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Abstract: Cross-Modal Hashing (CMH) retrieval methods have garnered increasing attention within
the information retrieval research community due to their capability to deal with large amounts of
data thanks to the computational efficiency of hash-based methods. To date, the focus of cross-modal
hashing methods has been on training with paired data. Paired data refers to samples with one-to-one
correspondence across modalities, e.g., image and text pairs where the text sample describes the
image. However, real-world applications produce unpaired data that cannot be utilised by most
current CMH methods during the training process. Models that can learn from unpaired data are
crucial for real-world applications such as cross-modal neural information retrieval where paired
data is limited or not available to train the model. This paper provides (1) an overview of the
CMH methods when applied to unpaired datasets, (2) proposes a framework that enables pairwise-
constrained CMH methods to train with unpaired samples, and (3) evaluates the performance of
state-of-the-art CMH methods across different pairing scenarios.

Keywords: hashing network; multi-modal deep learning; information retrieval; cross-modal

1. Introduction

Information retrieval refers to obtaining relevant information from a dataset when
prompted by a query. When a dataset comprises samples from different modalities such as
text, images, video, and audio, this field is known as Multi-Modal Information Retrieval
(MMIR). Research towards MMIR methods is gaining considerable interest due to the
expansion of data, resulting in a need for efficient methods capable of handling large-scale
multi-modal data [1–5]. Cross-Modal Retrieval (CMR) is a sub-field of MMIR which focuses
on retrieving information from one modality using a query from another modality. An
example of CMR is retrieving images when using text as a query and vice versa. These
image-to-text and text-to-image tasks are the focus of CMR within this paper.

Where retrieval speed and storage space are considered top priorities, Cross-Modal
Hashing (CMH) networks have recently been favoured over other traditional retrieval
methods due to the computational efficiency and compactness that comes with the binary
representations produced by hash-based methods [6,7]. CMH networks are typically
constructed with parallel text and image modules that work in unison to learn the objective
hash function. Through the use of the hash function, image and text samples can be
mapped to a joint hash subspace [8]. Within this subspace, similarity comparisons can be
made when prompted by a query to rank data points by relevance for the top results to be
provided as the result of the retrieval task.

Recent state-of-the-art CMH methods include Deep Cross-Modal Hashing (DCMH) [9],
Adversary Guided Asymmetric Hashing (AGAH) [10], Joint-modal Distribution based
Similarity Hashing (JDSH) [11] and Deep Adversarial Discrete Hashing (DADH) [12].
Jiang et al. [9] proposed DCMH by applying a deep learning approach to feature learning
and hash generation, an end-to-end deep learning framework for CMH. As opposed to
previous CMH methods that employed a relaxation of the discrete learning problem into
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a continuous learning problem, hash code generation within DCMH was learnt directly
without relaxation. DCMH laid the foundation for forthcoming methods such as AGAH
proposed by Gu et al. [10], which through an adversarial approach to learning and the
introduction of three collaborative loss functions, similarities of similar pairs were strength-
ened while disassociating dissimilar pairs. Liu et al. [11], with the proposed JDSH network,
employed a joint-modal similarity matrix to preserve semantic correlations and exploit
latent intrinsic modality characteristics. Further, the Distribution-based Similarity Decision
and Weighting (DSDW) module was proposed as part of JDSH to generate more discrimi-
native hash codes. Bai et al. [12], with the adversarial-based method DADH, maintained
semantic consistency between original and generated representations while making the
generated hash codes discriminative.

The data most often used during training of information retrieval networks are paired,
e.g., there is one-to-one or one-to-many correspondence between the text and image samples
being used. However, such paired data are not always present in real-world data, and often
constructed for training machine learning models. Unpaired data where no relationship is
given between text and image samples are a common scenario present in the real world,
which is not currently accounted for in many proposed CMH methods. Once unpaired
samples are introduced into the data being used, pairwise-constrained methods cannot
process such unpaired data in their baseline configuration and could therefore be unsuitable
for real-world use cases where the data to be used are unpaired.

This paper proposes a framework that facilitates the use of unpaired data samples for
the training of CMH methods. The proposed framework can be employed to enable CMH
methods to include unpaired samples in the learning process. The contributions of this
paper are as follows.

1. A comprehensive overview of CMH methods, specifically in the context of utilising
unpaired data. The current state of CMH is surveyed, the different pairwise relation-
ship forms in which data can be represented are identified, and the current use or lack
of unpaired data is discussed [6,13,14]. However, the literature does not provide an
overview of CMH methods applied to unpaired data. The aspects which bind current
CMH methods to paired data are discussed.

2. A new framework for Unpaired Multi-Modal Learning (UMML) to enable train-
ing of otherwise pairwise-constrained CMH methods on unpaired data. Pairwise-
constrained CMH methods cannot inherently include unpaired samples in their
learning process. Using the proposed framework, the MIR-Flickr25K and NUS-WIDE
datasets are adapted to enable training of pairwise-constrained CMH methods when
datasets contain unpaired images, unpaired text, and both unpaired image and text
within their training set.

3. Experiments were carried out to (1) evaluate state-of-the-art CMH methods using
the proposed UMML framework when using paired and unpaired data samples for
training, and (2) provide an insight as to whether unpaired data samples can be
utilised during the training process to reflect real-world use cases where paired data
may not be available but a network needs to be trained for a CMR task.

This paper is organised as follows: Section 2 surveys the current state of CMH meth-
ods and unpaired data usage. Section 3 provides an overview of the proposed UMML
framework. Section 4 discusses the datasets, the experiment methodology and the eval-
uation metrics used. Section 5 describes experiments that have been conducted using
state-of-the-art CMH methods employing the proposed UMML framework for training
across various data pairing and unpairing scenarios.

2. Related Work

The critical step to conducting the task of CMH retrieval is to establish and learn a com-
mon latent subspace onto which features from different modalities can be mapped [15,16].
This common latent subspace is traditionally constructed by learning to correlate the binary
representation of samples from different modalities as explored in the method Canonical
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Correlation Analysis (CCA) [17], where similarity comparisons can be made within the
latent subspace to perform the task of retrieval. Although robust in performance, Deep
Learning Information Retrieval methods have been criticised for their computational com-
plexity and the difficulty of scaling these to large-scale datasets [18]. As a counterpart
to this, hashing techniques are often favoured for their low storage cost and fast query
speeds. The following are two different vital approaches which encompass search through
hashing [19]:

Hamming distance sorting. When comparing two binary string hash codes, hamming
distance refers to the number of bits that are different between the two codes, where a
short hamming distance represents similarity and a long hamming distance represents
divergence. Hamming distance sorting can be used as the nearest neighbour approach,
where the hamming distances of the query sample relative to the samples in the retrieval
dataset are obtained and ranked. The top samples in the formed rank would be the samples
to be retrieved. Hamming distance sorting is computationally efficient and therefore meets
the aim of hashing-based retrieval, that being fast query speeds.

Hash table retrieval. Hash table retrieval aims to obtain a reduction in the number
of distance computations needed when performing the retrieval task. This reduction is
achieved through hash tables which sort samples into buckets according to their similarities.
Samples closest in similarity will be placed in the same bucket, whereas divergent samples
will be placed in different buckets. When a query is made, the most similar bucket that
is relative to the query will be selected as the retrieval candidate. By only performing
similarity computations among the hash tables and the hash table candidate contents,
computing the similarity of the rest of the dataset is avoided.

2.1. Multi-Modal Pairwise Relationship Types

This section presents a classification of multi-modal data in terms of pairwise re-
lationships. The discussion will focus on information retrieval, however the provided
classification can be applied to other multi-modal applications. The pairwise relationship
of the samples in a dataset dictates the approach to be employed when training a network
for an information retrieval task. If pairwise relationships exist, these can be leveraged
for improved learning of the task at hand. If pairwise relationships do not exist, i.e., the
dataset is unpaired, the approach to designing multi-modal methods for such data will be
different. Therefore, it is important to identify the relationship type of the data in use to
address the task appropriately. The pairwise relationships are illustrated in Figure 1 and
described as follows.

1–1 Paired Samples. This describes a relationship when a sample from one modality
(e.g., an image) has its direct counterpart in another modality (e.g., text describing the
image) as seen in Figure 1a. When measuring similarity, the paired sample’s similarity score
is the highest compared to the rest of the samples. Using paired samples during training of
CMH methods allows for leveraging the paired relationship when mapping samples from
the input space to the hashed subspace. By leveraging this paired relationship, samples
that are similar in the input space will also remain similar in the hashed subspace, allowing
for similarity comparisons in the hashed subspace. An example of a pairwise relationship
dataset is the Wiki dataset, which is made up of image and text pairs from Wikipedia article
cover pictures and article texts [20].

1–Many Paired Samples. This refers to a relationship where a sample (e.g., an image)
has more than one counterpart in another modality (e.g., multiple text descriptions relevant
to the particular image) as shown in Figure 1b. The cross-modal similarity scores between
a sample and its many paired counterparts are the highest compared to the rest of the
samples. An example of a one-to-many pairwise relationship dataset is the Flickr30K
dataset [21], that is made up of image and five caption paired samples.

1–1 Aligned Paired Samples. In the case of having more than two modalities, this
relationship refers to samples with an aligned one-to-one pairwise basis across the different
modalities in the dataset. For example Figure 1c, the image is paired to the text, and the
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text is paired to the audio, and therefore it follows that the image is paired to the audio. An
example of such a dataset is the PKU XMediaNet dataset [22], which is made up of paired
aligned image, text, audio, video and 3D model samples.

1–Many Aligned Paired Samples. In the case of having more than two modalities,
this relationship refers to samples with an aligned one-to-many pairwise basis across the
different modalities present in the dataset. When considering Figure 1d, the image has a
one-to-many pairing with the text, the text has a many-to-one pairing with the audio, and
thus it follows that the image is paired to the audio. The literature mainly discusses the use
and evaluation of datasets that contain 1–1, 1–many and 1–1 aligned pairwise relationships,
while 1–many aligned paired relationships are seldom discussed [19,23].

Unpaired Samples. These are fully unpaired samples that are independent in their
respective modality and have no direct counterpart in another modality as shown in
Figure 1e. Therefore, using these samples to learn cross-modal transformations results
in a difficult task to approach when compared to the paired scenario due to the paired
relationship not being leveraged to maintain inter-modal similarity.

Version November 30, 2022 submitted to J. Imaging 4 of 22

(a) 1-1 Paired (b) 1-Many Paired (c) 1-1 Aligned Paired

(d) 1-Many Aligned Paired (e) Unpaired

Figure 1. The various pairwise relationships present in information retrieval datasets.
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2.2. Learning to Hash

Learning to hash refers to learning a hash function y = h(x) through which input item
x is mapped to hash code y. As discussed by Wang et al. [6], the following are the primary
considerations when approaching the task of learning to hash: the hash function to be used,
the similarity adopted for both the input and the hash space, the loss function to adopt the
optimisation objective, and the optimisation technique employed.

Hash function. The hash function aims to generate hash codes such that nearest
neighbour samples in the input space are the closest to each other within the hash subspace.
Hashing-based methods have traditionally employed linear projection, kernels, spherical
functions and a non-parametric function for their hashing functions [6,24,25]. However,
recent research has steered towards the use of deep neural networks as hash functions [23]
for two main reasons: firstly, the ability to learn very complex hash functions through
the strong representation capabilities of deep learning-based methods; and secondly, the
possibility of employing end-to-end hash code generation frameworks [9].
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Similarity measures. Similarity measures for the input space and the hash coding
space need to be considered. Similarity functions for hashing are most commonly based on
the distance between two given samples, which often comes from Euclidean distance. The
similarity functions frequently used include the Gaussian function and cosine similarity.
The similarity value for deep neural network-based hashing is usually binary, with 1 repre-
senting common semantic meaning and 0 otherwise. For the hash code space, hamming
distance is commonly used: Let yi be a hashed image sample and yj be a hashed text sample.
The Hamming distance dh

ij between yi and yj, is calculated as:

dh
ij =

M

∑
m=1

δ
[
yim 6= yjm

]
(1)

where M is the bit length of the hash codes to be compared and δ[yim 6= yjm] is the case of
having different bit values. Hamming distance provides the number of different bit values
when comparing two hash codes, and similarity based on hamming distance is defined as
sh

ij = M− dh
ij, that is, the number of equal bits.

Loss function. The main aim when employing the loss function for hashing purposes
is to maintain the similarity of samples within the original input space when mapped to
the latent subspace, i.e., the nearest neighbours in the subspace should also be the nearest
neighbours in the original input space. A widely adopted technique for maintaining
input-subspace similarity is pairwise similarity preserving [6], which aims to make the
distances or similarities between samples in their original input and hash representations as
consistent as possible. Pairwise similarity preserving consists of assigning a small hamming
distance to similar images with similar hash codes, and assigning a larger hamming distance
to divergent images with contrasting hash codes.

Optimisation. There are two main issues to be considered with deep hashing methods
which call for optimisation. The first issue is the vanishing gradient problem (gradients
becoming vanishingly small during the training process, preventing any further learning)
stemming from the sign function employed for learning to hash. The second issue is the
high time complexity when dealing with large amounts of data [6]. A common approach
to solving the vanishing gradient problem is continuous relaxation [26], which comes in
the form of sigmoid relaxation, tanh relaxation, and directly dropping the sign function
sgn(z) ≈ z.

2.3. Cross-Modal Hashing Categorisation

Following the basis set by Cao et al. [19] in their 2020 survey on hashing methods
for multi-modal retrieval, hashing approaches can be categorised into data-independent,
data-dependent and deep hashing methods.

Data-independent methods tackle the task of learning to hash independently of the
data in use, where the hash function is generally generated through random mapping. The
characteristic approach to such a method is using Locality-Sensitive Hashing (LSH) [27].
Locality-Sensitive Hashing is based on assigning samples with high similarity to the same
hash bucket in hash table retrieval, which ensures neighbouring samples in the original
space remain as close as possible to each other in the hash space. Although this makes
locality-sensitive hashing reliable, the issue of hash collision arises when large data sets
are used, where longer hash codes need to be used to avoid collision. The need for longer
hash codes results in additional computational resources being required, which results in a
decrease in performance.

Data-dependent methods make use of the information available in the dataset as
training data to generate the hash function to be used, as opposed to data-independent
methods which cannot leverage the information in the dataset for hash function genera-
tion. Being able to use this information generally results in improved performance. The
following are some characteristic approaches to data-dependent methods: with Cross
View Hashing (CVH) [4] the hash function is learnt by minimising the weighted average
hamming distance between the different modalities. Linear Cross-Modal Hashing [28]
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first partitions the training data into clusters to calculate the distance between the data
point being processed and the centroids of the formed clusters to maintain the similarity
inside modalities. Collective Matrix Factorisation Hashing (CMFH) [29] is an unsupervised
method that assumes the hash codes for modalities are consistent, and the collective matrix
factorisation method is used to construct the hash function model.

Deep hashing methods came as a result of the recent success of deep neural networks
across a multitude of fields and are currently the category of cross-modal hashing methods
which is receiving attention [30–34]. Deep features extracted by deep hashing methods
contain abundant semantic information and can more accurately represent the original data
when compared to traditional linearly derived hash functions. Therefore, the use of deep
learning within hashing methods can result in considerable retrieval performance improve-
ment. The following are some of the characteristic approaches to deep hashing methods:
Deep Cross-Modal Hashing (DCMH) [9] integrates feature learning and hash learning into
an end-to-end deep learning framework with the use of text and image modality data as
shown in Figure 2. The end-to-end nature of this approach means the different parts of the
model can work in unison, providing feedback to each other during the learning process.
This approach has been adopted in principle by many subsequently published methods.
Pairwise Relationship Deep Hashing (PRDH) [35] came as an improvement to DCMH, that
can integrate different types of pairwise constraints to better reflect the hash code similarity
from inter- and intra-modal data. Self-Supervised Adversarial Hashing (SSAH) [36] uses
mechanisms such as self-supervised semantic generation and adversarial learning, which
resulted in significant advances in retrieval performance.

CNN

BoW + FC

Binary
Hash

Codes

Similarity 
Matrix

Query
s1
s2
s3

...

sn

Ranked  
Similarity

Feature Learning Hash Code Learning Retrieval

Image-Text Pairs

Figure 2. Overview of an end-to-end deep hashing architecture. This figure illustrates a simplified
recreation of the Deep Cross-Modal Hashing (DCMH) [9] network architecture (CNN: Convolutional
Neural Network, BOW: bag of words, FC: Fully Connected layers). Example elephant (1), bicycle
(2) and spoon (3) images reprinted under Creative Commons attribution, (1) Title: Elephant Addo,
Author: Mikefairbanks, Source, CC BY 2.0 (2) Title: Dessert Spoon, Author: Donovan Govan, Source,
CC BY-SA 3.0 (3) Title: Electric Bicycle, Author: Mikefairbanks, Source, CC BY-SA 3.0.

2.4. Unpaired Cross-Modal Hashing Methods

Generalized Semantic Preserving Hashing (GSPH) proposed by Mandal et al. [37]
identified two unpaired sample scenarios, namely Single label-Unpaired (SL-U) and Multi
Label-Unpaired (ML-U), and was the first method to address both cases. GSPH supports
training with unpaired samples; however, an extra unification step is also proposed to
improve performance if paired data are present. To explore the unpaired scenario, samples
from one modality were dropped while samples from the counterpart modality were kept.

Hu et al. [38] with their proposed method Triplet Fusion Network Hashing (TFNH),
explore the possibility of conditioning the retrieval space of the datasets in use for these
to include a certain percentage of unpaired samples. The performance of their method
was evaluated for the task of retrieving unpaired samples through a multi-step evaluation
which discarded 10% of paired relationships in each step. Compared to using fully paired

https://commons.wikimedia.org/wiki/File:Elephant_Addo.jpg
https://commons.wikimedia.org/wiki/File:Dessert_Spoon.jpg
https://commons.wikimedia.org/wiki/File:Electric_Bicycle.jpg
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data, a gradual performance drop was observed in TFNH when unpaired data were utilised
to train the model.

Wen et al. [39], with their proposed method Cross-Modal Similarity Transferring
(CMST), take a transfer learning approach towards unpaired cross-modal retrieval to aid
the training process. Using intra- and inter-modal similarity learning networks, knowledge
obtained from unpaired samples improved retrieval performance across the board over
the different datasets and setting scenarios. The most noteworthy improvement was made
on the Pascal Sentences dataset, with an average improvement of 12% on the image-text
retrieval task. These improvements were another indication that developing retrieval
methods that can use unpaired samples would be of significant use.

Gao et al. [40] proposed the method Unpaired Cross-Modal Hashing (UCMH), which
tackles the issue of unpaired samples by employing a multi-step process. First, the latent
subspaces for the different modalities are learnt separately. The latent subspaces are learnt
through similarity preservation [41], that is used to preserve the intra-modality similarity.
Matrix factorisation is then used to improve the discriminative ability of the learned hash
codes. Finally, an affinity matrix is constructed to bridge the modality gap.

Robust Unsupervised Cross-modal Hashing (RUCMH) proposed by Cheng et al. [42]
introduces an unsupervised two-part approach to learning. Firstly, modality-specific hash-
ing functions are constructed through a transfer learning-based approach. Secondly, objects
from one modality are linearly represented through samples of the counterpart modality
in the shared subspace. Percentages of training data were shuffled in increments of 10%.
While other CMH methods saw a decrease in performance relative to the amount of shuf-
fling in the training set, RUCMH was unaffected by the shuffling as it is an unsupervised
method and is independent of pairwise relationships.

Liu et al. [18] propose the framework Matrix Tri-Factorization Hashing (MTFH), which
encompasses the different pairwise relationship scenarios, including the unpaired scenario,
using matrix tri-factorisation hashing. The focus of this method is the use of varying-length
hashing, a previously relatively unexplored approach in an area that favoured equal-length
hashing. The experiments by Liu et al. showcased the importance of finding the optimal
combination of image/text hash code lengths hash codes that are either too short or too
long could result in degrading performance.

Adaptive Marginalized Semantic Hashing (AMSH) proposed by Luo et al. [43] intro-
duced multiple regression models to learn modality-specific representations. Most previous
methods constructed a linear regression between the latent feature space and the label
space to learn a common latent representation, an approach that is not feasible on the
unpaired data scenario. When exploring the unpaired scenario, datasets were randomly
shuffled to sever 50% of the one-to-one data correspondences.

Flexible Cross-Modal Hashing (FlexCMH) proposed by Yu et al. [44] leveraged cen-
troids of clusters through a matching strategy for training. Unlike previous clustering-based
methods, training of FlexCMH could be conducted regardless of whether the number of
samples in the constructed clusters or modalities was equal, a constraint that was present
in previous clustering-based methods. FlexCMH can flexibly adapt to the number of pairs
present to maximise learning. FlexCMH does this by unpairing data through shuffling the
data to remove the pairwise relationships and removing a portion of the text modality.

2.5. Architectural Reliance on Paired Samples of Existing CMH Methods

This section describes the learning process of three CMH methods for information
retrieval and the aspects which bind these methods to the use of paired samples. The
methods Deep Adversarial Discrete Hashing (DADH) [12], Adversary Guided Asymmetric
Hashing (AGAH) [10] and Joint-modal Distribution based Similarity Hashing (JDSH) [11]
were chosen due to their relevance within the CMH information retrieval field, and due to
the full source code for each of the methods being publicly available.

DADH [12]. The typical workflow of adversarial-based CMH methods is illustrated in
Figure 3, which DADH follows. The architecture comprises a feature-learning module and
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a Hashing-learning module. For the feature-learning module, the original input of image
features or text features was processed into low-dimensional features by a convolutional
neural network. Several loss functions were used for the hashing-learning module to
generate compact binary codes with reduced quantisation loss. To ensure cross-modal
consistency, adversarial learning is introduced in feature- and hashing-learning modules.
This use of adversarial learning differs from other methods, which only use adversarial
learning in the feature learning phase. The adversarial step is conducted as follows: given
a feature projection of a sample from one modality, which is the true feature, the feature
projection from its paired counterpart modality is used as the fake feature to discriminate
against. The adversarial layer then attempts to identify the origin modality of the sample
being processed. If the origin modality is unclear, the gap between the image and text
modalities is considered to have been appropriately bridged.

CNN

BoW + FC

Binary
Hash

Codes

Similarity 
Matrix

Feature Learning Adversarial Hash Code Learning

Adversarial Loss

Hash Code

Hash Code

Image-Text Pairs

Figure 3. Simplified workflow of adversarial-based CMH methods depicting approaches used by
methods such as Deep Adversarial Discrete Hashing (DADH) [12] and Adversary Guided Asym-
metric Hashing (AGAH) [10] (CNN: Convolutional Neural Network, BOW: bag of words, FC: Fully
Connected layers).

AGAH [10]. Similarly to DADH, AGAH follows the adversarial-based CMH workflow
as illustrated in Figure 3. The feature extractor comprises two deep neural networks, the
image modality network and the text modality network. An adversary-guided attention
module joins these two networks. This way, the feature learning procedure is enhanced,
ensuring both the cross-modal consistency and the maintenance of semantic distinctiveness
of extracted features. A convolutional neural network (CNN) is adopted for image feature
learning, and a multi-layer perceptron model was proposed for the text modality with
three fully-connected layers to learn the text feature representations. To generate modality-
consistent representations across different modalities, two classifiers were designed, one for
each modality, based on an adversarial approach similar to that used within DADH. For the
image modality classifier, the text network was used as the image features generator. The
extracted features from the image network are considered real, while the extracted features
from the text network are marked as fake. The image modality classifier aims to distinguish
whether the input image features are real or fake. The text modality classifier behaves
similarly to the image modality classifier. To ensure the semantic relevance preservation
between each feature representation and its label information, an attention module guided
by the adversarial was designed to aid the learning process. The attention module assigns
each item of the representation vector a weight according to the distance between the
representations.

JDSH [11]. The main contributions of JDSH include the construction of a joint-modal
similarity matrix used for supervised hash code generation and the proposition of the
Distribution-based Similarity Decision Weighting (DSDW) method used for strengthening
the generated hash codes. The joint-modal similarity construction process starts with
separate text and image cosine similarity matrices derived from pre-trained deep neural
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network feature extraction. The image modality similarity matrix Sv and text modality
similarity matrix St are then fused into the final joint-modal similarity matrix S defined as:

S = αSv + βSt + γSfusion =
{

sij
}N

i,j=1 (2)

α, β, γ ≥ 0, α + β + γ = 1, sij ∈ [−1, 1] (3)

where sij is the image-text pair similarity of image i and text j, N is the total amount of data
pairs, α, β, γ are constant parameters for similarity importance control between the different
modalities, and S f usion is a symmetric matrix. The symmetric matrix is constructed on the
basis that two instances in one modality should obtain similar similarity relations in their
counterpart modality. The joint-modal similarity matrix S =

{
sij
}N

i,j=1 is the foundation for
the driver of hash code generation framework DSDW.

The methods DADH and AGAH at their core are adversarial networks. The adver-
sarial step in both methods is based on using an image and text pair to construct a true
feature originating from the modality to be processed and a fake feature obtained from the
counterpart modality for learning. Therefore, if the sample to be processed is unpaired, the
true and fake feature pair cannot be formed, thus introducing a pairwise constraint at the
adversarial step. In the case of JDSH, the pairwise constraint resides in the formulation of
the joint-modal similarity matrix S =

{
sij
}N

i,j=1 as seen by the use of the image-text pair
similarity sij, which is the driver of the hash code generation framework used.

3. UMML: Proposed Unpaired Multi-Modal Learning (UMML) Framework

To make CMH methods compatible with the processing of unpaired samples, a suitable
approach must be employed to include unpaired samples in the datasets to be used. The
need for a suitable approach is due to CMH methods often not being compatible with
the processing of unpaired samples, as is the case with methods DADH, AGAH and
JDSH as discussed in Section 2.5. The input to the methods tested are pairs of image and
text, and as such, the methods do not allow for a single unpaired sample to be used for
training. To tackle this issue, the Unpaired Multi-Modal Learning (UMML) framework
is proposed, illustrated in Figure 4. The implementation of this framework is provided
(https://github.com/MikelWL/UMML, accessed on 9 December 2022).

The unpairing process. Let X be a n × i matrix where n is the number of image
samples and i is the number of image features, and let Y be a n× j matrix of n text samples
and j text vectors. The dataset D to be unpaired is defined as D = (X, Y), where each row
Xn ∈ X is paired to each row Yn ∈ Y. The samples to be unpaired are selected according to
the percentage of the training set being unpaired: if 20% of data is unpaired, the first 20 out
of every 100 samples of the training set are selected to be unpaired, and if 40% of data is
unpaired, the first 40 out of every 100 samples are selected, and so on. Once the samples to
be unpaired are selected, in the case of Xn images being unpaired, text vectors are extended
to include unpaired sample markers at the end of the vector, and the corresponding paired
Yn text vectors are replaced by an empty vector and marked as unpaired samples. In the
case of Yn texts being unpaired, the corresponding paired Xn image features are replaced
by an empty vector and marked as unpaired. Finally, the dataset is constructed with the
newly unpaired samples, and appropriate data loaders provided within UMML are used
to feed the unpaired datasets to the methods being trained. These data loaders ensure
the input requirements of the methods match the dimensions of the newly constructed
unpaired dataset.

https://github.com/MikelWL/UMML
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Figure 4. Unpaired Multi-Modal Learning (UMML) framework workflow. The diagram shows an
example of 50% of images being unpaired where 50% text Bag of Words (BoW) binary vectors are
emptied. Similarly, in the case of text being unpaired, the image feature matrices would be emptied
(CNN: convolutional neural network).

UMML is needed because pairwise-constrained CMH methods do not support actual
unpaired data, thus requiring the use of empty samples to enable unpaired scenario evalua-
tions. Once these unpaired samples are fed to the method being trained, no semantic value
will be present within the emptied samples, resulting in semantically unpaired training.
The newly unpaired samples are finally bundled with the samples which have been kept
paired, and the unpaired dataset variant is constructed. Note that only the training set of
the dataset is made unpaired by the UMML framework, as the query/retrieval set is left
unaltered to avoid using empty samples as queries/retrievals during testing.

4. Experiment Methodology
4.1. Datasets

MIRFlickr-25K [45] contains 25k image-tag pairs, with these samples being assigned to
at least one label from 24 classes. ‘Tags’ refer to the tags associated with each image, which
are used as the text counterpart to the images for retrieval. ‘Labels’ are used as ground truth
(i.e., classes) to measure performance at the test stages. For the experiments conducted,
only the image-tag pairs which contain at least 20 textual tags are used, which brings down
the overall image-tag pair count to 20, 015. The query set consists of the samples which are
used as the queries for the test stage, and the retrieval set contains the retrieval candidates
to the query. The training set is formed as a subset of the retrieval set.

NUS-WIDE [46] consists of 269, 648 image-tag pairs categorised into 81 manually
annotated classes. For our experiments, 195, 834 image-tag pairs are selected, which belong
to the 21 most frequent concepts. Table 1 shows the number of samples utilised for training
and testing of the MIR-Flickr25K and NUS-Wide datasets. Table 2 shows examples of
MIR-Flickr25K and NUS-Wide images, along with their tags and labels.
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Table 1. MIRFlickr-25K and NUS-Wide dataset characteristics.

Dataset Train Query Retrieval

MIRFlickr-25K 10 000 2 000 18 015
NUS-Wide 10 000 2 100 193 734

Table 2. Example of images, paired tags, and labels from the MIR-Flickr25K and NUS-WIDE datasets.
Example images (1) and (2) reprinted under Creative Commons attribution, (1) Author: Martin P.
Szymczak, Source, CC BY-NC-ND 2.0 (2) Title: Squirrel, Author: likeaduck, Source, CC BY 2.0.

Image Tag Label/Class

MIR-Flickr25K example (1)
bilbao, 11–16, cielo, sky, po-
larizado, reflejo, reflection,
sanidad, estrenandoMiRegalito,
geotagged, geo:lat = 43.260867,
geo:lon = −2.935705,

clouds, sky, struc-
tures

NUS-Wide example (2)
cute, nature, squirrel, funny,
boxer, boxing, cuteness, coolest,
pugnacious, peopleschoice, na-
turesfinest, blueribbonwinner,
animalkingdomelite, mywin-
ners, abigfave, superaplus
aplusphoto, vimalvinayan,
natureoutpost

Animal, Nature

4.2. Methods

The experiments compare state-of-the-art cross-modal hashing methods for informa-
tion retrieval and evaluate their performance in paired and unpaired data scenarios using
the proposed UMML framework. These methods are: Adversary Guided Asymmetric
Hashing (AGAH) [10], Joint-modal Distribution-based Similarity Hashing (JDSH) [11] and
Deep Adversarial Discrete Hashing (DADH) [12]. These methods were chosen due to their
relevance within the CMH information retrieval field and the full source code for each of the
methods being publicly available. Unsupervised methods such as JDSH could opt to drop
samples, i.e., skip samples in the training process, to replicate unpaired sample behaviour.
During experiments using the proposed UMML framework, samples were not dropped to
ensure consistency when comparing the methods. For all the methods evaluated, the 64-Bit
setting is used. Experiments were not conducted with other bit settings because the study
focuses on the usage and effect of training with unpaired samples instead of comparing the
efficiency of different bit lengths.

4.3. Evaluation Metrics

To evaluate the performance of the CMH models, the widely adopted [12] retrieval
procedure of Hamming ranking is used, that sorts search results based on Hamming
distance to the query samples. The metric mean average precision (mAP) is then used to
evaluate Hamming retrieval performance. Precision is the fraction of retrieved samples that
are relevant to a query. Recall is the fraction of the relevant samples that are successfully
retrieved. Average Precision (AP) is the mean of the precision scores for a given query.
Mean Average Precision(mAP) is the mean of the AP across a number of queries. Mean
average precision is the primary performance measure employed in CMH retrieval, and it
is obtained as the mean of the average precision (AP) values at 100% Recall.

https://www.flickr.com/photos/marooned/2622999666
https://www.flickr.com/photos/thartz00/4847417509
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Performance difference compares the results when training with unpaired samples to
results when training with paired samples. Let mAPp be the performance obtained during
paired training and mAPu be the performance obtained during unpaired training. The
percentage of performance difference is calculated as follows.

Perf. Diff. =
(

mAPu

mAPp
− 1

)
× 100 (4)

5. Experiment Results

This section presents the results of experiments conducted using the proposed UMML
framework applied to facilitate unpaired learning using the DADH, AGAH and JDSH
methods and the MIR-Flicker25K and NUS-WIDE datasets. The training performance of
these CMH methods is evaluated across different sampling scenarios: unpaired images,
unpaired text, a combination of unpaired images and text, and random sample discarding.
The abovementioned methods are also compared to other unpaired CMH methods that
can learn unpaired data and thus do not require the UMML framework. Finally, the perfor-
mance of the most promising method, DADH, is investigated at a more granular level that
involves analysing DADH’s performance across each class of the MIR-Flickr25K dataset.

5.1. Training with Unpaired Images

Image to text (i → t) and text to image (t → i) evaluation results using unpaired
images within the training set are presented in Table 3 and illustrated in Figure 5 for the
MIR-Flickr25K and NUS-WIDE datasets. On the left-hand side of Table 3, results when
training with a fully paired training set are provided. Results when using different unpaired
sample sizes are then shown in increments of 20%. DADH, being the method built as an
improvement to AGAH, outperforms the other methods, followed by AGAH. JDSH sees
more limited performance when compared to DADH and AGAH, mainly due to it being
an unsupervised method.

Table 3. Results (mAP) on MIR-Flickr25K and NUS-WIDE with unpaired images, i.e., images with
no corresponding text. Column ‘Paired’ shows results when training with a fully paired training set.
Subsequent columns show results with increasing amounts of unpaired images in the training set.

MIR-Flickr25K NUS-WIDE

Task Method Paired 20% 40% 60% 80% 100% Paired 20% 40% 60% 80% 100%

i→ t
DADH 0.836 0.807 0.789 0.750 0.702 0.562 0.701 0.690 0.683 0.656 0.646 0.297
AGAH 0.803 0.752 0.729 0.695 0.637 0.535 0.633 0.621 0.583 0.587 0.503 0.267
JDSH 0.672 0.653 0.648 0.643 0.619 0.555 0.546 0.534 0.510 0.457 0.402 0.253

t→ i
DADH 0.823 0.824 0.814 0.812 0.796 0.552 0.707 0.706 0.702 0.670 0.634 0.261
AGAH 0.790 0.790 0.786 0.779 0.742 0.540 0.646 0.595 0.591 0.596 0.401 0.277
JDSH 0.660 0.672 0.666 0.652 0.632 0.564 0.566 0.499 0.476 0.452 0.412 0.256
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(a) MIR-Flickr25K unpaired images
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(b) NUS-WIDE unpaired images

Figure 5. Results (mAP) on MIR-Flickr25K and NUS-WIDE with unpaired images, i.e., images with
no corresponding text. The ‘Paired’ points show results when training with a fully paired training set.
Subsequent points show results with increasing amounts of unpaired images in the training set in
increments of 20%.
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For MIR-Flickr25K, as shown in Figure 5a, DADH and AGAH show similar behaviours
when using unpaired images for training; (t → i) results see a marginal decrease in
performance, while the (i→ t) task sees a more gradual decrease in performance as more
unpaired images are introduced to the training set. In the case of JDSH however, both tasks
are affected in a similar manner. For NUS-WIDE, the results obtained show a different
pattern when compared to that observed in MIR-Flickr25K. For DADH, AGAH and JDSH,
the performance decrease as more unpaired images are introduced is gradual for both
(i→ t) and (t→ i) tasks. Based on the results shown in Table 3 and Figure 5, the following
main observations can be made when training with unpaired images.

(1) Dataset impacts the performance of models. Different datasets provide different
behaviours when unpaired samples are introduced into the training set. With MIR-
Flickr25K, DADH and AGAH see different patterns of performance decrease for the
(i → t) and (t → i) tasks, while with NUS-WIDE, DADH and AGAH see similar
patterns for the two tasks. JDSH, on the other hand, shows similar patterns for both
tasks on both datasets.

(2) Percentage of Unpairing may impact performance. For MIR-Flickr25K, the perfor-
mance of methods DADH and AGAH for the (i → t) task is negatively affected
as the percentage of unpaired images increases. For the (t → i) however, with the
exception of 100% image unpairing, performance was unaffected when the percentage
of unpaired images increased. Once all images in the training set are fully unpaired
(i.e., 100% unpaired), the performance of both tasks across all methods is measured at
an average of 0.564 mAP for MIR-Flickr25K and 0.268 mAP for NUS-WIDE. These
results will later be compared to random performance evaluations in Section 5.4 to
determine the extent to which the methods are learning from training with 100%
unpaired images.

5.2. Training with Unpaired Text

Evaluation results using unpaired text within the training set are presented in Table 4
and shown in Figure 6. For MIR-Flickr25K, in the case of DADH, (i → t) retains its
performance as more unpaired samples are used for training while the (t→ i) is the task
which sees a gradual performance decrease. This behaviour is the opposite of what occurred
when unpaired images were used for training, which indicates that the task mostly affected
by using unpaired samples for training in the case of DADH is the task which uses the
unpaired modality as the query of the retrieval. In the case of AGAH and JDSH, however,
both tasks saw similar rates of performance decrease as more unpaired samples were used
for training. This behaviour deviates from what would be expected when considering the
unpaired text scenario, where AGAH saw the two tasks being affected differently. For
NUS-WIDE, on the other hand, for all three methods DADH, AGAH and JDSH, both (i→ t)
and (t → i) tasks saw a performance decrease with the (i → t) task being the task which
saw the most decrease.

Table 4. Results (mAP) on MIR-Flickr25K and NUS-WIDE with unpaired text, i.e., text with no
corresponding images. Column ‘Paired’ shows results when training with a fully paired training set.
Subsequent columns show results with increasing amounts of unpaired text in the training set.

MIR-Flickr25K NUS-WIDE

Task Method Paired 20% 40% 60% 80% 100% Paired 20% 40% 60% 80% 100%

DADH 0.836 0.831 0.831 0.826 0.820 0.525 0.701 0.700 0.696 0.683 0.674 0.282
AGAH 0.803 0.755 0.740 0.720 0.682 0.541 0.633 0.597 0.566 0.500 0.356 0.267i→ t
JDSH 0.672 0.646 0.621 0.608 0.580 0.553 0.546 0.515 0.478 0.393 0.342 0.254

DADH 0.823 0.803 0.783 0.756 0.711 0.545 0.707 0.705 0.724 0.697 0.698 0.274
AGAH 0.790 0.760 0.744 0.698 0.642 0.535 0.646 0.645 0.653 0.651 0.464 0.267t→ i
JDSH 0.660 0.653 0.622 0.631 0.601 0.545 0.566 0.520 0.506 0.468 0.420 0.249
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Figure 6. Results (mAP) on MIR-Flickr25K and NUS-WIDE with unpaired text, i.e., text with no
corresponding images. The ‘Paired’ points show results when training with a fully paired training
set. Subsequent points show results with increasing amounts of unpaired text in the training set in
increments of 20%.

In addition to the observations made when unpairing images, unpairing text provides
the following observation: whether (i→ t) or (t→ i) will be the most affected task when
training with unpaired samples depends on the method used, the dataset being evaluated,
and the modality being used. In the case of DADH, when training with unpaired text on
the MIR-Flickr25K dataset, it was the (t→ i) task that was most negatively affected. For
AGAH, however, when unpairing text on the NUS-WIDE dataset, it was the (t→ i) task
that was most negatively affected. It is essential to evaluate the method being studied to
verify its behaviour when training with unpaired samples. This behaviour will determine
whether it is feasible to adapt the CMH method to the unpaired sampling scenario.

5.3. Training with Unpaired Images and Text

Evaluation results using unpaired images and text within the training set are presented
in Table 5 and shown in Figure 7. A noteworthy observation is concerning the 50%/50%
training set that comprises 50% of unpaired images and 50% unpaired text. DADH and
AGAH do not see the same drop in performance as was seen with the 100% image or
100% text unpaired evaluations (see Table 3), where performance dropped to an average
of 0.546 mAP for MIR-Flickr25K and 0.267 mAP for NUS-WIDE. Instead, performance
when using the 50%/50% training set was measured at an average of 0.761 mAP for
MIR-Flickr25K and 0.680 for NUS-WIDE with DADH, and 0.711 mAP for MIR-Flickr25K
and 0.566 for NUS-WIDE using AGAH. These results indicate that DADH and AGAH can
learn more from the 50%/50% unpaired training set when compared to the 100% unpaired
image and 100% unpaired text sets.

Table 5. Results (mAP) on MIR-Flickr25K and NUS-WIDE with unpaired images and text, i.e., images
with no corresponding text and vice versa. Column ‘Paired’ shows results when training with a
fully paired training set. Subsequent columns show results with increasing amounts of unpaired
images and text in the training set, for example, ‘10% 10%’ refers to 10% of the training set being
unpaired images (UI) and another 10% being unpaired text (UT) for a total of 20% of the dataset
being unpaired samples.

MIR-Flickr25K NUS-WIDE

Task Method Paired UI:
UT:

10%
10%

20%
20%

30%
30%

40%
40%

50%
50% Paired UI:

UT:
10%
10%

20%
20%

30%
30%

40%
40%

50%
50%

i→ t
DADH 0.836 0.820 0.822 0.752 0.728 0.760 0.701 0.696 0.676 0.663 0.676 0.662
AGAH 0.803 0.741 0.737 0.664 0.673 0.693 0.633 0.642 0.637 0.561 0.564 0.567
JDSH 0.672 0.652 0.643 0.609 0.610 0.591 0.546 0.547 0.503 0.398 0.306 0.259

t→ i
DADH 0.823 0.808 0.801 0.763 0.773 0.762 0.707 0.694 0.716 0.704 0.703 0.698
AGAH 0.790 0.771 0.762 0.745 0.735 0.729 0.646 0.666 0.642 0.597 0.560 0.565
JDSH 0.660 0.654 0.650 0.609 0.617 0.594 0.566 0.526 0.498 0.438 0.349 0.255
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Figure 7. Results (mAP) on MIR-Flickr25K and NUS-WIDE with unpaired images and text, i.e., im-
ages with no corresponding text and vice versa. The ‘Paired’ points show results when training with a
fully paired training set. Subsequent points show results with increasing amounts of unpaired images
and text in the training set, for example, ‘10%/10%’ refers to 10% of the training set being unpaired
images and another 10% being unpaired text for a total of 20% of the dataset being unpaired samples.

5.4. Training with Sample Discarding

Previous experiments evaluated the retrieval performance of CMH methods when
using unpaired samples during the training process. Overall, a gradual decrease in per-
formance was observed when the percentage of unpaired samples increased within the
training set. The objective of the experiment described in this section is to investigate
whether including unpaired samples in the training set improves retrieval performance
compared to discarding them.

Method for Sample Discarding. Sample discarding refers to removing a given
percentage of paired samples from the training set, which results in a smaller but still
fully paired training set. For example, the datasets utilised for the experiments comprise
10,000 paired samples each. When 20% (2000) of samples are discarded, the remaining
8000 pairs will be utilised for training. Training when discarding 20% of pairs can then be
compared to training with a set of which 20% of samples are unpaired. This comparison
is illustrated in Figure 8. The random performance baseline was created by performing
cross-modal retrieval using the test set on each model before training.
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Results when samples are discarded. Fully paired evaluation results when discarding
samples from the training set along with the baseline values (labelled as Random) are
presented in Table 6 and Figure 9. When considering the random performance baseline,
which averaged at 0.546 mAP for MIR-Flickr25K and 0.259 for NUS-WIDE, the baseline
results are very close to those obtained when 100% of a given modality was unpaired. When
100% of images or text were unpaired, an average mAP score of 0.564 for MIR-Flickr25K
and 0.268 for NUS-WIDE was obtained as previously discussed in Section 5.1. As such,
training with 100% of a modality being unpaired results in minor change in performance
improvement (+0.014/+0.009 mAP for MIR-Flickr25K/NUS-WIDE) over the performance
baseline and is not beneficial to the training performance.

In terms of sample discarding, DADH and AGAH benefit noticeably from additional
training data as shown in Figure 9, showing a steady decrease in performance the more sam-
ples are discarded from the training set. JDSH remains more consistent in its performance
relative to the amount of training samples being discarded. This suggests that DADH and
AGAH would benefit from additional sources of training data, e.g., unpaired samples,
while JDSH retains its performance even with reduced amounts of data. To investigate
further, we next compare the sample discarding results to previously discussed unpaired
sample training results.

Figure 8. In (a), 20% of the training set was discarded. In (b), 20% of the training set was unpaired.
In this example, for both (a,b), the model will be trained on 8000 paired samples. However, (b) will
also train with its additional 2000 unpaired samples. This way, the effect of training with or without
the additional unpaired samples can be investigated.
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Results. Evaluation results when incrementally discarding samples from the paired
training set, along with the random baseline performance results (labelled as Random) are
presented in Table 6 and Figure 9. When considering the random performance baseline (i.e,
Random column of Table 6), which averaged at 0.546 mAP for MIR-Flickr25K and 0.259
for NUS-WIDE, the baseline results are very close to those obtained when 100% of a given
modality was unpaired (as shown in Table 3). When 100% of images or text were unpaired,
average mAP scores of 0.564 for MIR-Flickr25K and 0.268 for NUS-WIDE were obtained
(as shown in Table 3). As such, training with 100% of a modality being unpaired results
in insignificant performance improvement (+0.014/+0.009 mAP for MIR-Flickr25K/NUS-
WIDE) over the performance baseline.

In terms of sample discarding, DADH and AGAH benefit noticeably from additional
training data as shown in Figure 9, showing a steady decrease in performance the more sam-
ples are discarded from the training set. JDSH remains more consistent in its performance
relative to the amount of training samples being discarded. This suggests that DADH and
AGAH would benefit from additional sources of training data, e.g., unpaired samples,
while JDSH retains its performance even with reduced amounts of data. To investigate
further, we next compare the sample discarding results to previously discussed unpaired
sample training results.
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being reduced. Column ‘Full’ shows results when training with full training set without any sample
discarding. Subsequent columns show results with decreasing amounts of samples, where the given
percentage denotes the percentage of samples in the training set which have been discarded. The
‘Random’ column holds the baseline random performance values.
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Figure 9. Results (mAP) on MIR-Flickr25K and NUS-WIDE with sample discarding, i.e., training
set being reduced. The ‘Full’ points show results when training with the full unaltered training set.
Subsequent points show results with decreasing amounts of samples, where the given percentage
denotes the percentage of samples in the training set which have been discarded. The ‘Random’
points hold the baseline random performance values.

Table 7 compares results previously obtained when training with four different training
sets, each containing: unpaired images (UI), unpaired text (UT), both unpaired images and
text (UIT) and sample discarding (SD). The results for the (i → t) and (t → i) tasks are
compared separately and jointly. Table 7 shows which of the four cases (i.e., UI, UT, UIT,
SD) resulted in the best retrieval performance. The percentage shown in the brackets is
the performance difference by which a given unpaired sample case outperformed sample
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discarding. For example, in Table 7, when DADH is used for the (i → t) task, using
20% of Unpaired Text (UT) improved retrieval performance by 0.86% compared to when
discarding 20% of samples (SD). The actual values can be seen in Tables 4 and 6, where
mAP was 0.824 mAP for SD and 0.831 mAP, respectively.

Although the DADH, AGAH and JDSH methods were not developed for unpaired
training, using the UMML framework, training with unpaired samples resulted in im-
proved results in 53 of the 90 cases evaluated. The performance improvement when
including unpaired samples in the training set when compared to discarding the samples
outright was more substantial the more limited the amount of paired data was available in
the dataset. Therefore, strategies for adapting CMH methods to efficiently train with un-
paired samples are needed, particularly when limited paired data is available and unpaired
data need to be utilised for improving the learning of the model.

Table 7. The sampling cases that produced the best retrieval results are indicated by UI: Unpaired
Image, UT: Unpaired Text, UIT: Unpaired Image and Text, and SD: Sample discarding. The percentage
shown in the brackets is the performance difference by which a given unpaired sample case (shown
in Tables 3–5) outperformed sample discarding (SD) (shown in Table 6). The first row shows the
percentage of training samples being unpaired (UI, UT, UIT), or discarded (SD) depending on the
cell value

.
MIR-Flickr25K

Task Method 20% 40% 60% 80% 100%

i→ t
DADH UT (+0.86%) UT (+3.97%) UT (+6.02%) UT (+10.16%) UIT (+39.93%)
AGAH SD UT (+0.35%) UT (+0.87%) UT (+0.58%) UIT (+26.43%)
JDSH SD SD SD SD UIT (+7.26%)

t→ i
DADH UI (+2.02%) UI (+2.16%) UI (+4.04%) UI (+5.57%) UIT (+41.93%)
AGAH UI (+1.52%) UI (+0.95%) UI (+2.98%) UI (+1.67%) UIT (+35.5%)
JDSH UI (+0.45%) UI (+1.83%) SD SD UIT (+6.26%)

Both
Tasks

DADH UT (+0.19%) UIT (+1.74%) SD UT (+2.20%) UIT (+40.93%)
AGAH SD SD UI (+0.24%) SD UIT (+30.92%)
JDSH SD UI (+0.38%) UI (+0.08%) SD UIT (+6.76%)

NUS-WIDE

Task Method 20% 40% 60% 80% 100%

i→ t
DADH UT (+2.52%) UT (+7.49%) UT (+11.98%) UT (+17.12%) UIT (+154.54%)
AGAH UIT (+1.36%) UIT (+8.46%) UI (+33.40%) UIT (+54.17%) UIT (+112.43%)
JDSH SD SD SD SD SD

t→ i
DADH UT (+5.09%) UT (+9.15%) UIT (+11.65%) UIT (+28.05%) UIT (+170.35%)
AGAH UIT (+17.58%) UT (+17.19%) UT (+26.61%) UT (+52.36%) UIT (+111.42%)
JDSH UT (+1.17%) SD SD SD SD

Both
Tasks

DADH UT (+3.70%) UT (+8.33%) UT (+11.25%) UIT (+22.67%) UIT (+162.41%)
AGAH UIT (+9.02%) UIT (+12.75%) UI (+27.49%) UIT (+51.35%) UIT (+111.92%)
JDSH SD SD SD SD SD

5.5. Comparison to Other Unpaired CMH Methods

The following is a comparison between the pairwise-constrained methods: DADH,
AGAH and JDSH when using the proposed UMML framework to enable these meth-
ods to learn from fully unpaired samples; and the unpaired CMH methods: Adaptive
Marginalized Semantic Hashing (AMSH) [43], Robust Unsupervised Cross-modal Hashing
(RUCMH) [42] and Flexible Cross-Modal Hashing (FlexCMH) [44] that can learn from
unpaired datasets. These experiments were conducted using the MIR-Flickr25K and NUS-
WIDE datasets.

AMSH and FlexCMH are supervised methods that shuffle the training data to create
unpaired sample behaviour. RUCMH is an unsupervised method that is independent of
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pairwise relationships. For the methods DADH, AGAH and JDSH, the 50% image and 50%
text UMML unpairing approach is used as discussed in Section 5.3, where half of the text
samples are emptied leaving 50% of the images being unpaired, and the other half of image
samples are emptied leaving 50% of text being unpaired.

For AMSH, RUCMH and FlexCMH, the results in their respective publications are used
for this comparison because the source-code for these methods are not publicly available.
For a full specification regarding the training parameters of AMSH [43], RUCMH [42] and
FlexCMH [44], please refer to their respective publications.

As shown in Table 8 AMSH outperforms the other methods by a considerable margin
on the (t→ i) task, with a 10.23% performance increase over the second best performing
method, DADH + UMML. For the (t→ i) task however, DADH + UMML narrowly obtains
the best performance. The results obtained by the methods using the UMML extension are
important because the methods are not designed for the unpaired scenario; the UMML
approach adapts the datasets to the methods for these to be compatible with unpaired data.
This indicates there is a need for approaches that fully adapt pairwise-constrained methods
to the unpaired scenario.

Table 8. Fully unpaired 64-Bit mAP evaluation results for unpaired CMH methods and traditional
CMH methods using UMML.

Fully Unpaired
MIR-Flickr25K NUS-WIDE

i→ t t→ i i→ t t→ i

AMSH [43] 0.758 0.840 0.657 0.805
RUCMH [42] 0.719 0.732 0.650 0.657
FlexCMH [44] 0.572 0.568 0.426 0.418
DADH + UMML 0.760 0.762 0.662 0.698
AGAH + UMML 0.693 0.729 0.567 0.565
JDSH + UMML 0.591 0.594 0.259 0.255

5.6. Class-by-Class Performance Evaluations

The objective of this experiment is to evaluate the performance of each class in MIR-
Flickr25K when training with unpaired samples using DADH. Evaluations were made on
a class-by-class basis across the 24 classes in the dataset, where three training set pairing
scenarios were evaluated: fully paired, 80% of the training text being unpaired, and 80% of
the training images being unpaired.

Table 9 shows the results of the experiments. The first column, ‘MIR-Flick25 Classes’,
shows the class number and name. The brackets next to each class indicate the number
of queries taken from the given class and the possible number of correct retrievals within
the retrieval set (Queries/Relevant Files). The column ‘Performance Difference’ shows the
performance difference of the unpaired scenarios when compared to the paired scenario,
with the values being computed using Formula (4).

Figure 10 shows the performance difference across the classes when training with
unpaired samples compared to when training with paired samples, calculated using
Formula (4). The performance difference across all classes was negative, meaning that
the retrieval performance of the the DADH model was always worse when training with
unpaired samples. The ‘Performance Decrease’ values shown on the y-axes of the charts of
Figure 10, indicate a noticeable variation in performance difference across the classes when
training with unpaired samples compared to training with paired samples. For example,
classes 8, 9, and 10 were among the five most negatively affected classes when training
with both unpaired images and text averaging a performance decrease of 16.98%. On
the other hand, classes 4, 18 and 23 were among the five least negatively affected classes
averaging a performance decrease of 8.49%. This variation found in the results across
classes indicates that the type of data used impacts the degree to which performance is
affected when adapting from training with paired data to training with unpaired data. As
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such, the content used for a given unpaired information retrieval task should be considered
when developing strategies to tackle the unpaired scenario.

Table 9. MIR-Flickr25K class-by-class mAP@N evaluation using 64-Bit DADH. Fully paired, 80%
unpaired images and 80% unpaired text.

MIR-Flickr25K
Classes

mAP Performance Difference

Paired Image Unpair Text Unpair Image Unpair Text Unpair

i→ t t→ i i→ t t→ i i→ t t→ i i→ t t→ i i→ t t→ i

1-Animals (271/2308) 0.777 0.744 0.647 0.723 0.779 0.649 −16.73% −2.89% 0.21% −12.76%
2-Baby (17/168) 0.881 0.815 0.752 0.866 0.897 0.809 −14.68% 6.32% 1.73% −0.65%
3-Bird (63/552) 0.780 0.764 0.653 0.745 0.770 0.670 −16.29% −2.56% −1.32% −12.37%
4-Car (90/926) 0.879 0.869 0.800 0.861 0.896 0.818 −8.90% −0.96% 1.99% −5.91%
5-Clouds (364/2883) 0.901 0.906 0.784 0.859 0.897 0.812 −12.98% −5.24% −0.38% −10.37%
6-Dog (58/508) 0.791 0.755 0.648 0.714 0.785 0.656 −17.99% −5.44% −0.76% −13.02%
7-Female (433/4243) 0.894 0.879 0.783 0.863 0.892 0.801 −12.43% −1.79% −0.20% −8.87%
8-Flower (223/1273) 0.834 0.866 0.692 0.828 0.834 0.752 −17.09% −4.41% −0.11% −13.16%
9-Food (73/747) 0.734 0.692 0.562 0.707 0.760 0.589 −23.36% 2.12% 3.53% −14.97%
10-Indoor (550/5899) 0.836 0.791 0.667 0.795 0.844 0.687 −20.18% 0.61% 0.98% −13.15%
11-Lake (27/609) 0.873 0.866 0.758 0.836 0.879 0.779 −13.14% −3.54% 0.65% −10.03%
12-Male (447/4375) 0.899 0.878 0.785 0.862 0.886 0.802 −12.64% −1.76% −1.39% −8.66%
13-Night (227/2078) 0.850 0.841 0.720 0.820 0.836 0.749 −15.24% −2.57% −1.57% −11.01%
14-People (769/7227) 0.892 0.872 0.772 0.858 0.885 0.792 −13.39% −1.70% −0.81% −9.24%
15-Plantl i f e (728/6535) 0.870 0.881 0.773 0.833 0.878 0.802 −11.20% −5.37% 0.83% −8.94%
16-Portrait (292/2524) 0.890 0.860 0.757 0.867 0.890 0.783 −14.91% 0.79% 0.06% −8.97%
17-River (43/701) 0.885 0.883 0.748 0.829 0.862 0.765 −15.44% −6.17% −2.63% −13.46%
18-Sea (87/961) 0.848 0.843 0.761 0.809 0.877 0.769 −10.31% −3.99% 3.43% −8.69%
19-Sky (639/6020) 0.895 0.900 0.790 0.851 0.891 0.812 −11.74% −5.41% −0.43% −9.75%
20-Structures (779/7626) 0.888 0.884 0.787 0.849 0.887 0.806 −11.33% −3.91% −0.11% −8.84%
21-Sunset (215/1696) 0.884 0.914 0.768 0.850 0.883 0.792 −13.20% −7.07% −0.09% −13.36%
22-Transport (201/2219) 0.877 0.875 0.777 0.820 0.878 0.790 −11.48% −6.28% 0.11% −9.78%
23-Tree (342/3564) 0.899 0.901 0.810 0.857 0.910 0.835 −9.85% −4.83% 1.29% −7.28%
24-Water (271/2472) 0.837 0.839 0.733 0.793 0.845 0.746 −12.39% −5.48% 1.00% −11.10%
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Figure 10. Percentage of performance change of DADH computed using formula (4) when training
with unpaired samples compared to paired training across 24 classes of MIR-Flickr25K. Red bars
show the five classes with the most performance change and green bars show the five classes with
the least performance change. The remaining classes are marked as blue bars.

Figure 10. Percentage of performance change of DADH computed using formula (4) when training
with unpaired samples compared to paired training across 24 classes of MIR-Flickr25K. Red bars
show the five classes with the most performance change and green bars show the five classes with
the least performance change. The remaining classes are marked as blue bars.
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6. Conclusions

This paper explores the topic of Unpaired Cross-Modal Hashing (CMH) and the
capabilities of state-of-the-art CMH methods with regards to learning from unpaired
data in the context of information retrieval. The UMML framework has been proposed
to enable pairwise-constrained CMH methods to learn from unpaired data. Through
UMML, experiments have been conducted using DADH, AGAH and JDSH with paired
and unpaired sample variations of MIR-Flickr25K and NUS-WIDE datasets. Evaluations to
determine how unpaired data affect performance were carried out. Below is a summary of
the main observations:

– Unpaired data can improve the training results of CMH methods. Furthermore, if
data from both the image and text modalities are present in the training set, initially
pairwise-constrained CMH methods can be trained on fully unpaired data.

– The extent to which unpaired data are helpful to the training process is relative to the
amount of paired samples. The more scarce the paired samples available, the more
helpful it can be to use additional unpaired samples for training.

– The performance of the models showcased when using unpaired samples for training
is dependent on the modality of the unpaired samples, the dataset being used, the
class of the unpaired data, and the architecture of the CMH algorithms. These factors
influence whether unpaired samples will be helpful to the training process.

– The proposed UMML framework adapts the dataset to enable pairwise-constrained
CMH methods to train on unpaired samples. When using UMML to enable DADH,
AGAH and JDSH to train with unpaired samples, it was observed that the methods
perform well when training with unpaired samples. This suggests that further im-
provements may be observed if the architectures of these methods are adapted to train
on unpaired data.

With the findings obtained in this study, future works include extending the proposed
UMML framework to adapt methods to training with unpaired samples at an architectural
level. Future work also includes applying the UMML framework using data from case
studies provided by industry.
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