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Abstract: Accurate and rapid crop type mapping is critical for agricultural sustainability. The growing
trend of cloud-based geospatial platforms provides rapid processing tools and cloud storage for
remote sensing data. In particular, a variety of remote sensing applications have made use of publicly
accessible data from the Sentinel missions of the European Space Agency (ESA). However, few studies
have employed these data to evaluate the effectiveness of Sentinel-1, and Sentinel-2 spectral bands and
Machine Learning (ML) techniques in challenging highly heterogeneous and fragmented agricultural
landscapes using the Google Earth Engine (GEE) cloud computing platform. This work aims to map,
accurately and early, the crop types in a highly heterogeneous and fragmented agricultural region
of the Tadla Irrigated Perimeter (TIP) as a case study using the high spatiotemporal resolution of
Sentinel-1, Sentinel-2, and a Random Forest (RF) classifier implemented on GEE. More specifically,
five experiments were performed to assess the optical band reflectance values, vegetation indices, and
SAR backscattering coefficients on the accuracy of crop classification. Besides, two scenarios were
used to assess the monthly temporal windows on classification accuracy. The findings of this study
show that the fusion of Sentinel-1 and Sentinel-2 data can accurately produce the early crop mapping
of the studied area with an Overall Accuracy (OA) reaching 95.02%. The scenarios prove that the
monthly time series perform better in terms of classification accuracy than single monthly windows
images. Red-edge and shortwave infrared bands can improve the accuracy of crop classification
by 1.72% when compared to only using traditional bands (i.e., visible and near-infrared bands).
The inclusion of two common vegetation indices (The Normalized Vegetation Index (NDVI), the
Enhanced Vegetation Index (EVI)) and Sentinel-1 backscattering coefficients to the crop classification
enhanced the overall classification accuracy by 0.02% and 2.94%, respectively, compared to using the
Sentinel-2 reflectance bands alone. The monthly windows analysis indicated that the improvement in
the accuracy of crop classification is the greatest when the March images are accessible, with an OA
higher than 80%.

Keywords: crop type mapping; Sentinel-1; Sentinel-2; machine learning; Google Earth Engine;
time-series
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1. Introduction

Morocco’s climate is classified as semi-arid to arid, and it is considered one of the
countries most affected by climate change [1,2]. The Tadla Irrigated Perimeter (TIP) is one
of the most heterogeneous and fragmented agricultural regions in Morocco. It contributes
to the national production of sugar beet, cereals, olive, citrus, and pomegranate. The TIP,
as well as the other Moroccan irrigated perimeters, are expected to develop irrigation
management techniques to increase production and save water [3].

Recently TIP studies focused on mapping crop types using Landsat 8 NDVI data [4]
and classifying crops using the Sentinel-2 time series [5]. The Tadla Irrigated Perimeter
shows potential for improving the quality of early crop identification through the evaluation
of different sensors. To efficiently handle the challenges of big data processing, Google has
created a cloud computing platform called Google Earth Engine [6].

A more accurate crop classification may therefore result from the new Google Earth En-
gine cloud platform’s effectiveness in remote sensing accessibility, reduction of processing
time, computation, and automation.

Therefore, the present work is the first study in this region that proposes a cloud computing
approach developed in the GEE JavaScript interface to evaluate the different band combinations
of the high spatiotemporal resolution of Sentinel-1 and Sentinel-2 for early-season crop mapping.

Remote sensing is increasingly used for recognizing crop condition information. Data
availability has improved, as well as spatial, temporal, and spectral resolutions. [7]. Despite
the fact that large-scale agriculture is a global trend for agricultural development, family
farming continues to be the primary management form of agricultural practices in develop-
ing countries, namely Morocco [8,9] This type of farming is characterized by small plots,
making the distinction and classification of crops a difficult issue. As in the TIP region, the
size of the plots varies from 0.5 to 10 hectares; 86% of them have an area of less than 5 ha,
8% range from 5 to 10 ha, and only 5% have an area greater than 10 ha.

Moderate Resolution Imaging Spectroradiometer (MODIS) images at 500 m resolution
are mostly used in large-scale crop mapping. However, to categorize regions with small
plots, a medium to high resolution is required. [10]. Several studies have been conducted
to map small-scale agriculture [11–13].

The recent cloud-based platform GEE provides open access remote sensing datasets and
offers a new choice for researchers focused on geospatial capabilities, with planetary-scale
analysis [14,15]. GEE has recently gained many remote sensing applications, such as cropland
mapping. For example, Xiong et al. [13] developed an automatic algorithm within GEE to
classify croplands over the entire African continent, Shelestov et al. [14] conducted a crop
classification analysis using huge amounts of multi-temporal data and GEE, and Kolli et al. [15]
assessed the change in the extent of mangrove ecosystems using different spectral indices and
random forests in GEE. Moreover, Amani et al. [16] used the GEE cloud computing platform
with an Artificial Neural Network (ANN) algorithm to produce an object-based map.

One of the most intriguing sources of crop information is optical satellite imagery. However,
it has limitations and drawbacks during cloudy periods [17]. This challenge causes great
difficulties in identifying crops, setting up monitoring practices, and managing irrigation water.
One potential remedy for this problem is SAR remote sensing. SAR is an active technique that
provides cloud-free imagery, both during the day and at night, and in all weather conditions [11].
Furthermore, SAR sensors are sensitive to the physical and dielectric properties that also include
the morphology of crops, providing more details about the type of vegetation cover [17].

The fusion of Optical and SAR data is a powerful tool for developing classification
procedures [18]. Several studies have shown that crop classification accuracy improves
when optical and SAR data are combined [18,19].

The use of multi-temporal remote sensing data for improved spectral feature recog-
nition and change detection is key to crop-type mapping [20]. Many studies have high-
lighted the performance of time series imagery in the classification process. For example,
Inglada et al. [19] found that using SAR and optical image time series improved early
crop type identification, and Van Tricht et al. [17] concluded that synergistic use of radar
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Sentinel-1 and optical Sentinel-2 multi-temporal imagery provides more precise informa-
tion and an improvement in classification accuracy.

A variety of techniques for balancing and regenerating dense time series have been
proposed. Equal interval synthesis, generating median composite images, is a widely
accepted pixel synthesis method for classification tasks and other works [10].

Crop mapping from satellite images has been performed using many classification
methods. In recent years, machine learning algorithms have appeared as more accurate
alternatives, particularly for large dimensional and complex data [20] (Table 1). The Random
Forest (RF) algorithm has been used in several studies related to crop classification, which has
demonstrated good performance [21]. Additionally, the RF algorithm has produced reliable
results in numerous investigations that predicted soil properties using regression models [22].

The selection of appropriate feature exploration derived from satellite imagery is critical
for accurate crop type classification. In South China, the selection of Sentinel-1 and Sentinel-2
features was crucial for the discrimination between early, middle, and late rice [23].

According to some recent studies, the red-edge bands of Sentinel-2 were useful for
estimating crop production [24] and changes in vegetative moisture content [25], while the
shortwave infrared (SWIR) bands were found to be suitable for analyzing vegetation stress [26].

Therefore, this research aims to highlight the effect of red edge, shortwave infrared
(SWIR) bands, and vegetation indices on classification accuracy.

Determining the most appropriate time window for accurate discrimination of crops is
key for timely agricultural policy decisions; in Heilongjiang Province, China, LUO et al. [10]
revealed the earliest accurate timing for crop classification of soybean, rice, and corn by
performing a combination of Landsat 8 OLI and Sentinel-2 data with the reference time
series-based method (RBM).

Thus, the present study analyzes the change in accuracy parameters during the grow-
ing season to deduce the optimal time window for an accurate TIP crop classification.

Furthermore, early crop mapping has the benefit of improving decision-making in agri-
cultural practices, yield increases, and water resource management. In Italy, Azar et al. [27]
used spectral indices derived from multi-temporal Landsat 8 OLI images and supervised
classification algorithms to evaluate the performance of early-season crop classification.

As a result, the TIP, as well as the other Moroccan irrigated perimeters, are expected
to be able to deduce the optimal time window for the discrimination of crops during the
early growing season. Early crop classification results would be beneficial for enhancing
decision-making about agricultural practices, production improvements, and water re-
source management. Additionally, the use of cloud computing would significantly improve
access to remote sensing data and save time.

The research objectives of this paper are:

(1) To evaluate the high spatiotemporal resolution of Sentinel-1, Sentinel-2, and RF ma-
chine learning algorithms for accurate and early crop type mapping in a heterogeneous
and fragmented agricultural region on the GEE platform by analysing the contribution
of the various bands in improving the classification accuracy.

(2) To assess the individual monthly temporal windows and the entire monthly time
series on classification accuracy.

Table 1. Recent studies in crop classification techniques using Sentinel-1 and Sentinel-2.

Author Year Problem Definition Targeted Crop Dataset Model Accuracy

Tufail et al. [28] 2022

Crop type mapping

Wheat, strawberry,
fodder, and rice Sentinel-1, Sentinel-2 RF 97%

He et al. [23] 2021 Rice Sentinel-1, Sentinel-2 RF 81%

Rao et al. [29] 2021 Maize, mustard, tobacco,
and wheat)

Sentinel-1, Sentinel-2, and
PlanetScope SVM 85%

Schulz et al. [30] 2021
Rice, cropland, and
sparse vegetation Sentinel-1, Sentinel-2

RF 73.3%
SVM 60.8%
ML 31.7%
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2. Study Area

The Tadla Irrigated Perimeter is an irrigated system situated in central Morocco
between 32◦12′0′′ N 7◦0′0′′ W and 32◦24′0′′ N 6◦24′0′′ W, with an average altitude of 400 m
(Figure 1), including more than 100 000 ha of irrigated land. The TIP is subdivided into
two compartments separated by the Oum Er Rbia river: the perimeter of Beni Amir on the
northern bank of the river, supplied by the Chahid Ahmed El Hansali Dam with a capacity
of 670 million m3, and the perimeter of Beni Moussa in the southern bank, supplied by the
Bin El Ouidane Dam, with a capacity of 1.3 billion m3. This water supply is the source of the
diversity of crops in the region. The most dominant crops in the region are cereals (wheat
and barley), alfalfa, sugar beet, citrus, olives, and pomegranate. The area is characterized by
a very fragmented and intensive agricultural system; 86% of parcels are less than 5 ha, and
only 5% of the parcels exceed 10 ha [4]. The climate is arid to semi-arid, with a temperature
that varies between 6◦ (January) and 48◦ (August). The average annual precipitation is
280 mm, with important annual variations [31].
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3. Materials and Methods
3.1. Ground Data

The TIP crops were identified throughout field campaigns from September 2020 to
March 2021 as Regions of Interest (ROIs). They were chosen in various locations and parcel
sizes. Figure 2 depicts the spatial distribution of the ROIs, while Table 2 presents the
characteristics of selected ground data. The coordinates of the ROIs were recorded using a
GPS and the QField application. QField is dedicated to the easy and efficient execution of
GIS fieldwork and the comfortable exchange of data between the field and the office.
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Figure 2. Spatial distribution of the ROIs and the corresponding Sentinel-2 image (False Color
Combination: NIR, Red, Green band as RGB), (A–C) a detailed zoom.

Table 2. Number and area of selected ROIs.

Classes Number of ROIs Area (ha)

Winter cereals 229 336
Alfalfa 184 146

Sugar beet 78 123
Corn 22 195

Citrus 146 596
Pomegranate 27 248

Olive 32 113
No crops 18 979
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The major crops identified were winter cereals (wheat and barley), alfalfa, sugar beet,
corn, citrus, pomegranate, and olive. These data were used for classifying and assessing
the accuracy of the produced maps. The number of ROIs collected was 736 plots, including
512 for training (70%) and 224 for validation (30%). Figure 3 shows the phenological stages
of growth for the major crops in the TIP.
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2020/2021.

3.2. Satellite Data
3.2.1. Sentinel-2

Two satellites in orbit, Sentinel-2A and Sentinel-2B, are equipped with a Multi-spectral
instrument (MSI), allowing the observation of the Earth at spatial resolutions of 10 m, 20 m,
and 60 m [32]. The Level-2A product provides Bottom Of Atmosphere (BOA) reflectance
images. The MSI has 13 spectral bands, of which ten bands are from visual to shortwave
infrared, including four bands with a 10-m spatial resolution (blue, green, red, near-infrared)
and six bands with 20-m resolution (red-edge 1, red-edge 2, red-edge 3, red-edge 4, SWIR1,
and SWIR2). The selection of satellite images was based on the criteria that the scenes
should have minimal or no clouds (less than 2% cloud cover), with a sufficient number of
days for each month. In this study, 38 images were considered (Table 3).

Table 3. Date of acquisition of Sentinel-2 and Sentinel-1 from September 2020 to March 2021.

Month Date of Acquisition Sentinel-2 (MSI) Date of Acquisition Sentinel-1 (SAR)

September 3, 5, 10, 15, 20, 25, 28 2, 8, 14, 20, 26
October 5, 10, 13, 25, 28 2, 8, 14, 20, 26

November 2, 17, 22, 24 1, 7, 13, 19, 25
December 2, 12, 22, 27 1, 7, 13, 19, 25

January 1, 16, 26, 28 6, 12, 18, 24
February 2, 10, 15 5, 11, 17, 23

March 11, 22 6, 12, 18, 24
April 1, 13, 23 5, 11, 17, 23, 29
May 6, 11, 16 5, 11, 17, 23, 29
June 2, 12, 20 4, 10, 16

3.2.2. Sentinel-1

Sentinel-1 is a system of two polar-orbiting satellites (Sentinel-1 A/B) that are active
day and night. This study considered the C-band synthetic aperture radar, the interfero-
metric wide swath (IWS) mode in the ascending view angle at the ground range detected
(GRD) product level-1. The vertical transmit/receive (VV), and the horizontal/vertical
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transmit/receive (VH) were processed in this research. The number of Sentinel-1 im-
ages processed was 45. (Table 3). However, on 3 August 2022, the European Space
Agency and the European Commission announced the end of the Copernicus Sentinel-1B
satellite mission.

3.3. Tools Used

The Google Earth Engine (GEE) environment was used to develop the workflow to
extract band reflectance values, vegetation indices, and backscattering coefficients from
Sentinel-2 and Sentinel-1 time series images. The crop classification results were exported
as Geocoded rasters into QGIS for visual interpretation.

4. Methodology

This paper serves to map, accurately and early, the crop types in a highly hetero-
geneous and fragmented landscape region using the high spatiotemporal resolution of
Sentinel-1 and Sentinel-2 by performing an RF classifier on GEE. In this context, five ex-
periments were performed to examine the band reflectance values, vegetation indices, and
backscattering coefficients on crop classification. Additionally, two temporal scenarios for
crop classification were evaluated.

The workflow of the proposed methodology is shown in Figure 4.

4.1. Pre-Processing

In this section, Sentinel-2 was selected to classify both 10- and 20-m resolution bands. The
bands with 20 m resolution were resampled to 10 m using the nearest-neighbour interpolation.

The Normalized Vegetation Index (NDVI) [33] and the Enhanced Vegetation Index
(EVI) [34] were added as inputs for the classification.

The NDVI can be considered one of the most important vegetation indices used for
identifying the growing conditions of crops [19]. It is obtained from reflectances in the red
(R) and near-infrared (NIR) portions of the spectrum [35] (Table 4).

The Enhanced Vegetation Index (EVI), which is described as ‘an optimized vegetation
index to deliver an accurate vegetation signal with increased sensitivity in lands with
dense biomass’, has received much interest in monitoring the quality and amount of
vegetation [36]. EVI is derived from reflectances in the red (R), blue (B), and near-infrared
(NIR) portions of the spectrum [35] (Table 4).

The backscattering coefficient, provided by the Sentinel-1 toolbox, offers additional
information on crop mapping [9]. The backscattering time series with VV and VH polariza-
tion were combined with Sentinel-2 data for the classification process. The GEE supplies
pre-processed Sentinel-1 data [37].

4.2. Image Compositing

The time series data provide additional specific information about spectral features
and change detection [20]. The statistical information about multi-temporal data has
successfully demonstrated their performance in crop classification and differentiation of
land types [10]. Furthermore, the median time series is a robust statistical indicator in crop
classification. Consequently, the monthly median was selected as a statistical parameter
of the time series images. The median composite images of Sentinel-2 reflectance bands,
vegetation indices, and Sentinel-1 backscattering coefficients at VH and VV polarization
were generated for each month from September to March in the TIP region during the early
growing season (Figures 5 and 6).
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Table 4. Vegetation Indices and their expressions used in this study.

Index Equation S-2 Bands Used Original Author

NDVI (NIR − R)/(NIR + R) (B8 − B4)/(B8 + B4) [33]

EVI 2.5(NIR − R)/(NIR +
6R − 7.5 × BLUE + 1)

2.5(B8 − B4)/(B8 +
6B4 − 7.5 × B2 + 1) [34]
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4.3. Scenario 1

In this scenario, the GEE JavaScript interface was performed to select the entire time
series of Sentinel-1 and Sentinel-2 monthly composite images, covering the period from
2 September 2020, to 24 March 2021. To evaluate the different band reflectance values,
vegetation indices, and backscattering coefficients on crop classification, we designed the
following experiments.

Experiment 1: Only Sentinel-2 traditional bands (visible bands and NIR bands) were
used for classification.

Experiment 2: The traditional bands, SWIR, and red-edge bands were used for classification.
Experiment 3: The traditional bands, SWIR bands, red-edge bands, and vegetation

indices (NDVI and EVI) were used for classification.
Experiment 4: Only the SAR (Sentinel-1) data were used for classification.
Experiment 5: All the optical (Sentinel-2) and SAR (Sentinel-1) data were used for

classification.
Sentinel-1 and Sentinel-2 bands were stacked to conduct these experiments.

4.4. Scenario 2

To investigate the effectiveness and the accuracy of classification through the monthly
windows, the analysis was executed under the aforementioned five different experiments.
For this purpose, another JavaScript interface was developed to produce 7 crop classification
maps ranging from September to March under the five experiments aiming to deduce both
optimal experiments and monthly windows.

4.5. Classification Process

Many crop classification investigations have confirmed the usefulness of RF in crop
recognition [28]. The RF algorithm can be described as a collection of various decision
trees, where each tree provides one vote for the most prevalent class [38]. It is a robust
classifier that solves the overfitting problem associated with Decision Tree (DT) classifiers
by constructing a set of DT classifiers [39]. This study used the performance of the RF
classifier included in GEE to classify the TIP crops at an early season under two scenarios
and five experiments.

4.6. Validation

Five confusion metrics, including overall accuracy (OA), Kappa coefficient, user
accuracy (UA), producer accuracy (PA), and F1 score, were used to evaluate the crop
classification result. For training purposes, 70% of each class’s ROIs were randomly chosen,
while the additional 30% of field survey sites were employed to examine the accuracy. The
OA was computed by summing the number of successfully classified cells and dividing
by the total number of cells, while the Kappa coefficient reflects the agreement between
classification and truth values [40].

The PA represents the conditional probability that a specific location on the classifi-
cation map’s output is consistent with any random sample in the test data, while the UA
consists of selecting a random sample with the same conditional probability as the actual
type of ground from the classification results [10]. The PA and UA were generated from the
error matrix of classification.

The F1 score is a critical metric indicator that optimizes the dispersion between PA
and UA for each class by the generation of the harmonic mean of PA and UA [41]. The
following equations were used to calculate these metrics:

OA(%) =
∑n

i=1 pii

N
× 100 (1)

Kappa =
N ∑n

i=1 pii −∑n
i=1(pi+ × p+i)

N2 −∑n
i=1(pi+ × p+i)

(2)
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UA(%) =
pii
pi+
× 100 (3)

PA(%) =
pii
p+i
× 100 (4)

F1 score(%) =
UA× PA
UA + PA

× 2 (5)

here n is the total number of columns of the confusion matrix; pii is the number of correctly
classified upper crop type samples in the i row and i column of the confusion matrix,
pi+ and p+i are the total number of crop-type samples in row i and column i, and N is the
total number of samples included for verification.

5. Results
5.1. Temporal Profiles of Normalized Difference Vegetation Index (NDVI)

The main crops in the TIP are winter cereals, sugar beet, alfalfa, corn, and tree crops
such as citrus, pomegranate, and olive. This section focused on monitoring the phenological
development of TIP crops by analyzing the NDVI time series profiles. These profiles include
the average NDVI of the reference parcels on each date (Figure 7).
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For sugar beet, sowing was undertaken from the end of September to the beginning
of November, after rainy periods, ensuring enough soil moisture for germination. From
this period, the vegetation indices values increase until reaching maximum values between
March and May (NDVI > 0.8), while the NDVI values decrease in late May, allowing
harvesting to begin.

Alfalfa is a forage crop with high productivity, long duration (3–4 years), and the
ability to regrow [4]. It is commonly planted from October to February. As a result, the
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NDVI values of this crop show a rapid change that is replicated throughout its growth
cycle due to the cycling between harvest and regrowth.

Cereal grains include winter cereals (wheat and barley) and corn. They were examined
separately due to the differences in developmental stages. For winter cereals, sowing
took place from late October to December, increasing the NDVI values until late March
(NDVI > 0.8). The decrease in the NDVI values for winter cereals occurs before sugar beet.
Harvesting can be carried out from late May to early June.

Corn can be planted in two seasons, including March to April and July to August,
while harvesting happens from late July to early August in the first season and from late
November to early December in the second season. As shown in Figure 7, sowing took
place in the first season of planting corn, showing an increase in the NDVI values from
March to April.

For tree crops (citrus, pomegranate, and olive), the NDVI values are greater than
0.4 throughout the season. The elevated NDVI values are attributed to the high rate of
chlorophyll along the phenological stages of development. However, slight decreases
in NDVI values are observed during the period between November to January since
this period is known for leaf loss (e.g., pomegranate) or farming practice (e.g., cutting
citrus), while olive trees keep the same rate of greenness, which results in more constant
NDVI values.

5.2. Temporal Profiles of Backscattering in VH Polarization

In this section, the profiles show the average SAR backscatter (σ ◦) in the VH polariza-
tion of the reference plots at each date (Figure 8).
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Figure 8. Backscattering spectral curves for major crop types planted in 2020/2021: (a) Sugar beet;
(b) Alfalfa; (c) Winter cereals (wheat and barley) and corn; (d) Tree crops (pomegranates, citrus, and olive).

For sugar beet, the period of sowing, growing, and harvesting was recorded according
to the NDVI profile, with an increase in backscatter values during the growth phase of
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the plant, reaching maximum values during the period between March and May. In late
May, the backscatter (σ ◦) in VH polarization values tend to decline, permitting harvesting
to begin.

Alfalfa shows continuous variation throughout the season, with backscatter coefficient
values ranging from −20 to −15. The phenological stages of winter cereals, corn, and tree
crops were less differentiated for the backscatter coefficient in VH polarization.

5.3. Crop Mapping in the Early Season with the Entire Time Series (Scenario 1)

The TIP crop mapping developed with the entire time series was based on pixel-
based image classification of monthly median images from optical and SAR data from
September 2020 to March 2021, using five experiments.

As shown in Figure 9, the classification accuracy of experiment 2 (93.80% and 0.92)
is higher than experiment 1 (92.08% and 0.89), which demonstrates that the addition of
the SWIR bands and the red-edge bands when using time series images can improve the
crop classification accuracy. Adding the NDVI and EVI vegetation indices (experiment 3)
fails to improve the classification accuracy of experiment 2 (the difference between the
lowest and the greatest accuracies is 0.02%). When using the time series images for crop
classification, experiment 5 obtained the best classification performance (95.02% and 0.93),
while experiment 4 had the lowest classification (86.35% and 0.81).
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As a result, experiment 5 was selected to map the crop distribution in the TIP area
(Figure 10). Regarding the distributions of the main TIP crops, winter cereals and alfalfa
cover a large area, particularly around the Beni Amir perimeter. Sugar beet is mostly
found in the center of the Beni Moussa perimeter. Pomegranate trees are distributed in the
northern sub-section of Beni Amir. Citrus and olive trees are located in the southeastern
part of Beni Moussa, while corn is poorly distributed in the area.

5.4. Crop Mapping in the Early Season with Monthly Windows (Scenario 2)

The monthly window was chosen as the temporal window for evaluating the per-
formance of TIP crop classification throughout the growing season. Table 5 reveals that
the classification accuracies of experiment 2 and experiment 3 are greater than that of
experiment 1 in all the months, which proves that adding SWIR bands, red-edge bands,
and vegetation indices improves the classification accuracy when using single monthly
window images.
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inputs and RF classifier in the early season.

Table 5. Classification accuracy of experiments based on monthly windows.

Sept. Oct. Nov. Dec. Jen. Feb. Mar.

OA (%) k OA (%) k OA (%) k OA (%) k OA (%) k OA (%) k OA (%) k

Experiment 1 68.95 0.57 70.14% 0.61 72.50 0.63 70.53 0.60 63.12 0.51 68.32 0.57 71.89 0.62
Experiment 2 79.37 0.72 80.01% 0.75 83.58 0.78 81.82 0.75 79.26 0.72 81.67 0.75 83.89 0.78
Experiment 3 79.01 0.71 79.67% 0.72 82.07 0.76 80.82 0.74 78.10 0.70 80.82 0.74 82.96 0.77
Experiment 4 49.10 0.28 53.80 0.34 56.64 0.37 58.32% 0.42 52.67 0.33 49.27 0.28 56.96 0.38
Experiment 5 80.07 0.73 83.06% 0.77 84.99 0.79 84.59% 0.79 82.05 0.75 85.14 0.78 86.22 0.81
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Experiment 5 demonstrated consistently higher accuracy values for all months, demon-
strating the importance of SAR imagery as a supplement to optical imagery in significantly
improving crop classification accuracy in the early growing season.

The classification accuracy of experiments varies over time; it increases from September
to December, falls from December to February, and rises again from February to March. The
highest classification accuracy and Kappa coefficient (86.22% and 0.81, respectively) were
recorded for experiment 5 and the March monthly window. Experiment 2 and experiment
3 provide similar changes in accuracy and achieve an OA of more than 80% in most months
(Figure 11).
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5.5. Crop Area Forecasting in the Early Season

In this section, the resulting image of classification from the fusion of optical and
SAR data (experiment 5) with the time series from September to March (early season)
was investigated to estimate the area of the TIP crops. The area of crops is calculated by
multiplying the number of pixels classified into a class by the area of each pixel (Table 6).
The comparison of crop areas obtained from the classification maps and the areas pre-
sented by ORMVAT (Figure 12) yields similar values for the majority of crops, particularly
pomegranate, sugar beet, alfalfa, and winter cereals. However, differences in area values
are recorded for olive and citrus. Figure 13 depicts the contribution of each crop class in
Tadla’s irrigated area for the growing season 2020/2021 obtained from the area measured
by the ORMVAT and the estimated area. Winter cereals and alfalfa contributed the most in
the TIP region for the season 2020/2021.

Table 6. The number of pixels and estimated area based on the TIP crop classification result for the
season 2020/2021.

Classes Number of Pixels Estimated Area (ha)

Pomegranate 209,388 2094
Winter cereals 4,656,382 46,564

Citrus 2,828,423 28,284
Sugar beet 706,455 7064

Alfalfa 2,566,989 25,670
Olive 609,967 6100
Corn 109,354 1093
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6. Discussion

The open access remote-sensing datasets and the computing power of the GEE plat-
form were key to achieving the objectives of this paper. This study included 38 Sentinel-2
Level 2-A data and 45 Sentinel-1 data, used to produce the median monthly composite
images. These images were evaluated with five experiments and two scenarios to produce
accurate crop classification results. Without the use of cloud-computing capacity, this
amount is challenging to process. Furthermore, this could have taken several days, which
delays decision-making in many cases. With GEE, on the other hand, this process was
fast and required only a few seconds. However, most of the time was spent developing
appropriate code to evaluate the various band reflectance values, vegetation indices, and
backscattering coefficients on crop classification. Besides, two scenarios were used to
evaluate the monthly temporal windows on classification accuracy.

Crop classification in a highly heterogeneous and fragmented agricultural region is
challenging due to the temporal and spatial resolutions of images. On the other hand,
mapping crops in early March is also a major challenge in this region. As a result, this study
involved five combinations of parameters derived from optical and SAR imagery and two
temporal scenarios to classify crops accurately. Results revealed that the highest accuracy
of crop classification using the entire monthly series of images (OA = 95.02% and k = 0.93)
is much higher than the greatest accuracy using single monthly images (OA = 86.22% and
k = 0.81). This finding is consistent with previous studies, as LUO et al. [10] discovered that
the classification performance using time series images is considerably better than using
single-period images, and Inglada et al. [19] found that using SAR and optical image time
series allows for the accurate generation of early crop-type mapping.
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According to the results of experiments, adding red-edge and SWIR bands to the
visible and NIR bands improves crop classification accuracy by 1.72%, while adding NDVI
and EVI bands enhances crop classification accuracy by 0.02%. Consequently, Figure 14
reveals that when these bands are combined with the traditional bands, the accuracy of the
TIP crops improves. For example, the accuracy of sugar beet is lower when only traditional
bands are used for classification (F1 score = 86.87%), while adding SWIR and red-edge
bands to the traditional band improve the classification accuracy (F1 score = 91.16%). This
finding suggests that sugar beet can be detected using the red-edge and SWIR bands.
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However, the contribution of vegetation indices (NDVI, EVI) improves the accuracy
of pomegranate classification (Figure 15).
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The fusion of optical and SAR parameters yields the greatest accuracy (95.02% and
0.93). This accuracy is slightly higher than Sentinel-2 images alone (93.82% and 0.92), while
it is considerably greater than when only Sentinel-1 images are used (86.35% and 0.81).
These results indicate that the combination of optical and SAR data can accurately generate
early crop mapping in a highly heterogeneous and fragmented area, as in the case of the
TIP region. In India, Qadir and Mondal [42] found that the combination of SAR and optical
data improves the monsoon cropland detection with an OA = 93%.

Figure 14 shows that the classification result using Sentinel-1 only in the large plots is
not noticeably lower than Sentinel-2, whereas the areas characterized by small plots show
confusion between classes when using only Sentinel-1 data.

The classification result obtained from the fusion of Sentinel-1 and Sentinel-2 features
was evaluated by comparing the office and estimated area of crops. Results proved that the
most accurate areas were assigned to pomegranate, sugar beet, alfalfa, and winter cereals,
while differences in area values were recorded for olive and citrus (Figure 12). This gap
can be related to the recently cultivated land characterised by small trees, which causes
confusion between the two classes.

When compared to the results obtained by Ouzemou et al. [4] from pan-sharpened
Landsat 8 NDVI data for the TIP crop mapping (OA = 89.26% and k = 0.85), the findings
of this paper provide an accurate crop classification with more classes (OA = 95.02% and
k = 0.93).

Early crop mapping could have several benefits, such as improved decision-making
on agricultural practices, increased yields, and water resource management. Figure 16
shows that when using experiment 5, the accuracy of winter cereals, sugar beet, and corn
all increase considerably in the early season, beginning in March.

This work proves that the fusion of Sentinel-1 and Sentinel-2 data can be used to
identify crops in a highly heterogeneous and fragmented agricultural region throughout
the early season as soon as the March images are available, with an OA of more than 80%.
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Figure 16. Variations in the F1 scores over time for experiment 5 (Sentinel-1 + Sentinel-2).

7. Conclusions

In many different sorts of research, crop mapping from satellite images is extensively
investigated using machine learning. However, very limited studies have investigated
the efficiency of using Sentinel-1, Sentinel-2 data, and the RF algorithm on the GEE cloud
computing platform. In this paper, GEE was used to apply multi-temporal Sentinel-1 and
Sentinel-2 imagery for early crop mapping of a highly heterogeneous and fragmented agri-
cultural region using an RF classifier under different scenarios and experiments. This study
concludes that the fusion of all optical (Sentinel-2) and SAR (Sentinel-1) data (experiment 5)
allows for an accurate crop mapping in the early season of growing, starting in March, for
highly heterogeneous and fragmented landscapes, with an OA reaching 95.02%.

This research also suggests that the classification performance using monthly series
images is considerably better than that using single-monthly images. Furthermore, the GEE
processing was highly efficient at gaining access to remote sensing data and saving time.

Future work should focus on the use of GEE cloud computing and a multi-sensor
harmonized image time series to improve crop classification accuracy in the earliest growing
season of crops.
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