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Abstract: Detecting objects with a small representation in images is a challenging task, especially
when the style of the images is very different from recent photos, which is the case for cultural
heritage datasets. This problem is commonly known as few-shot object detection and is still a
new field of research. This article presents a simple and effective method for black box few-shot
object detection that works with all the current state-of-the-art object detection models. We also
present a new dataset called MMSD for medieval musicological studies that contains five classes
and 693 samples, manually annotated by a group of musicology experts. Due to the significant
diversity of styles and considerable disparities between the artistic representations of the objects, our
dataset is more challenging than the current standards. We evaluate our method on YOLOv4 (m/s),
(Mask/Faster) RCNN, and ViT/Swin-t. We present two methods of benchmarking these models
based on the overall data size and the worst-case scenario for object detection. The experimental
results show that our method always improves object detector results compared to traditional transfer
learning, regardless of the underlying architecture.

Keywords: transfer learning; few-shot image classification; few-shot object detection; cultural
heritage; musical iconography; medieval singing

1. Introduction

The analysis of medieval vocal practices is an essential issue for musicologists and
performers. However, medieval singing as a musical performance has been explored
much less than other musical instrumental performances [1]. This is because medieval
musical instruments are studied mainly by analyzing images of artworks in which these
instruments are represented [2]. However, since the human vocal cords cannot be displayed
explicitly, it is harder to identify whether a person or group is singing or not.

Even though there are numerous descriptions of musicians and singers in medieval
chronicles and tales, illuminated manuscripts are the principal source for musical iconog-
raphy. Illuminations often depict very complex situations in a tiny space. Artists often
wished to concentrate much more information in a small illumination than would be con-
tained withinthat scene in real life. However, studying a large corpus of images allows
musicologists to detect repeated patternsand shed light on previously unknown medieval
vocal practices across different periods and regions. The discovered patterns could en-
able performers wishing to perform repertoires to better understand the organization of
singers, the environment, and the setting of the songs according to the period and genre
considered. For example, considering the architectural modifications over the centuries,
better choices regarding locations and musicians could be made to recreate acoustics as
close as possible to the original music scene. Therefore, our objective is to find singing
performances in images from medieval artworks. More precisely, we will detect medieval
images containing persons in solo or group-singing situations, whether accompanied or
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not by musical instruments. The final objective for musicologists is to better understand
the physical postures of singers, their relationship, and their location inside the building.

Since the human voice is not a visible musical instrument, it is necessary to define
possible objects in the images that may suggest the presence of singing performances.
Therefore, we propose identifying characters who have their mouths open, perhaps with
features linked to the vocal utterance (such as declamation or singing; see Figure 1a (BnF
ms. fr. 166 f. 121v: https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f256/1500,
750,1000,1300/full/0/native.jpg, accessed on 1 November 2021)). However, having the
mouth open is not a sufficient condition to determine that a person is singing. The con-
text or environment in which these singers are performing is vital to understanding the
musical scene.

(a) Book in their hand (b) Book placed on a lectern

(c) Unfolded phylactery (d) Book with musical notation

Figure 1. Examples of medieval singing illuminations.

The scene’s context should be analyzed to detect additional clues such as a book hold in
the hands or knees, or placed on a lectern (Figure 1b (BnF ms. fr. 166 f. 115: https://gallica.
bnf.fr/iiif/ark:/12148/btv1b105325870/f243/2799,3000,1000,1200/full/0/native.jpg, ac-
cessed on 1 November 2021)), an unfolded phylactery (and if visible, the text on the
phylactery, Figure 1c (BnF. NAL 104, f. 50r: https://gallica.bnf.fr/iiif/ark:/12148/btv1b100
23007f/f106/50,50,2000,2300/full/0/native.jpg, accessed on 1 November 2021)), or some
musical notation (Figure 1d (BnF ms. fr. 166 f. 126v: https://gallica.bnf.fr/iiif/ark:/12148
/btv1b105325870/f266/3199,3100,1000,1200/full/0/native.jpg, accessed on 1 November
2021)). Moreover, some gestures such as the hand placed on the shoulder, the movement of
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the pulse (to set the tempo and anchor the rhythm), or a finger pointing to the musical score
may also evoke singing performances. Musicologists also analyze the texts embellished by
the miniatures or illuminations containing singing performances. This research deliberately
sets aside animals, hybrids, and monsters to concentrate only on clerics, laity, children,
and angels.

Object detection is one of the most important tools in computer vision for musicologists
and art historians working on cultural heritage (CH) data [1,3,4]. However, cultural
heritage represents an interesting challenge for object detection since the data are mainly
characterized by (i) small regions of interest; (ii) artistic creativity, leading to significant
visual differences between instances of the same class; and especially (iii) a lack of properly
annotated data for training. Regarding the last drawback, even though cultural institutions
constantly publish raw datasets, the available images are domain-dependent and differ
considerably depending on the material used, the technique used, and the artwork’s time [1].
Most of the previously mentioned challenges can be approached with object detection or a
variant of it, such as its use in combination with domain adaptation techniques or visual
transformers [5].

When dealing with small datasets (such as those for medival studies) that are challeng-
ing even for typical transfer learning methods, few-shot image classification is a possible
solution [6]. Few-shot object detection is the process of learning and generalizing useful
computer vision models from a small set of images [7]. The technique of few-shot learn-
ing [8] in computer vision has progressed drastically over the last years, mainly due to
the advances in transfer learning techniques such as meta-learning [9]. Such advances
have provided great results for basic image classification tasks. Our datasets in the field of
cultural heritage suffer from a great deal of challenges, as described in [2], but the main
challenges are the lack of samples in specific classes due to the loss of historical artifacts or
the difficulty of finding such samples in the vast collections provided by different museums.
Unlike image classification [10], few-shot object detection has received far less attention in
the past and is still a growing field. The main difference between image classification and
object detection is that the model is required to detect the location of the classified objects
from a possible set of millions of potential locations. This additional sub-task makes the
object detection task even harder to perform in scenarios where annotated data are sparse.

In this article, we present two main contributions, (i) a novel technique for performing
few-shot object detection based on bi-stage training, in which the first stage tries to improve
on the object localization process for the new classes and the second stage aims to improve
the image classification and fine tuning of the pre-located coordinates; and (ii) a bench-
mark for three main models in the field of object detection, which are Yolov4 [11], Faster
RCNN [12], and SWIN Transformers [13]. We chose these three architectures because they
represent the leading representatives of their family trees of architectures, which are the
RCNN family [14–16], the YOLO family [17], and the Visual Transformers family [5].

The paper is organized as follows: Section 2 summarizes the current state of the art in
few-shot object detection and its applications to the domain of cultural heritage. Section 3
focus on presenting the dataset collection and annotation processes. Section 4 presents
our novel and simple method for few-shot object detection. The empirical benchmark of
our algorithm is shown in Section 5. Finally, Section 6 summarizes the contributions of
the paper.

2. Related Works
2.1. Object Detection

Object detection, as a subtask of computer vision, has been the focus of tremendous
research interest over the past few years, from traditional computer vision algorithms such
as Viola Jones, and the Histogram of Oriented Gradients Detector, which are still commonly
used in mobile applications for their speed and accuracy, to new deep-learning-based
models [18–20] such as Yolo [17], RCNN [16], SSD [21], and others. We can split the deep
learning-based object detection models into two subgroups: one-stage detectors and two-
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stage detectors. One-stage detectors are famous for their speed, which started with the Yolo
Tree family (from v1, v2, v3, which are the original models up to v4, v5, and pp, which are
extensions provided by separate researchers). Other one-stage detectors were introduced
in the field, such as the Single-Shot MultiBox Detector (SSD), and RetinaNet [22]. The
Single-Shot MultiBox Detector (SSD) introduced the multi-reference and multi-resolution
detection techniques, allowing better accuracy. The developers of RetinaNet argued that
the single-shot detectors have low accuracy because of the imbalance between background
and foreground classes and introduced the focal loss so that the detector would focus more
on challenging examples throughout the training phase.

The second category of models is two-stage detectors, which are known for their
accuracy but lack speed compared with single-shot detectors. Two-stage classifiers are
very useful in cases where the inference time is not crucial, and there is no need for fast
or real-time processing. Such cases are widespread in cultural heritage studies or medical
applications, where accuracy is more important than increasing speed by a few microsec-
onds. The branch of two-stage detectors started with the introduction of region-based
convolutional neural networks (RCNNs), which combined deep learning with the tradi-
tional selective search algorithm, and which were later abandoned due to the development
of faster RCNN models propoingd a fully deep approach based on region proposal net-
works. Although RCNN-based models have dominated this side of the family tree of object
detection, especially with the introduction of feature pyramid networks, other models
have also been proposed for two-stage detectors, such as spatial pyramid pooling net-
works (SPPNet) [23], which demonstrated many ideas that later found their way into the
RCNN family.

All the previously mentioned deep models are convolution-based, mainly because
CNNs have dominated the field of computer vision due to their performance as of 2021.
Lately, however, a new branch of models is being added to the computer vision field,
which are attention-based models, rather than CNN-based models. Attention is an idea
that has been dominating the field of natural language processing for a long time now,
with models such as bert and GPT, which provide a human-like level of understanding
of text and responding to questions. This trend has found its way to computer vision
thanks to the paper “An Image is Worth 16 × 16 Words”, demonstrating an approach
commonly known as vision transformer (ViT) [5], as well as its follow-ups which applied
a transformer architecture on 16 × 16 non-overlapping medium-sized image patches for
image classification. Although ViT provided a good speed-accuracy trade-off compared
with CNN-based models, its successful application required a large-scale dataset and
training, which was later fixed using data-efficient image transformers (DeiT) [24], which
proposed several training algorithms allowing the vision transformers to be applied on
smaller datasets. Vision transformers are aiming to replace CNNs and outperform them
in terms of speed and accuracy, and the best example of this is the current state-of-the-
art model for image classification and object detection/instance segmentation, the Swin
Transformer [13], which builds a hierarchical vision transformer using shifted windows
that can be used as a generic backbone for any computer vision model, replacing the
convolutional layers and outperforming them with a large gap in terms of performance
metrics such as top-1 accuracy and mean average precision (mAP) [25], and which has
linear computational complexity with respect to the input image size.

2.2. Few-Shot Object Detection

Few-shot object detection has been a growing field lately but has not received as
much attention as object detection for large-scale datasets or even few-shot image classi-
fication, mainly due to the task’s difficulty compared with image classification and the
large variability of the models’ architecture in the object detection field [26]. Nonetheless,
several proposals have been used in the field, such as meta-learning-based techniques [27],
feature re-weighting [6] and fine-tuning-based approaches, such as the frustratingly simple
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few-shot object detection [7] method, which is very similar to our method but which lacks
its flexibility and applicability to other architectures.

2.3. Computer Vision in the Humanities

Although the field of object detection is relatively mature and has been around for
quite some time, its applications to cultural heritage data have been relatively modest.
In the musicology field, most contributions use simple images [28], such as the recent
contributions to digital cultural heritage analysis focusing on similarity metric learning
methods for making semantic-level judgments, such as predicting a painting’s style, genre,
and artist [29,30]. Other contributions detect fake artworks through stroke analysis and an
artistic style transfer using adversarial networks to regularize the generation of stylized
images [31]. Other applications of deep networks to archaeological remote sensing include
topics such as the detection of buried sites on Arc GIS data [32] and the classification of
sub-surface sites using R-CNNs on LiDAR data [33]. Both contributions followed a transfer
learning approach by fine-tuning a pre-trained CNN using LiDAR data in ImageNet [34].
Overall, we can see that the application of computer vision in the digital humanities and
cultural heritage is a field that is still being uncovered, mainly because of the lack of data,
and this why is our method for few-shot object detection will open a door towards more
contributions in the field, overcoming the barrier of the lack of data.

3. Dataset Annotation and Ground Truth Creation

The image dataset creation and the ground truth annotation and validation processes
were organized into four different steps, described as follows.

1. image dataset: The first step was to create a dataset of images for training. Therefore,
three experts in musicology and professional singers searched for and manually
selected images of manuscript pages containing singing representations.

2. Annotate objects: The domain experts annotated the dataset using the Supervisely tool
(https://supervise.ly/, accessed on 1 November 2021), which is a collaborative online
tool for image annotation, allowing users to create bounding boxes and object masks.
As a result, the objects (such as books, lecterns, altars) in each image are highlighted
by defining its borders.

3. Classify the objects: In the third step, the objects annotated previously were manually
classified as book, folio, phylactery, lectern, or altar by the musicologists. Thus, we can
not only detect objects but also the exact position of those objects within the image.

4. Obtain a consensus in the classification of objects: As we explained previously, it is not
easy to detect singing performances. We are working with images of artworks, so the
singing representations are not real; they are paintings or drawings of an artist who
does not necessarily know about vocal practices. Therefore, the fourth and last step in
the classification of objects consists of achieving a consensus among all the experts to
create the ground truth.

3.1. Image Dataset of Illuminations Representing Medieval Singing

At the beginning of the Middle Ages, musical instruments were mainly used as a
complement for singing. At that time, in religious music, the vocal song was thought to
represent the divine Word of God. Therefore, religious music was promoted and developed
by high authorities of the Church. Medieval singing was present in all services, major
festivals, and ceremonies. Religious songs were repeated every day in churches and
monasteries. In secular music, singing performances werealso of vital importance. Secular
vocal songs were generally transmitted orally. They reflected ordinary people’s daily lives,
love and war stories, or songs intended for processions going to battle.

The importance of the notation of songs is also manifested by rich illuminations,
which gradually range from simple colored to intricately decorated capitals and complex
scenes with multiple characters and rich details. These richly illuminated manuscripts
provide musicologists with numerous clues concerning the practice of singing. Analyzing a

https://supervise.ly/
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large dataset of images may reveal previously unknown details to clarify medieval singing
beyond eras and regions.

Massive amounts of digital iconographic data are available nowadays thanks to the
development of the IIIF standard. The IIIF standard offers unified access to view and
read digitized ancient documents, significantly increasing the number of people who can
consult them. The most important cultural institutions all around the world publish their
collections using the IIIF format. The vast digitization of manuscripts now makes it possible
to reconsider iconographic studies and analyze a series of gestures and behaviors that can
be compared with narratives, descriptions, and texts of treatises. Thus, new illuminated
medieval collections are now available for researchers, allowing them to harvest millions of
illuminated manuscripts. The ever-increasing number of singing performances hidden in
those illuminated manuscripts challenges researchers to develop new pattern-recognition
methods to find them.

Our musicologists visualized hundreds of IIIF manuscripts from various collections to
find images of illuminations with singing performances. Among the consulted institutions
were the French National Library (BnF), the J. Paul Getty Museum, the Universitatsbiblio-
thek Basel, the University of Cambridge, and the University of Princeton. As a result, we
obtained a dataset of 341 IIIF images of illuminations.

3.2. Annotation of Written Supports in Illuminations

The presence of books is an essential aspect of liturgical song representations. Al-
though in the Middle Ages, songs were mostly memorized since they were repeated every
day in ceremonies and mass, some songs required different texts depending on the days
and times of the liturgical year. Therefore, due to the increase in the repertoire and the de-
velopment of polyphony, it was necessary to create written supports. Examples of written
supports are missals and graduals. The size of written supports may vary from a hand-held
book to a large codex requiring a lectern, around which the singers would gather, in the
middle of the choir. Written supports coud be found in the hands or knees, tables, altars,
lecterns, palace hall, or gardens.

Another type of written support for singing performances is phylacteries and sheets
(with or without musical notation). There are well-known phrases that are always sung,
such as “Ave Maria Gratia plena”, “Cantate Domino”, or “Gloria in Excelsis Deo”. When
these phrases are found in phylacteries or the texts around illuminations, they indicate a
singing performance.

Therefore, in a previously selected dataset of IIIF images selected manually by ex-
perts containing singing performances, we annotated the following classes as described
in Table 1:

1. Phylactery: a medieval speech scroll, which contains or depicts speech, song, or other
sounds (for example, Figure 2d (Bodmer ms. 91 f. 39r: http://www.e-codices.unifr.
ch/loris/fmb/fmb-cb-0091/fmb-cb-0091_039r.jp2/full/full/0/default/jpg, accessed
on 1 November 2021)).

2. Folio: a thin and flat surface that can be used for writing or drawing. (Figure 2b
(Abbeville ms. 016 f. 15: https://iiif.irht.cnrs.fr/iiif/France/Abbeville/B8000162
01/DEPOT/IRHT_106357_2/1000,500,800,1500/full/0/default.jpg, accessed on 1
November 2021)).

3. Book: a collection of sheets bound together containing printed or written texts, pictures,
etc. (Figure 2a (BnF ms. fr. 166 f. 119v: https://gallica.bnf.fr/iiif/ark:/12148/btv1b105
325870/f252/1500,3100,1000,1200/full/0/native.jpg, accessed on 1 November 2021)).

4. Altar: a sacred table used for ritual sacrifice or offerings in a religious building.
(Figure 2e (Initiale ms. 3028 f.082 http://initiale.irht.cnrs.fr/decor/58000, accessed on
1 November 2021)).

5. Lectern: a reading desk with a slanted top, on which books are placed for reading
aloud. (Figure 2c (Avignon ms. 0121, f. 162v: https://bvmm.irht.cnrs.fr/consult/

http://www.e-codices.unifr.ch/loris/fmb/fmb-cb-0091/fmb-cb-0091_039r.jp2/full/full/0/default/jpg
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https://iiif.irht.cnrs.fr/iiif/France/Abbeville/B800016201/DEPOT/IRHT_106357_2/1000,500,800,1500/full/0/default.jpg
https://iiif.irht.cnrs.fr/iiif/France/Abbeville/B800016201/DEPOT/IRHT_106357_2/1000,500,800,1500/full/0/default.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f252/1500,3100,1000,1200/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f252/1500,3100,1000,1200/full/0/native.jpg
http://initiale.irht.cnrs.fr/decor/58000
https://bvmm.irht.cnrs.fr/consult/consult.php?mode=ecran&reproductionId=15460&VUE_ID=1393519
https://bvmm.irht.cnrs.fr/consult/consult.php?mode=ecran&reproductionId=15460&VUE_ID=1393519
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consult.php?mode=ecran&reproductionId=15460&VUE_ID=1393519, accessed on 1
November 2021)).

(a) Book (b) Folio (c) Lectern

(d) Phylactery (e) Altar

Figure 2. Examples of object annotations.

Table 1. Distribution of objects in our dataset across different classes.

Class Counts

Book 338
Phylactery 204

Lectern 87
Altar 37
Folio 27

TOTAL 693

4. Methodology

In this section we describe our novel method for few-shot object detection based on a
bi-training approach. We start by first describing the context of few-shot object detection
and the type of input we work with; then we describe in detail the different steps and
loss functions for our bi-training method. We finish this section with a description of the
contributions provided in this article.

We use the same description of few-shot object detection as the settings introduced
in [6]. We have a set of base classes Cb, which contain a sufficient number of samples
(sufficiency depends on the model and the pretraining and the method used for training,
which we will investigate in the results section) and a set of novel classes Cn that have a
low representation in the dataset, with only K objects per class (where K is small number,
usually around 10; we investigate different values of K in the results section). For the

https://bvmm.irht.cnrs.fr/consult/consult.php?mode=ecran&reproductionId=15460&VUE_ID=1393519
https://bvmm.irht.cnrs.fr/consult/consult.php?mode=ecran&reproductionId=15460&VUE_ID=1393519
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object detection task we need D = (x, y), x ∈ X, y ∈ Y such that x is the input image and
y = (ci, li), i = 1, . . . , N is the set of annotations per image that is made with the bounding
box coordinates and the class of each object such that the set of classes is the union of base
classes and novel classes. For our dataset, we use a different ratio of novel/base classes
and different thresholds for the definition of a novel and base class.

To evaluate our method for few-shot object detection, we used a test set that contained
a combination of both novel and base classes, with the final goal of optimizing the perfor-
mance of the model on both sets, which we quantified using the mean average precision
(mAP) metric, which combines the results on all classes.

4.1. Bi-Training Few-Shot Object Detection

We describe our bi-training few-shot object detection (BiT) method in this section. We
demonstrate that our method is model-agnostic and can work with a variety of model
architectures, allowing it to be used on any pretrained object detector, fine-tuning it for
enhanced performance. We chose to use the faster RCNN approach with a region proposal
network (RPN) backbone as the representative of region-based convolutional neural net-
works, and to use Yolov4 as the representative of the You Only Look Once family and the
Swin T model as a representative of the vision transformer family. Intuitively, our method
aims at treating the object detector as a black box but makes a few assumptions about it.
The first assumption is the existence of an object proposal sub-network (for most two-stage
models this exists easily but for Yolo it is represented as a model with only the “objectness
score calculations” without performing the object classification, making it a class-agnostic
sub-model). The second assumption is the existence of an object classifier, which is the case
for all of our models. Our method operates on two training steps described in Algorithm 1,
which are:

Algorithm 1: Bi-Training Few-Shot Object Detection
Input: X — Training images.

Y — Training labels.
Wn — Sample weight multiplier for the novel classes.
lr1 — First step learning rate.
lr2 — Second step learning rate.

Output: θO — Weights of the object detector

// Training the object detector sub-part of the model.
for i← 1 to epochs do

for j← 1 to nb_batches do
Sample a batch of images regardless of source class
(x1, y1), (x2, y2), . . . , (xN , yN);
θO = θO − lr1

∂L
∂θO Equation (1) ;

end
end

// Sample weight calculations and classifier fine-tuning
§w = norm([1 if yi ∈ Cb else Wn for i ∈ [1 . . . N]])

for i← 1 to epochs do
Sample a batch of images for both domains and their labels and weights from §w
(xb, yb, wb), (xn, yn, wn);

Update θO by deriving Lrpn + Lcls + Lloc;
end
return θO

4.1.1. Total Model Improvement

The first step in our method is to fine-tune the object detector (not the classifier) on
the whole dataset, not only the base classes, to make sure the model is able to propose
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objects for classification for all classes, especially if the novel classes are not very similar in
shape and style to the base classes. This step can be applied to all object detection models
since they are all either two-step models or YOLO-based, where the classification and
object proposal happen in the same step, and this can be achieved by using a weighted
combination of both losses, where the weight of the classification at this step is 0. The joint
loss would look like this:

L = Lrpn + 0×Lcls + Lloc, (1)

such that Lrpn represents the object proposal loss function applied on the RPN (or the object
scoreness cross entropy loss for YOLO-based models), which mainly used to refine the
anchors without touching the feature extractor (the backbone remains fixed as our dataset
does not have enough samples to effectively retrain the whole model). Lcls is the object
classification cross entropy loss and in this stage we do not train it; we try to ignore its effect
because the object proposal step at this stage still is not good enough to propose enough
samples of the novel classes, leading to an even bigger class imbalance problem for the
classifier. Finally, Lloc is the smoothed L1 loss used to train the box regressor.

4.1.2. Classifier Fine-Tuning

The second step of our model treats the object detector as a whole as a two-step
model, in which the first step is the object proposal and the second is the classification
and bounding box regression. In our first step we fine-tuned the object proposal model
and now, for the fine-tuning of the classifier and bounding box regressor, we will treat it
as we would another CNN model used for classification. This simplification works very
well on all object detector models, regardless of whether they are one-step models (Yolo) or
two-step models (RCNN). The fine-tuning is targeted only at the last layer of the bounding
box regressor and the classifier (if they are seperate layers, as in the RCNN family, they
are fine tuned separately, and if they are in the same layer, as in YOLO, they are done
together). We fine-tune both base classes and novel classes but we assign a higher sample
weight to the novel samples, forcing the model to perform better with the novel samples.
We decrease the learning rate in this stage compared to the first stage, allowing the model
to train slower and not to change drastically in order to fit the novel classes and abandon
all results on the base classes.

5. Results

In this section, we conduct extensive benchmarking of several object detectors on the
task of few-shot object detection based on two approaches. The first one aims at measuring
the influence of reducing the overall number of samples for both base classes and novel
classes on the performance ofthe model in total. The second experiment was conducted to
see how the change in the number of samples of the lowest novel class influenced its own
average precision. In our paper, we focus only on deep learning models instead of machine
learning techniques, mainly because our dataset contains a large variety in forms shapes,
sizes and artistic representations within the same group of objects. Nevertheless, our
dataset has a small sample count for each class, making it a very difficult task for machine
learning models which do not leverage pre-training and transfer learning. For the sake of
a better evaluation, we trained a histogram of oriented gradients, followed by a support
vector machine classifier and a sliding bag of visual words. The results for the Bag Of Visual
Words BOVW model were almost zero regardless of the fine tuning, but the Histogram
of Oriented Gradients HOG model had a high detection rate (74/138–80% training, 20%
testing) but a very low precision since the model confused many of the other parts of the
image as an object, dropping the f1-score to 0.239. The threshold of the intersection over
union used for the experiment was 50% to increase the model’s results.

We used multiple models for benchmarking, mainly the yolov4 (m/s), mask RCNN
(faster RCNN/Mask RCNN), and ViT (Swin-t/ViT) models. Each one of these models was
trained fully on the dataset to provide us with the upper bound estimation of the baseline
for few-shot object detection, which expresses the full object detection capabilities of the



J. Imaging 2022, 8, 18 10 of 14

model. We also use a lower bound baseline to prove the effectiveness of our method for
few-shot object detection by training the models on the few-shot data directly, without
adding any emphasis on the novel classes. For the sake of the experiments in the rest
of this section, we selected two base classes, which were livre (book), and phylactère
(phylactery), mainly because they were highly represented in our dataset, with 338 objects
for book and 204 for phylactery. The novel classes are represented in the rest of the
object classes, specifically: lutrin (lectern), autel (altar), feuillet (leaflet), texte chanté (sung
text), which were much less represented in the dataset, with lectern having 87 samples,
whereas the others had between 20 to 30 samples each. Although many methods have been
proposed for hyper-parameter tuning, such as Bayesian-optimized bidirectional LSTM [35]
and Google Vizier [36], we chose to hyper-parameter-tune our models using the default
hyper-parameters of each backbone or using grid-search cross validation, as described
in hyperparameter optimization [37], with nepochs = 2000× nc and nc = nb + nn as the
total numbers of classes (base and noval), whereas the learning rates, for example, were
set to [0.0001, 0.00025, 0.001, 0.01, 0.00001], and through grid search CV we found that we
obtained the most optimal results by using lr1 = 0.00025 and lr2 = 0.00001.

5.1. Global Few-Shot Object Detection Benchmark

We provide the average AP50 of the models on the whole dataset of medieval singing
images with different distribution percentages of data (100%, 80%, 50%). These percentages
applied to each object class individually to keep the same ratio of classes in the dataset.
The goal of this evaluation was to see how the model’s performances changes on novel
classes and on base classes.

The data were split into training and testing data, following different ratios, 90% 10%
for the base classes and 60% 40% for the novel classes, allowing a relatively good amount
of objects for novel classes to evaluate and extract meaningful information and ranking
between models. As the number of testing samples for the novel classes still remains too
small to be statically significant to extract useful interpretations, we report the median
results of the models over five repetitions of the same experiment but with random train
test splits, allowing for more stable estimations of the performances of each model and
for the effectiveness of our few-shot object detection method, and Figure 3 shows some
inference results on our dataset for this.

Figure 3. Inference of the Mask RCNN architecture for few-shot instance segmentation on our
medieval singing dataset.

Table 2 shows the mean average precision values of the different models on different
versions of our dataset. We can see from the results of the upper boundary with 100% data
that the order of models was as follows—yolov4-s was the best for our dataset, providing
good performance for both base and novel classes, followed by mask RCNN and yolov4-m,
whereas the Swin-t model provided good results on the base classes and average results for
the novel classes. The worst model for our dataset was ViT, which requires a lot of data to
train a good model and is thus not suitable for few-shot object detection tasks and cultural
heritage applications in general. We can also clearly see that our model always improves
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over the lower boundary of transfer learning when it is used in isolation for all models
and all versions of the dataset, proving the effectiveness of our simple yet effective method.
Our model works best for the Mask RCNN model, which is the most compatible with our
idea and assumptions, showing a performance for 80% similar to 100% and for 50% similar
to the LB for 80%.

Table 2. Average Precision evaluation of different state-of-the-art models for object detection using
our newly proposed dataset. LB refers to the lower bound baseline, which is transfer learning with
the same data, and UB refers to upper bound baseline, which is a transfer with the full dataset.

Percentage

100% UB 80% Ours 80% LB 50% Ours 50% LB

Base Novel Base Novel Base Novel Base Novel Base Novel

Yolov4
s 83.62 81.86 61.88 62.24 50.24 55.66 54.78 48.57 52.85 51.30

m 72.86 77.19 65.27 58.87 58.28 58.66 36.94 52.54 33.76 36.77

RCNN
Faster 68.90 72.04 61.55 58.44 52.39 54.54 46.77 47.19 42.04 37.08

Mask 79.13 77.472 71.31 62.49 59.77 62.17 55.58 57.03 49.15 54.03

ViT
ViT 57.13 54.96 45.27 42.72 36.84 50.12 33.05 35.55 28.53 23.26

Swin-t 72.08 57.49 65.18 45.35 48.75 45.25 44.30 46.77 38.06 44.49

5.2. Worst-Case Few-Shot Object Detection Benchmark

In this section we evaluated the performance of the different object detection models
on the task of few-shot object detection while changing the number of samples in the
smallest class and keeping the others full. This gives us an estimation of the worst-case
performance for a specific class by any of these different object detectors, allowing for
a better benchmarking and better decision-making when choosing a model for different
application areas.

Table 3 shows the results of the different models on the different states of our dataset,
especially for the lowest represented class. We repeated each experiment five times and
each time we randomly selected a class and set its instances for training to the chosen
number for the experiment, and we report the mean average precision of the model over
all the experiments.

Table 3. Average precision evaluation of different state-of-the-art models for object detection using
our newly proposed dataset. LB refers to the lower bound baseline, which is transfer learning with
the same data, and UB refers to the upper bound baseline, which is a transfer with the full dataset.

Lowest Novel Count

Full UB 10 Ours 10 LB 5 Ours 5 LB

Yolov4
s 76.15 59.78 52.13 49.71 43.79

m 71.89 53.17 54.40 48.86 31.82

RCNN
Faster 68.17 52.85 53.35 42.08 38.57

Mask 72.65 57.92 57.06 51.14 48.60

ViT
ViT 52.69 46.18 41.92 35.97 24.05

Swin-t 53.61 47.99 40.20 41.88 39.28

The previously described setup allows us to obtain a good estimation of what would
be the worst results obtained by each model in the task of few-shot object detection. We
can see from the results that the ordering is still the same, with yolov4-s still taking the
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lead, followed by Mask RCNN. Our method also improved the performances over the
transfer learning baseline, showing the effectiveness of our method. We can also see that
attention-based methods are very useful and are indeed the current state-of-the-art for
object detection but they still require a lot more data to train a good model than all other
previous methods such as Yolos and different versions of RCNN.

6. Conclusions

We have presented a new manually-annotated object detection and instance segmen-
tation dataset for medieval musicological studies and a non-intrusive black-box few-shot
object detection method. Our Medieval Musicological Studies Dataset (MMSD) provides a
good challenge for transfer learning and few-shot object detection methods. Our dataset is
more challenging than the current benchmarks used for evaluation because of the large
variety of styles and the significant differences between the artistic representations of the
objects and their real shapes. Our new and simple few-shot object detection method inte-
grates seamlessly with all state-of-the-art models for object detection, such as YOLO-based,
RCNN-based, and attention-based methods, and provides a significant performance in-
crease over traditional transfer learning methods, yet remains very limited in extreme cases
where sample counts are very small. We also concluded that attention-based models are
very powerful, but they require more training data, unlike models such as YOLOv4 s and
YOLOv5 v6.
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