbols;
* P, is the set of production rules for this grammar and can be defined as follows:

Pen = {Sen — NP VP, 1)
VP — V PP, @)

NP — DET N, 3)

PP — PR NP}. (4)

The production rules of PS-Grammars can be visualized in the form of so-called PS-
trees [39]. Further details on PS-Grammars are given in our previous work [1]. By applying
these production rules, both the construction and the analysis of well-formed sentences can
be improved. In the next section, a formal grammar for Graph Codes and the corresponding
concepts is defined and forms the basis for explainable MMIR.

In [1], we showed that MMFGs can be explained in a human-understandable natural
language manner by introducing semantic annotation anchors, which not only represent
the vocabulary terms of an MMEFG, but also the syntactic structures, with which they are
connected to each other (see Figure 4). This fully automated explainability is achieved by
formally modeling the syntactic representation of MMFG elements and annotating them
with semantic concepts, which can then be transferred by production rules into a PS-Tree
for natural language processing.

The required concepts and techniques for MMIR processing have been introduced.
However, when entering the area of medical applications, some further prerequisites are
required. This is outlined in the next subsection.
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2.5. Medical Multimedia Information Retrieval Applications

One very general difference to normal MMIR applications in the medical area is that

typically any multimedia object comes with a textual description in the form of a doctor’s
letter. Hence, the processing of this textual information is highly important during feature
extraction. In addition, various medical formats have been established. A short summary
of the most common formats according to [40] can be given as follows:

The Analyze-format was created at the end of 1980s and was the “de facto” standard
for medical imaging post-processing. It has been designed for multidimensional data,
which enables storing 3D or 4D data in one file. The format consists of two binary
files, one .img file containing the raw image data, and an .hdr header file containing
metadata. However, the header size is fixed and can only contain 348 bytes.

The Neuroimaging Informatics Technology Initiative (NIfTI) format has its origin in
the early 2000s and was intended to revise the Analyze format with the intention to
create a format for neuroimaging maintaining the advantages of the Analyze format,
but solving the weaknesses. NIfTI can in fact be thought of as a revised Analyze format
and has rapidly replaced Analyze in neuroimaging research. The header size has been
extended, and an additional .nii file is produced, in which header and pixel data of
images are merged.

MINC was developed at the Montreal Neurological Institute (MNI) starting from 1992
to provide a flexible data format for medical imaging. The first version of the MINC
format (MINC1) was based on the standard Network Common Data Format (NetCDF).
Subsequently, to overcame the limit of supporting large data files and to provide
other new features, the MINC development team chose to switch from NetCDF to
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Hierarchical Data Format version 5 (HDF5). This new release, not compatible with the
previous one, was called MINC2.

¢ The DICOM standard was established by the American College of Radiology and the
National Electric Manufacturers Association in 1993. Today, the DICOM standard is
the backbone of every medical imaging department. The added value of its adoption
in terms of access, exchange, and usability of diagnostic medical images is, in general,
huge. DICOM is not only a file format but also a network communication protocol,
and although the two aspects cannot be completely separated, here, we will discuss
only DICOM as a file format. The innovation of the DICOM format was that metadata
and pixel data are merged in a unique file, and the DICOM header, in addition to the
information about the image matrix, contains the most complete description of the
entire procedure used to generate the image ever conceived in terms of acquisition
protocol and scanning parameters. The header also contains patient information such
as name, gender, age, weight, and height.

All these formats can produce features and feature descriptions in a machine readable
format. An exemplary snippet of the DICOM feature extraction is shown in Figure 5.

Image Header
File Meta Elements Group Length 150
File Meta Info Version 256
Image Type SINGLE PLANEA
Study Date 20210302
Study Time 142023
Patient Date of Birth 19760704
Patient Sex F
Photometric Interpretation MONOCRHOME2
Patient ID 44232324
Referring Physician‘s Name Dr.A
Institution Name Medical Centre
Patient‘s Name John Smith

Figure 5. Exemplary snippet of the DICOM feature description.

One further and key objective to any application in the medical area is data protection.
Security and privacy have to be guaranteed for any kind of medical data. The GMAF
has built-in support for securing information. However, this topic is beyond the scope of
this paper.

2.6. Discussion and Remaining Challenges

In this section, we outline that the current state of the art covers many aspects which
are relevant for building MMIR applications in the medical application domain. However,
there are a number of remaining challenges. In the area of Information Retrieval, one major
open challenge is how medical features can be related to each other and how queries in
such a context can be processed. Furthermore, the presentation of retrieval results needs
additional explanations and transparency in order to prove its correctness and accuracy.
The Multimedia Feature Graph (MMFG) as such is a supportive and flexible data structure.
However, the remaining challenge in this area is to determine which MMIR features are
of what relevance in the medical context and from which assets and in which form they
can be extracted. The current state of the art in the area of Graph Codes shows that highly
efficient and effective MMIR can be built based on qualitative discrete relationships between
feature vocabulary terms. However, in the medical context, further feature relationships,
pre-processing steps (e.g., filtering or weighting), and a quantitative extension are required
to represent discrete medical values. Furthermore, a semantic representation of the MMIR
indexes is required to determine relevant information for a specific context. Finally, in terms
of Explainability, different roles have to be supported, as the language and terminology



J. Imaging 2022, 8, 104

9 of 24

used for conversations with family members of a patient should be completely different
to conversations between doctors. These open challenges will be closed based on existing
Medical MMIR formats and applications and addressed in the remainder of this paper.

As abasis for our modeling, we employ approved and reliable Multimedia Information
Retrieval (MMIR) techniques and extend or adapt them to meet the requirements of medical
applications and data. This model is based on the Generic Multimedia Analysis Framework
(GMAF), the Multimedia Feature Graph (MMFG), and the corresponding Graph Codes as
indexing structures and defined in the next section.

3. Modeling and Design

In this section, the building blocks of the proposed research and development approach
are introduced. This modeling follows the methodology of N. Draper’s “user-centered
system design” [41], which places the user at the center of modeling. Applied to the
medical context, this means that doctors, nurses, and patients are typical actors for MMIR
use cases. The previously introduced building blocks GMAF, Graph Codes, MMEFG, and
the corresponding concepts will be employed as a basis for the modeling discussed in
this section. In this and the following sections, images are often employed as examples
for medical MMIR feature processing. However, as shown in previous work [1,2], this
modeling can be applied to any other multimedia asset type. This includes motion captures,
surveillance stream data, pixel tagging and tracing methods, and other already existing
feature extraction methods.

While in typical multimedia applications each asset is represented individually by its
own MMFG and its own Graph Code, in medical applications we regard the patient quite
literally as a multimedia object. This means that multiple multimedia assets can contribute
information to the patient’s information base. Whenever a new X-ray image of the patient is
available, whenever new blood parameters have been measured, whenever a new doctor’s
letter is written, all these single multimedia objects and their corresponding Graph Codes
are part of the patient as a multimedia object. This further means that a patient’s Graph
Code GCp can be regarded as the union of all (e.g., n) available information from single
multimedia assets GC;:

n
GCp = | J GC:. ©)
i=1

However, during the time, the information base changes. New X-ray images are
taken, new blood parameters are measured, and further doctor’s letters are written. As
for diagnosis, historical data are of high importance, each new contribution of an asset
to GCp is represented by a timed Graph Code, which contains only information until a
specific (or current) date. Previous versions of GCp will be retained. The latest Graph Code
representing the most current information of a patient will be called GCp(t), the previous
versions will be called GCp(t —1),..., GCp(t — 1), GCp(0). This also means that GCp ()
is the union of all previous versions of patient information. The introduction of such a
timeline can be also the basis for ML-based prediction and analytics algorithms. It is also
helpful, if at the beginning of such a timeline, information of normal organ systems is also
collected. In this case, the detection of deceased systems and the comparison of features to
the normal state can be improved significantly.

t
GCp(t) = |J GCp(i). 6)
i=0

This modeling also prepares the option to compare two different timed versions
GCp(t1), GCp(t2) of a complete set of patient’s information. The difference GCp_p; s
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between these versions can then be calculated by the subtraction (i.e., the disjunction) of
the Graph Codes:

GCp_piff(GCp(t1), GCp(t2)) = @)
GCp(t1) — GCp(t2) = (8)
(GCp(t1) U GCp(t2)) NGCp(t1). )

As GCp(t) contains any information from any multimedia object related to the pa-
tient at a specific time, this difference calculation between two timed Graph Codes can
be extremely supportive in the area of diagnosis. Thus, answers to questions such as,
“what happened between January and July?”, can be calculated based on GCp_p;¢. The
presentation of such results in a human-understandable way is discussed in Section 3.4.
However, before this, some further modeling, prerequisites, and extensions to the current
Graph Codes are introduced.

As Graph Codes are constructed by the GMAF, various plugins for the medical context
are required to parse and interpret medical features and to represent them as MMFGs and
the corresponding Graph Codes. Examples for these plugins are given in Section 2 and are
illustrated in more detail in Section 4. For the further modeling, it is important to outline
that compared to typical MMIR applications, there are certain differences in the area of
medical or diagnostic applications. In the following subsections, some refinements and
extensions for Graph Codes are introduced.

3.1. Extension of Feature Description Attributes with Value Ranges

For medical applications, it is required to work on quantitative and continuous value
ranges in addition to the already existing qualitative and discrete values for feature rela-
tionships. This supports further and more flexible querying. Typical examples for this are
the measurement of blood pressure and the general metadata of a patient (e.g., height and
weight), but also specific feature values detected by X-ray applications (e.g., the diameter
of a tumor).

Example 1. To further illustrate the effect on Graph Codes, the detection of faces and their bio-
metrical landmarks is employed as an example, where each detected face is represented by a set of
such landmarks (e.g., position of left eye, position of nose) and their distance vectors (e.g., distance
between left eye and right eye). Table 1 shows a Graph Code with the landmark “Eye Distance”
for two faces. Until now, the values of landmarks would be represented as detected features in a
Graph Code, which then would result in a vocabulary term representing the discrete value of these
landmarks.

Table 1. Exemplary Graph Code for the biometrical landmark “Eye Distance”, where distance values
(i.e., rows and columns labeled “27.21” and “18.14”) are stored as vocabulary terms.

GC Facel Face 2 Eye Distance = 27.21 18.14
Facel 1 0 0 0 0
Face2 0 1 3 0 0
Eye Distance 3 3 1 0 0
2721 3 0 3 1 0
18.14 0 3 3 0 1

However, this representation leads to potentially unlimited elements in a Graph
Code’s dictionary. Therefore, for representation of discrete mathematical values, a special
relationship type Discrete (D) is introduced, which directly represents the mathematical
value instead of a relationship type.
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Example 2. In the case of the Graph Code of Example 1, the corresponding Graph Code with
discrete values is shown in Table 2.

Table 2. Exemplary Graph Code with discrete values, where distance values are stored as matrix cell
values of the row and/or column named “Eye Distance”.

GC Facel Face 2 Eye Distance
Facel 1 0 D(27.21)
Face2 0 1 D(18.14)
Eye Distance 0 0 1

When constructing Graph Code Queries, these value ranges can be defined by placing
a Discrete relationship type into the Query Graph Code, which contains a range of possi-
ble numeric values, e.g., D(27.10-27.25), indicating a minimum or equal range value of
27.10 and a maximum or equal range value of 27.25. Whenever the Graph Code Metric
Mgt is applied to a Discrete relationship type, it will not calculate. If the values in the
corresponding fields are equal, it will calculate, if the value of the Graph Code’s matrix
cell is within the range defined by the Discrete relationship. Graph Code Value Ranges
also represent the basis for the IN-operation, which empowers the user or applications to
construct queries such as where eye distance IN (27.10, 27.25). The EQUALS-operation can
also be implemented on this basis to construct queries such as where age EQUALS 21. With
the help of these operations, a bridge to existing relational databases can also be designed,
which constructs Graph Codes on the basis of SQL statements. In this case, the columns of a
SQL result set are mapped to the Graph Code Dictionary and the values of each result row
are placed as discrete relationships into the corresponding Graph Code. This mechanism
can be utilized to fuse existing content of relational databases into multimedia collections.

Example 3. Table 3 illustrates how Graph Codes can be constructed based on the exemplary SQL
query select p.firstname, p.lastname, a.street, a.zipcode from patient p, address a where a.person-id = p.id:

Table 3. Exemplary mapping of database table rows and columns into Graph Codes.

GCpBgrow Firstname Lastname Street Zipcode
firstname D (John) 0 0 0
lastname 0 D (Doe) 0 0
street 0 0 D (Nowhere Road) 0

zipcode 0 0 0 D (1234)

Of course, storing each row in a single Graph Code is inefficient compared to relational
database technologies. However, this approach gives access to the full potential of Graph
Codes and the corresponding metrics, and thus enriches the information stored in GCp or
GCp(t). However, attaching relational databases to Graph Codes will produce significant
additional data, which must be processed according to its overall relevance.

3.2. Feature Relevance Weighting Supporting Application Profiling

In medical applications, a GCp(t) contains any available information related to any
multimedia object (i.e., text, audio, image, video, including X-ray, and ECG) and thus
becomes extensive. Although Graph Codes provide outstanding MMIR performance,
an optimization in the form of relevance weighting and filtering must be introduced. If
MMIR collections are volatile, i.e., new and/or different assets are added to the collection
frequently, solutions for the automated calculation of such weighted filters, for the modeling
of topics, and for the detection of relevant feature vocabulary terms must be employed.
Such systems can be called Calculated Simple Knowledge Organization Systems (CSKOSs)
and are typically based on a Relevance Metric. While the already introduced existing
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Graph Code Metric Mgc = (Mg, Mpgr, Mgr) is designed to represent the similarity of two
Graph Codes, for medical applications, further considerations in terms of Relevance must
be made.

In the following subsections, the definitions and examples of metrics demonstrate
this requirement. The metrics are introduced “top down” in order to follow a logical
and easy-to-understand sequence, starting from the most general relevance definition (i.e.,
the Aboutness in Section 3.2.1), the collection relevance (i.e., the Feature Relevance in
Section 3.2.2), and ending at the Graph Code relevance (i.e., the Feature Discrimination in
Section 3.2.3). In Section 3.2.4, the calculation model for these metrics is then defined by
employing a “bottom up” approach, which ensures a formal mathematical foundation and
leads to the definition of Feature Relevant Graph Codes in Section 3.2.5.

3.2.1. Aboutness Metric

As GCp(t) contains any available information related to any multimedia object of
a patient P at a certain time t, mammography images and X-ray images of broken legs
are, for example, available in the same collection. However, if the medical application
is breast cancer detection, broken leg images are not relevant for the application. This
Aboutness must be determined to remove irrelevant MMIR assets from the collection, and
thus increase the relevance of the remaining assets for the medical application domain.
As a measure for this Aboutness, we define the metric M 4g7 as the Aboutness Relevance
metric to represent the collection’s topical domain. It can be employed to determine if an
MMIR asset is in general relevant for a specific application domain.

Example 4. A patient visits an oncologist and brings, e.g., all his documentation and images.
Then, the Aboutness metric would automatically remove anything that does not belong to the area of
Oncology.

3.2.2. Feature Relevance Metric

Within the elements of a collection, various features are detected. The textual analysis
of doctors’ letters, for example, will produce a varying number of vocabulary terms, some
of which might also exist in DICOM images, or in the description of X-ray images. However,
only some of these terms are relevant for a medical MMIR application. To describe this
feature relevance, we define the metric Mgg as the Feature Relevance metric and describe
how important a certain feature vocabulary term is for an MMIR collection. This can also
be regarded as a discriminator, which eliminates irrelevant feature vocabulary terms from
a collection.

Example 5. The term “tissue density” may be a relevant MMIR feature when it has distinguishing
power, i.e., it represents MMIR features that are relevant for querying and able to distinguish
possible result elements. This further means that the value of such a “tissue density” is of importance
for the application user. The feature vocabulary term “software version” may also occur in many
Graph Codes. However, it might not be of importance for the MMIR application, as it is not expected
to have distinguishing power or importance for the user.

3.2.3. Feature Discrimination Metric

Finally, the actual value of a feature vocabulary term can have discriminating power.
This means that the feature is important within a single asset. For example, the feature
“tissue density” might be irrelevant for MMIR processing, if its value is within the “normal”
range of “tissue densities”. If the value is higher than normal, this feature becomes dis-
criminative, and increases the relevance of a feature’s value of an asset within the MMIR
applications. The Discriminating Power of a feature is defined by the metric Mp;s and
measures how important a certain feature vocabulary term is within a collection element.
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Example 6. An example of this metric would be a retrospective cohort study of certain patients,
where distinct feature values change over time. In addition, the comparison of a certain feature value
to a collection of Graph Codes of other patients can be based on such a feature Discrimination.

3.2.4. Calculation Model for These Metrics

The metrics defined above are now integrated in the Graph Code model. As a calcu-
lation basis for the modeling of these metrics, we selected a statistical method, the Term
Frequency Inverse Document Frequency (TFIDF) measure [42]. Other approaches (e.g.,
machine learning) are also valid measures for determining the relevance of a feature vocab-
ulary term within a collection [28]. However, it has been proven that statistical methods
such as the TFIDF can deliver highly efficient and effective results [43,44] for text-based
topic modeling. Hence, in the following, an adaptation of this algorithm for Graph Codes
is discussed, which is based on Semantic Graph Codes, as relevance calculations typically
require further semantic information. With this, a more qualified decision can be made
as to which general topic a certain vocabulary term belongs (e.g., the term “Jaguar” can
belong to the topic of animals, but also to the topic of the automotive industry). Hence,
in the following, we employ SGCs instead of GCs, as a semantic extension supports the
calculation of relevance.

First of all, the metric Mpjg for feature discrimination is now defined as the difference
in the number of nonzero Graph Code fields for two feature vocabulary terms vt;, vt; of
a given Graph Code or Semantic Graph Code. The greater this difference is, the more
relevant (i.e., discriminative) the corresponding feature vocabulary term is. If, for example,
a term has many relationships, it becomes discriminative for this Graph Code. Mp;s of two
feature vocabulary terms vt;, ot; thus can be defined as the number of all nonzero matrix
fields m(i, j):

n

Mpys(oti, vtj) = ) [m(i,k) # 0| — Zlm], #0l. (10)

k=0

Secondly, the TFIDF measure is adapted for Graph Codes. In general, TFIDF measures,
how representative a term f is for a single document d (i.e., the term frequency #(t,d)),
and in how many documents this term occurs (i.e., the document frequency #D(t)) can be
found by calculating:

D]
TFIDF(t,d) = #(t,d) - log%. (11)

To apply this measure for Semantic Graph Codes (SGC), the following modifications
and mappings are made. Basically, SGC vocabulary terms vt; of Semantic Graph Codes
correspond to the TFIDF terms t, a Semantic Graph Code corresponds to a TFIDF document
d, and thus, the collection of Semantic Graph Codes SGCc,j; corresponds to the TFIDF
documents D. Applying this, for each term, the document frequency can be calculated
according to the general TFIDF function. However, calculating the term frequency #(t,d)
based on a SGC is not possible, as a SGC’s dictionary is based on unique items. Hence, we
employ the metric Mpys as a (even better) measure for the importance of terms vt;, vt; of
SGCs:

Yot; € SGC,V’Otj € SGCcyp ¢ (12)

ISGCColl|

TFIDF(vt;, SGC) = Mpjs(vt;, ’Utj) . logM[)[g(?Jt‘ of)’ (13)
1 ]
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Now, the metric Mgg; representing the Feature Relevance can be defined as the
difference in the TFIDF measure of two feature vocabulary terms according to the overall
collection:

Yot;, vtj € SGCcor : (14)
MgEep (vt;, Z)t]') = TFIDF(vt;, SGCcoy;) — TPIDF(?)t]‘, SGCcoil)- (15)

By employing this, the relevance of each SGC’s dictionary term within the collection
can be calculated, and terms with relevance zero (i.e., terms that occur in all SGCs and
hence have no impact on MMIR) can be eliminated from each SGC. Additionally, the
introduction of thresholds can further optimize the MMIR application. This means that not
only are terms with relevance zero removed, but also, e.g., the most irrelevant 10% of terms.
However, this calculation requires a re-processing of all SGCs of a collection, when new
assets are added to the collection. To avoid this, the eliminated (i.e., nonrelevant) terms can
be represented by a collection’s stop word SGCsrop.

The introduction of this SGCsrop finally empowers the modeling of the Aboutness of a
collection of Semantic Graph Codes with the metric M 4p7. By utilizing the abovementioned
threshold, the size of SGCstpp can be increased and thus the relevance of the remaining
collection. However, in many cases, a user- or application-driven definition of relevant
feature vocabulary terms is required. This can be achieved by editing the calculated
SGCsrop and extending it with additional feature vocabulary terms to produce an edited
SGCsrop.ep- The Aboutness of SGC¢,; can now be defined as the distance of a SGC to
SGCsrop-ep based on the original Graph Code metrics Mgc = (Mg, Mg, MRgr):

Mapr = SGC — SGCsT0P-ED- (16)

As the three metrics in the relevance weighting and feature discrimination are now
defined, applications can employ these metrics in a pre-processing step by filtering only
relevant information, or by weighting these terms according to the MMIR application
use cases. If, for example, the application scope is mammography, the information about
broken legs might not be so relevant (calculated by applying Mggr). This Weighting and
Filtering can also be regarded as Application Profiling for a given application context
defined by M apr. Depending on Mgg; and the overall feature relevance, certain terms
can gain particular interest for diagnoses. Based on Mpjs, the concept of emerging named
entities [45] can also be improved.

Example 7. If the term “COVID-19" is mentioned frequently in a doctor’s letter, the corresponding
Mpis value will increase and thus indicate that this particular letter has “COVID-19" as a highly
relevant feature vocabulary term.

3.2.5. Feature Relevant Semantic Graph Codes

Whenever a new SGC is calculated within the collection, the collection’s SGCg1op
is subtracted from it (i.e., any dictionary term including all its relationships is removed
from the first SGC, if it exists in SGCgrpp), resulting in a compressed and Feature Relevant
Semantic Graph Code FRSGC:

FRSGC = SGC — SGCstop. (17)

The following list shows some typical use cases for this FRGCs in the medical applica-
tion domain:

*  FRSGCp(i): basically, each patient’s Graph Code GCp(i) will contain lots of similar
information, e.g., name, date of birth, and gender, and will be included in any con-
tributing MMIR asset. However, this information is not relevant for MMIR processing
and would be removed by the calculation of FRSGCp(i).
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*  FRSGCypp: medical or diagnostic applications typically do not need any existing
MMIR feature for their internal processing. A hematologist, for example, would not be
particularly interested in a broken knee, but be highly interested in the history of blood
parameter measures. In this case, for the calculation of FRGCy,, the whole collection
of GCp (i.e., the Graph Codes of all patients) will be employed as a baseline for the
calculation of the TFIDF measure. As all patients will have blood parameter measures,
and only a few will have broken knees, the latter information will be regarded as
irrelevant.

*  FRSGCpjg: due to the timed nature of GCp, emerging arguments can also be calcu-
lated based on FRSGCs. For example, beginning with the COVID-19 crisis in 2020,
terms such as “PCR test”, “vaccinated”, or “Corona-positive” were introduced in
many medical documents and, of course, became highly important information. A
FRSGCpjg; is based on the concept of emerging named entities [45] and calculated on
the union of intersections of GCp in a medical collection. This means that only the
differences in a patient’s GC compared to previous versions are regarded as being
relevant (e.g., when the patient took his first COVID-19 test), and then the union of
all the patient’s differences in a certain period is constructed as a baseline for TFIDF.
Such a calculation clearly indicates that terms such as “COVID-19” have become more
relevant since 2020.

Formally speaking, for a collection of n patients in a period of time from ¢1 — t2, this
can be summarized as:

t
FRSGCp; = TFIDF(| J SGCp;) (18)
i=0
n
FRSGCapp = TFIDF(|J SGCp) (19)
i=0
n {2
FRSGCjst = TFIDF(|J () SGCp;). (20)
i=0 j=t1

Particularly, FRGCp;s; can be regarded as a sound basis for subsequent data min-
ing or prediction processes. Depending on the application purpose, combinations of
FRSGCp(i), FRGCppp, and FRGChjg; are also possible. Feature Relevant Semantic Graph
Codes can also be employed as a basis for further semantic modeling, as discussed in the
next section. With the definition of these metrics, the open challenge in the area of MMIR,
i.e., the semantic representation of features and the calculation of their relevance, has been
addressed. To achieve the second goal of Explainability, a further step is required, which
introduces a semantic understanding of true and false information.

3.3. Intelligent Information Retrieval, Reasoning, and Inferencing

The previously defined Feature Relevant Semantic Graph Codes can now be employed
for inference calculation and reasoning to particularly support medical diagnosis systems.
In general, inferencing and reasoning require the categorization of information in terms of
valid or invalid. Such information can be maintained in Knowledge Organization Systems
(KOSs) or Truth Maintenance Systems [28,37]. However, in many cases, such systems are
not available. Hence, in the following subsection, an approach based on Feature Relevant
Semantic Graph Codes is taken to support the calculation and maintenance of validity
for an MMIR collection. This modeling is aligned with the concept of nonmonotonic
reasoning [29], based on justified beliefs and reasonable assumptions. Furthermore, a
Default Logic according to Poole [30,31] is applied. As shown in Section 2, such a Default
Theory

ﬂ’oole = (]:/D) (21)
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is described by the set F of facts (i.e., justified beliefs) and the set D of hypotheses (i.e.,
possible assumptions). The overall goal is to increase the number of elements in F by
applying rules or calculations to the elements in D (i.e., building Knowledge Extensions).
This is achieved by defining a measure for the Knowledge Validity KV of a collection based
on the feature relevant relationship types between feature vocabulary terms, which are
measured by the metric Mgt as follows:

MRr(FRSGCcq (0t;, vt}))

KV (vt;, vtj) = log |FRSGCcoyy (vt;, 0t})|

(22)

This formula calculates the ratio between similar relationships and possible relation-
ships of vocabulary terms according to their relevance within the collection. The more
similar the relationships that are detected, the higher the probability that this relationship is
part of F and can be regarded as valid for the collection. Additionally, the introduction of a
threshold (see Section 3.2) (e.g., a validity of say 90%) can lead to a significant increase in F
and accurate approximations for inference. Based on the set F, automated reasoning falls
to simple Boolean algebra tasks, as only relevant information is now contained in . For
this task, existing tools such as Apache Jena [46] can be integrated as a simple rule engine.
The knowledge validity KV introduces automated reasoning and inference calculation for
any Semantic Graph Code-based MMIR application. Paired with the additional concepts of
this section, and according to [47], the GMAF, MMFG, and Graph Code retrieval can now
be regarded as Intelligent IR.

Example 8. If, in all collection’s images of a person, the spatial relationship “head above person”
has been detected, the feature relationship “above” between the vocabulary terms “head” and “person”
can be regarded as common knowledge within the collection and will be added to the set F. If all
images with a “hat” have the feature relationship “above” to the vocabulary term “head”, this
information will also be added to F. A re-calculation of the set of possible hypotheses D can now
verify that the hypothesis “hat above person” is also true and move it to the set F.

Until now, internal IR processing has mainly been addressed by the modeling of this
section, which is typically hidden from users. However, the presentation and particularly
the Explanation of MMIR processes are important in the medical application area. Therefore,
in the next section, the presentation of explaining texts for different user groups is shown.

3.4. Explainability for Graph Codes

In this section, we discuss our approach to answering questions such as, e.g., “what
happened between January and July?”, or “why is this element in the result list?”, in a
human-understandable way. As our goal is to produce natural language sentences based
on index features (i.e., based on Graph Codes), we will employ the grammar for correct
English sentences G, from Section 2 as a basis. A typical use case in the area of medical
applications and diagnosis is the detection or calculation of differences between two dates
t1, tp and different corresponding sets of patient data GCp(t1) and GCp(t;). The calculation
of a GCp_p;ss that was already discussed leads to a Graph Code, which only contains the
differences between t; and t; and thus the information set to answer the questions above.

This modeling in general follows the Explainability of MMFGs as defined in [1]
and hence introduces production rules for the English language, which are based on
syntactic elements of a Graph Code, i.e., the dictionary terms, and the corresponding
relationships. However, as Graph Codes are highly optimized 2D indexing structures,
producing sentences falls to the task of defining production rules for certain MMIR use cases.
For highly sophisticated explanations of MMIR assets, ESMMFGs can be employed (see [1]).
Instead, Graph Codes can be employed for the explainability of MMIR processing steps. To
calculate natural language texts based on GCp.p;fy, the dictionary terms dictp_p;sy (i.e., the
textual representation of the MMIR feature) of GCp_p; ¢ are mapped by the introduction
of an LBL element to existing English language terms. The relationships between these
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dictionary terms (i.e., the value of matrix cell m; ;) can also be formulated in natural
language. This can be achieved by assigning each relationship type of a Graph Code (i.e.,
each possible value of a matrix cell ; ;) a pre-defined phrase PHRype. For example, PHRy
could be represented by the phrase “is a”, PHR3 could be represented by “belongs to”. The
calculation of which data are actually in the Graph Code depends on the MMIR processing
step. There are two general use cases for explainability and corresponding Graph Code
calculations:

*  “Why is this element in the result list?”. This question can be answered based on
FRSGCs by calculating the subtraction of the result element FRSGC; with the original
query object, which can represented by an FRSGCqyry- In this case, an Explaining
Semantic Graph Code (ESGC) would be ESGC = FRSG; — FRSGCQyery-

. “Why is this element before the other?”, or “what is the difference between these
elements?”. In this case, the ESGC would be calculated by the subtraction of the two
result elements FRSGC;, FRSGCj as ESGC = FRSGC; — FRSGC;.

We can now introduce the grammar Ggsgec = (Ven, Ten U LBL, Psgc, Sen) for Graph
Codes by the definition of the following production rules Pg¢ to formally produce natural
language sentences for the explanation of search results:

PGC:PenU{ (23)

dictanswer — LBL (24)

m;j #0 — LBL PHRyype LBL (25)
. (26)

When this grammar is employed for Semantic Graph Codes, further information
from internal or external SKOSs can be used for the calculation of human-understandable
explanations. When this grammar is employed for Feature Relevant Graph Codes, the
resulting explanations become parsimonious and accurate, while the explanation of a
regular Graph Code will contain more (and possibly superfluous) information. However,
in any case, the production rules remain the same. Based on these rules, any processed
Graph Code becomes a Explainable Semantic Graph Code (ESGC). Based on Ggc, the
following explanation can be calculated for a given GCp_p;: “between January and July,
the blood pressure increased from 140 to 155”.

As these phrases are formally correct English sentences, and are based on the complete
set of English grammar rules, further language generation optimizations can be applied by
adapting the phrases PHRyyp, and the production rules Psgc. A basic implementation of
such rules has been completed in the context of the GMAF framework and will be discussed
in the next section.

4. Implementation and Evaluation

For the implementation of this modeling, we added several GMAF plugins, FRGSCs,
and ESGCs to the GMAF framework. Here, we only discuss the final result from a user’s
perspective. Hence, here feature relevance and corresponding results are demonstrated,
and details on the implementation of explainability will be given. The current version
of the GMAF and the corresponding implementations are available on Github [48]. This
evaluation is based on a detailed quantitative and qualitative experiment, which has been
published in previous work [2]. Here, we focus on the extension of our work and the
corresponding results in the medical context.

To demonstrate modeling and implementation results, in this section two classes of
datasets have been employed: (1) one very general dataset with MMIR assets from the
nonmedical context to provide a simple and intuitive understanding of the experiment and
the interpretation of the corresponding result, and (2) a second dataset from the medical
context to show that the presented approach can easily be transferred to other application
domains, that the results confirm the hypothesis, and that Graph Codes can improve MMIR
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for the medical application domain. In Section 4.1, feature relevance and the corresponding
metrics are demonstrated, and Section 4.2 contains experiments in the area of explainability.

4.1. Demonstration of Feature Relevance

The first experiment shown here is general in order to demonstrate feature relevance.
The second experiment shows the same task in a medical context. In particular, the first
experiment should provide an intuitive understanding of the solution for users without
a medical background. Hence, a test collection of mainly similar pictures has been cre-
ated. The images are licensed from Adobe Stock and illustrate a photo shoot context with
a model, where many pictures with a similar setup have been taken (see Figure 6). In
Figure 7, a similar collection in the medical domain is shown, which serves as a dataset to
demonstrate the same experiment in a medical context. The pictures are taken from [12],
which is a publicly available and anonymized dataset for medical image features. As all
of these pictures have numerous common elements for MMIR, it would be important to
find differences, i.e., the relevant features of each picture in the context of the collection.
Hence, the Feature Relevant Graph Code has been introduced (see Section 3.2) and should
be validated in this experiment. Figures 8 and 9 show the corresponding result for the non-
medical and medical contexts. The original images are displayed at the top of Figure 8a,b
and their respective Graph Code visualization is shown at the bottom. Figure 9 is similar.
In Figures 8a and 9a, the normal Graph Code is shown, which contains all the vocabulary
terms detected by the MMIR processing of this image. Many of them are similar in most
pictures in the collection and hence irrelevant for MMIR. The Feature Relevant Graph
Code (FRGC) in Figures 8b and 9b, however, only contains such vocabulary terms that
are unique for the selected picture and hence highly relevant for MMIR. Furthermore, the
FRGC leads to additional compression. In Figure 8, only 12 relevant features are contained
in the Graph Code instead of 36 before the relevance calculation. The number of matrix
fields to be processed is hence reduced from 1296 to 144, which is a reduction of 88%. The
resulting Feature Relevant Graph Codes in the medical context (see Figure 9) show a similar
compression rate, i.e., the detection of relevant features increases significantly the quality
of the medical collection’s index.

This experiment shows clearly that relevance calculations based on Graph Codes
and the TFIDF algorithm lead to a compression of the index and also to highly relevant
individual features in the medical context. In the next section, these Feature Relevant
Semantic Graph Codes are employed for the introduction of explainability.

4.2. Demonstration of Explainability

For the implementation of explainability, we decided to present a minor mouse-over
tooltip to the user during mouse hover over an item in the result area. This tooltip contains
the basic natural language explanation as to why this element is part of the result list. The
definition of detailed asset descriptions is based on MMFGs (and not the Graph Code index
structure) and has already been introduced and demonstrated [1]. Figure 10 shows the
explanation of the question “what is the difference between two elements?”, in the medical
context for two target audiences, whereas in Figure 10a an explanation for a medical target
audience (i.e., doctors or nurses) is calculated, and in Figure 10b, an explanation for a
nonmedical audience (i.e., the patient) is calculated. In both cases, the ESGC contains only
a few vocabulary terms, which is typical for the difference calculation (i.e., the subtraction)
of two feature relevant elements. In the case of this example, the ESGC only contains the
vocabulary terms “BMI” (i.e., the body mass index) and “blood-pressure”.
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Figure 7. Picture collection of mammography images shown in the GMAF framework.

For the medical audience, short phrases PHRyyp, for the explanation of ESGC have
been selected, e.g., LBL is the value of the vocabulary term, PHR3 = has a value of. For
the nonmedical audience, the LBL objects have been defined in a way that, e.g., the LBL
for the term BMI is not just “BMI”, but “BMI is the body mass index and indicates if a
person’s weight is normal, too low, or too high. A BMI value of 20 is normal”. PHRj3 for
the nonmedical audience is defined as PHR3 = Your value is.
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Figure 10. Explaining tooltip of a result element for (a) a medical target audience and (b) a nonmedical
target audience (b).

This demonstration supports our hypothesis that automatically calculated explanation
texts can improve the MMIR experience for any application domain, but particularly
address requirements in the medical area, where different explaining texts for different
target audiences are helpful.

4.3. Evaluation Planning

In order to perform a first evaluation of these results in the medical application area, a
cognitive walkthrough with users (i.e., doctors, nurses) in the medical domain is planned
following the methodology of [49]. For this evaluation, we plan the following tasks:

e Work task analysis: define the typical tasks in a real-world scenario in the medical
application area, supported by results demonstrated in this paper.

¢ Walkthrough: evaluate if the demonstrated solution can increase efficiency and/or
effectiveness of the work task, including a detailed discussion and documentation of
benefits, errors, and improvements.

*  Questionnaire: after the walkthrough, the users are asked to provide feedback in the
form of a questionnaire, which will allow further statistical evaluations.

The planning of such an evaluation is currently ongoing. The evaluation and respective
results of this evaluation are beyond the scope of this paper.

5. Conclusions and Future Work

In this paper, the transfer and extension of Graph Codes for fast and effective MMIR in
the medical application domain have been discussed. In particular, for medical applications,
the calculation of relevant information is important due to the significant number of MMIR
assets that are produced during diagnosis and treatment. We showed that Relevance Metrics
can be defined and employed for calculations on a semantic feature level if certain MMIR
assets or vocabulary terms are relevant for the application use case. In the medical context,
this helps doctors and nurses to focus on their primary task and minimize time-intensive
pre-filtering of information. Furthermore, these metrics enable application profiling for
special application use cases, which further increases the improvement of Graph Codes
in the medical application domain. The definition of Discriminating features and the
corresponding value ranges can be employed to introduce thresholds or limits for certain
feature values, which can be further employed for human-understandable explanations
of medical features and their values. These explanations are introduced based on a PS-
Grammar, which can be employed to generate automated texts for different target audiences.
This modeling hence answers the research question and provides a solid foundation for
further applications of Graph Codes in the medical application domain.
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However, the approach presented is not just applicable for the medical application
domain. In fact, the modeling and implementation are general and application domain
agnostic and can be employed in any MMIR domain. Hence, transfer to the medical
application domain can be regarded as a blueprint for transferring Graph Code-based
MMIR to other application domains. This can form part of our future work.
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