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Abstract: Recently, learning algorithms such as Convolutional Neural Networks have been suc-
cessfully applied in different stages of data processing from the acquisition to the data analysis
in the imaging context. The aim of these algorithms is the dimensionality of data reduction and
the computational effort, to find benchmarks and extract features, to improve the resolution, and
reproducibility performances of the imaging data. Currently, no Neutron Imaging combined with
learning algorithms was applied on cultural heritage domain, but future applications could help
to solve challenges of this research field. Here, a review of pioneering works to exploit the use of
Machine Learning and Deep Learning models applied to X-ray imaging and Neutron Imaging data
processing is reported, spanning from biomedicine, microbiology, and materials science to give new
perspectives on future cultural heritage applications.

Keywords: data analysis; imaging; cultural heritage; Deep Learning; convolutional neural
networks; segmentation

1. State-of-the-Art in Imaging and in Machine and Deep Learning
1.1. Imaging Techniques

Imaging is a powerful tool for the presentation of multi-dimensional and multi-
parameter data. After data acquisition and processing, volume and surface rendering
can be employed for data visualization and quantitative analyses. Imaging is used in
various applications, such as engineering, remote sensing, medicine, forensic studies, and
materials science [1]. The acquired dataset can be pre-processed for optimization purposes
as a function of the specific setup and scope of the study. Imaging techniques produce a
large amount of data, and the data analysis requires a large computational effort. Moreover,
to obtain the best quality of the data, the image noise reduction is an important factor.
Usually, different approaches are applied according to the characteristics of the specific
sensors and the setup used for the acquisition process. Signal-to-noise ratio and resolution
improvement are recently assessed through classes of Machine Learning techniques, such
as Deep Learning [2].

1.2. Neutron Imaging and Challenges

Neutron Imaging (NI), such as radiography and tomography, are testing methods
which can be used to determine the inner structure of the investigated objects. The study
of the morphology and internal volumes is useful for the determination of the manufac-
turing processes, provenance, dating, and information about the state of conservation and
restoration in the cultural heritage field [3–6]. The NI techniques exploit the interaction
of the incoming neutron beam with the object under investigation. The neutron beam is
registered by a position-sensitive detector after the interaction with the object. The detector
system registers the information pixel-wise, while the intensity per pixel is separated into
grey values, commonly in a 16-bit format, enabling to distinguish more than 65,000 inten-
sity variations and converting into grey-scale values. This digital format allows for more

J. Imaging 2022, 8, 284. https://doi.org/10.3390/jimaging8100284 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8100284
https://doi.org/10.3390/jimaging8100284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-9375-8707
https://orcid.org/0000-0002-8627-1471
https://doi.org/10.3390/jimaging8100284
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8100284?type=check_update&version=2


J. Imaging 2022, 8, 284 2 of 11

advanced analysis methods such as tomography, real-time imaging, energy-selective and
diffractive imaging, and grating interferometry [7–9]. These methods convert radiographic
data into compressed information with the help of dedicated software tools. Due to the
interaction processes of neutrons with the matter, they are considered an ideal probe for the
non-destructive and non-invasive investigation of cultural heritage objects [3–13]. Indeed,
neutrons interact with the atomic nuclei with a penetration depth of incident beam that
is a function of the sample: for metal alloys, pottery, and stones they access the bulk of
the objects without substantial attenuation while they are highly sensitive to light ele-
ments such as hydrogen [3–18]. Significant progress has been made regarding spatial and
temporal resolutions, achieved in different ways such as the optimization of the optical
camera that collects the signal from the scintillator screen [19] and the use of axisymmetric
grazing-incidence focusing mirrors [20,21], transforming pinhole cameras into microscopes.
In the framework of cultural heritage, an important issue to consider is the activation
of the irradiated samples and the deactivation time that is related to the lifetime of the
compound nuclei, particularly for metallic objects [3]. Indeed, the ancient objects preserved
at museums must be returned within a short period with deadlines already defined in the
experimental design step, and the activation parameters need to be under control. For this
reason, a balance between the acquisition time has to be taken during the data acquisition
phase: long acquisitions guarantee a good image quality but could dramatically activate
the samples. When a sample is irradiated by a neutron beam, nuclear reactions occur
such as neutron absorption, and a compound nucleus is formed producing an induced
activity that is a function of the kind of isotopes and their abundance in the sample, the
neutron capture cross-sections, and isotopes half-life. The latter needs to be in the order of
seconds to minutes for short-lived isotopes, otherwise, the samples risk remaining active
for a long time, such as in the case of the antimony (Sb122 and Sb124) with a half-life of
the order of months. To avoid these activation problems, preliminary measurements via
portable techniques such as X-ray fluorescence or infrared spectroscopies are carried out
before moving the objects at the neutron facilities to have an idea about the composition
for the prediction of the deactivation time after the neutron irradiation. These portable
techniques give us only surface information and for non-homogeneous objects, eventual
activation due to materials inside the ancient object, such as a sealed ceramic vase, is not
predictable. For this reason, as a first step of the NI experiments, some short radiographies
to check the activation of the sample are generally carried out before starting the complete
tomographic scan.

1.3. Neutron Imaging Optimization

To obtain good NI data, quality improvements to the radiographic images are devel-
oped in previous works thanks to specific algorithms to find the best possible settings to
the detriment of phase sensitivity and spatial resolution [22]. The data acquisition could
be optimized through experimental procedures related to the beam characteristics and
collimation, optical and detection systems, and secondary effects such as multiple scattered
neutrons, and γ radiation background at the beamlines [23–25]. Indeed, the neutron source
characteristics, such as the neutron fluence rate, could have statistical fluctuations in terms
of time and space, which gives rise to the Gaussian noise, or mixed Poisson–Gaussian noise,
which can affect the image quality [23]. In the data analysis process, one of the challenges
in cultural heritage applications is the segmentation of the internal regions because the
objects are generally composed of different materials where the edges are not sharp due
to corrosion and degradation processes, or the penetration of one phase in another is
very common, such as the case of the liquid vase content in the ceramic or stone matrix
(Figure 1).
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1.4. Neutron Imaging and Deep Learning

Recently, Deep Learning techniques are applied in the NI context to address the
sensitivity-resolution trade problem [23]. The latter is based on a set of algorithms that
attempt to model high-level abstractions in data by using model architectures, with un-
supervised or semi-supervised feature learning and hierarchical feature extractions [26].
Among them, the neural network-based prediction methods, such as Convolutional Neural
Networks (CNNs), are recent and are able to reduce the data acquisition time without
compromising the resolution of the structure characterization to improve the temporal
resolution of the time-dependent measurement [26,27]. CNNs are particularly suitable for
data processing and data analysis, i.e., for object recognition, object detection, scene recog-
nition, semantic segmentation [28–30], action recognition, object tracking, and many other
tasks. Furthermore, Spiking Neural Networks (SNNs), are deployed on neuromorphic
computing hardware which demonstrates an ultra-low power consumption [31,32]. The
main purpose of Machine Learning (ML) is the reduction of high-dimensional data and can
be categorized into two classes: data compression and data visualization. The supervised
ML, such as the K-Nearest Neighbour (KNN) algorithm and Support Vector Regression
(SVR), can reduce data and compare the training data with the predicted data by regression
models, in order to attribute and validate unlabelled datasets. These techniques could be
used as a selective method to extract the more significant data useful to reconstruct the
image, i.e., selecting the data identified as Singular Vector (SV) belonging to the class of
separation. These techniques are successfully applied in other fields [33,34] and could be
employed in the cultural heritage framework. They are used to denoise the reconstruction
images [33], improve their quality [33], and for optimization processes [35].

Here, a review of pioneering works to exploit the use of learning models applied
to Neutron Imaging data processing is reported. The present work aims to provide an
overview of the Machine Learning and Deep Learning approaches used at different levels
of data imaging analysis and in different sectors that could be useful in the cultural heritage
domain. Due to the similarities between X-rays, magnetic resonance imaging data, and
Neutron Imaging, some applications are also reported because they can be easily translated
to the neutron field.

2. Deep Learning Applications

Deep Learning (DL) models are successfully applied in different stages of data pro-
cessing from the acquisition to the data analysis in several contexts and with different
investigation techniques, spanning from X-ray computed tomography (XCT) to Neutron
Imaging [23,26,33–41].

2.1. Learning Algorithms in X-ray Tomography (Biomedicine, Materials Science, and
Cultural Heritage)

CNN algorithms are DL models widely used for the analysis of visual imagery, elimi-
nating overfitting by Kernel function. They use the neural networks to detect features of
images by a hierarchical structure of the data and assemble simple patterns to generate
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complex patterns for regularization. Amongst widespread imaging techniques, X-ray to-
mography is used to investigate the internal structures of a large variety of opaque samples
in a non-destructive and non-invasive way. Recently, Spiking Neural Networks (SNNs) [40]
are also successfully applied in medicine on magnetic resonance imaging and X-ray tomog-
raphy datasets with the potential to reduce power consumption while maintaining a good
performance via neuromorphic computing hardware.

The most recent applications of DL techniques exploit biomedical X-ray dataset images
to detect early diagnosis [42–44], estimate some specific properties of complex materials [36],
and characterize ancient woodblocks [45], as outlined in Table 1.

Table 1. Three examples of Machine Learning and Deep Learning techniques applied in X-ray
tomography imaging.

Method Operation Aim Improvement Limitation

CNN

Feature
extraction,

modeling, and
fine-tuning

Early detect
disease Noise reduction Preprocessing

phase

SVR *, LR *, RF *,
IGB *, CNN

Feature
extraction

Predict
petrophysical

properties

Computation
time

reduction

A large
calibration
dataset is
required

GLCM *, LBPs *,
k-NN *

Feature
extraction and
classification

Material
identification

Classification
accuracies

Pretreatment
data

* SVR: Support Vector Regression, LR: Linear Regression, RF: Random Forest, IGB: Improved Gradient Boosting,
GLCM: grey-level co-occurrence matrix, LBPs: Local Binary Patterns, k-NN: K-Nearest Neighbor.

2.2. Learning Algorithms in Cultural Heritage Imaging

Machine Learning and Deep Learning algorithms are successfully applied to cultural
heritage. In Table 2, a summary of a selection of learning methods is listed to present
the recent scenarios in this field [46–50]. In detail: (1) ML-SVM is a supervised Machine
Learning algorithm that separates data points by a hyperplane and is successfully used
in handwriting recognition; (2) ML-RF is a random forest that produces outputs that are
collected and combined as a tree, useful in classification and segmentation; (3) DL-CNN is
a Convolutional Neural Network very suitable for image classification.

Table 2. ML and DL techniques applied in CH imaging.

Method Dataset Aim Limitation CH in NI

SVM Digitized
documents

Handwriting
recognition

No replicability
for other
datasets

J. Imaging 2022, 8, 284 4 of 11 
 

 

2.1. Learning Algorithms in X-ray Tomography (Biomedicine, Materials Science, and Cultural 
Heritage) 

CNN algorithms are DL models widely used for the analysis of visual imagery, 
eliminating overfitting by Kernel function. They use the neural networks to detect features 
of images by a hierarchical structure of the data and assemble simple patterns to generate 
complex patterns for regularization. Amongst widespread imaging techniques, X-ray 
tomography is used to investigate the internal structures of a large variety of opaque 
samples in a non-destructive and non-invasive way. Recently, Spiking Neural Networks 
(SNNs) [40] are also successfully applied in medicine on magnetic resonance imaging and 
X-ray tomography datasets with the potential to reduce power consumption while 
maintaining a good performance via neuromorphic computing hardware. 

The most recent applications of DL techniques exploit biomedical X-ray dataset 
images to detect early diagnosis [42–44], estimate some specific properties of complex 
materials [36], and characterize ancient woodblocks [45], as outlined in Table 1. 

Table 1. Three examples of Machine Learning and Deep Learning techniques applied in X-ray 
tomography imaging. 

Method Operation Aim Improvement Limitation 

CNN 
Feature extraction,  

modeling, and fine-tuning Early detect disease Noise reduction Preprocessing phase 

SVR *, LR *, RF *, 
IGB *, CNN  Feature extraction 

Predict petrophysical 
properties  

Computation time  
reduction 

A large calibration 
dataset is required 

GLCM *, LBPs *, 
k-NN * 

Feature extraction and  
classification Material identification Classification accuracies Pretreatment data 

* SVR: Support Vector Regression, LR: Linear Regression, RF: Random Forest, IGB: Improved 
Gradient Boosting, GLCM: grey-level co-occurrence matrix, LBPs: Local Binary Patterns, k-NN: K-
Nearest Neighbor. 

2.2. Learning Algorithms in Cultural Heritage Imaging 
Machine Learning and Deep Learning algorithms are successfully applied to cultural 

heritage. In Table 2, a summary of a selection of learning methods is listed to present the 
recent scenarios in this field [46–50]. In detail: (1) ML-SVM is a supervised Machine 
Learning algorithm that separates data points by a hyperplane and is successfully used in 
handwriting recognition; (2) ML-RF is a random forest that produces outputs that are 
collected and combined as a tree, useful in classification and segmentation; (3) DL-CNN 
is a Convolutional Neural Network very suitable for image classification. 

Table 2. ML and DL techniques applied in CH imaging. 

Method Dataset Aim Limitation CH in NI 

SVM Digitized documents Handwriting recognition 
No replicability for other 

datasets  

RF Photogrammetric  
images 

Features classification and 
segmentation for 3D reconstruction Several steps  

CNN Binary profile images Pottery classification Resizing images  

To the best of our knowledge, DL has not yet been applied extensively in NI for 
cultural heritage. Rather, DL was developed and has largely been applied in X-ray and 
magnetic resonance imaging for medical purposes [51], to automate the segmentation [52–
54], for classification purposes [55–57], or, recently, applied in microscopic imaging where 
the potential for DL technologies is unprecedented and has still not reached its full 
potential [58]. Viruses, bacteria, parasites, and fungi can be monitored, investigated, and 

RF Photogrammetric
images

Features
classification

and
segmentation for

3D
reconstruction

Several steps

J. Imaging 2022, 8, 284 4 of 11 
 

 

2.1. Learning Algorithms in X-ray Tomography (Biomedicine, Materials Science, and Cultural 
Heritage) 

CNN algorithms are DL models widely used for the analysis of visual imagery, 
eliminating overfitting by Kernel function. They use the neural networks to detect features 
of images by a hierarchical structure of the data and assemble simple patterns to generate 
complex patterns for regularization. Amongst widespread imaging techniques, X-ray 
tomography is used to investigate the internal structures of a large variety of opaque 
samples in a non-destructive and non-invasive way. Recently, Spiking Neural Networks 
(SNNs) [40] are also successfully applied in medicine on magnetic resonance imaging and 
X-ray tomography datasets with the potential to reduce power consumption while 
maintaining a good performance via neuromorphic computing hardware. 

The most recent applications of DL techniques exploit biomedical X-ray dataset 
images to detect early diagnosis [42–44], estimate some specific properties of complex 
materials [36], and characterize ancient woodblocks [45], as outlined in Table 1. 

Table 1. Three examples of Machine Learning and Deep Learning techniques applied in X-ray 
tomography imaging. 

Method Operation Aim Improvement Limitation 

CNN 
Feature extraction,  

modeling, and fine-tuning Early detect disease Noise reduction Preprocessing phase 

SVR *, LR *, RF *, 
IGB *, CNN  Feature extraction 

Predict petrophysical 
properties  

Computation time  
reduction 

A large calibration 
dataset is required 

GLCM *, LBPs *, 
k-NN * 

Feature extraction and  
classification Material identification Classification accuracies Pretreatment data 

* SVR: Support Vector Regression, LR: Linear Regression, RF: Random Forest, IGB: Improved 
Gradient Boosting, GLCM: grey-level co-occurrence matrix, LBPs: Local Binary Patterns, k-NN: K-
Nearest Neighbor. 

2.2. Learning Algorithms in Cultural Heritage Imaging 
Machine Learning and Deep Learning algorithms are successfully applied to cultural 

heritage. In Table 2, a summary of a selection of learning methods is listed to present the 
recent scenarios in this field [46–50]. In detail: (1) ML-SVM is a supervised Machine 
Learning algorithm that separates data points by a hyperplane and is successfully used in 
handwriting recognition; (2) ML-RF is a random forest that produces outputs that are 
collected and combined as a tree, useful in classification and segmentation; (3) DL-CNN 
is a Convolutional Neural Network very suitable for image classification. 

Table 2. ML and DL techniques applied in CH imaging. 

Method Dataset Aim Limitation CH in NI 

SVM Digitized documents Handwriting recognition 
No replicability for other 

datasets  

RF Photogrammetric  
images 

Features classification and 
segmentation for 3D reconstruction Several steps  

CNN Binary profile images Pottery classification Resizing images  

To the best of our knowledge, DL has not yet been applied extensively in NI for 
cultural heritage. Rather, DL was developed and has largely been applied in X-ray and 
magnetic resonance imaging for medical purposes [51], to automate the segmentation [52–
54], for classification purposes [55–57], or, recently, applied in microscopic imaging where 
the potential for DL technologies is unprecedented and has still not reached its full 
potential [58]. Viruses, bacteria, parasites, and fungi can be monitored, investigated, and 

CNN Binary profile
images

Pottery
classification Resizing images

J. Imaging 2022, 8, 284 4 of 11 
 

 

2.1. Learning Algorithms in X-ray Tomography (Biomedicine, Materials Science, and Cultural 
Heritage) 

CNN algorithms are DL models widely used for the analysis of visual imagery, 
eliminating overfitting by Kernel function. They use the neural networks to detect features 
of images by a hierarchical structure of the data and assemble simple patterns to generate 
complex patterns for regularization. Amongst widespread imaging techniques, X-ray 
tomography is used to investigate the internal structures of a large variety of opaque 
samples in a non-destructive and non-invasive way. Recently, Spiking Neural Networks 
(SNNs) [40] are also successfully applied in medicine on magnetic resonance imaging and 
X-ray tomography datasets with the potential to reduce power consumption while 
maintaining a good performance via neuromorphic computing hardware. 

The most recent applications of DL techniques exploit biomedical X-ray dataset 
images to detect early diagnosis [42–44], estimate some specific properties of complex 
materials [36], and characterize ancient woodblocks [45], as outlined in Table 1. 

Table 1. Three examples of Machine Learning and Deep Learning techniques applied in X-ray 
tomography imaging. 

Method Operation Aim Improvement Limitation 

CNN 
Feature extraction,  

modeling, and fine-tuning Early detect disease Noise reduction Preprocessing phase 

SVR *, LR *, RF *, 
IGB *, CNN  Feature extraction 

Predict petrophysical 
properties  

Computation time  
reduction 

A large calibration 
dataset is required 

GLCM *, LBPs *, 
k-NN * 

Feature extraction and  
classification Material identification Classification accuracies Pretreatment data 

* SVR: Support Vector Regression, LR: Linear Regression, RF: Random Forest, IGB: Improved 
Gradient Boosting, GLCM: grey-level co-occurrence matrix, LBPs: Local Binary Patterns, k-NN: K-
Nearest Neighbor. 

2.2. Learning Algorithms in Cultural Heritage Imaging 
Machine Learning and Deep Learning algorithms are successfully applied to cultural 

heritage. In Table 2, a summary of a selection of learning methods is listed to present the 
recent scenarios in this field [46–50]. In detail: (1) ML-SVM is a supervised Machine 
Learning algorithm that separates data points by a hyperplane and is successfully used in 
handwriting recognition; (2) ML-RF is a random forest that produces outputs that are 
collected and combined as a tree, useful in classification and segmentation; (3) DL-CNN 
is a Convolutional Neural Network very suitable for image classification. 

Table 2. ML and DL techniques applied in CH imaging. 

Method Dataset Aim Limitation CH in NI 

SVM Digitized documents Handwriting recognition 
No replicability for other 

datasets  

RF Photogrammetric  
images 

Features classification and 
segmentation for 3D reconstruction Several steps  

CNN Binary profile images Pottery classification Resizing images  

To the best of our knowledge, DL has not yet been applied extensively in NI for 
cultural heritage. Rather, DL was developed and has largely been applied in X-ray and 
magnetic resonance imaging for medical purposes [51], to automate the segmentation [52–
54], for classification purposes [55–57], or, recently, applied in microscopic imaging where 
the potential for DL technologies is unprecedented and has still not reached its full 
potential [58]. Viruses, bacteria, parasites, and fungi can be monitored, investigated, and 

To the best of our knowledge, DL has not yet been applied extensively in NI for cultural
heritage. Rather, DL was developed and has largely been applied in X-ray and magnetic
resonance imaging for medical purposes [51], to automate the segmentation [52–54], for
classification purposes [55–57], or, recently, applied in microscopic imaging where the
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potential for DL technologies is unprecedented and has still not reached its full potential [58].
Viruses, bacteria, parasites, and fungi can be monitored, investigated, and classified by the
attribution of features (geometric characteristics) on microscopic images used as input in
the DL models [59,60]. Details are reported in Table 3.

Table 3. Algorithms used in microbiology, with their usability and the corresponding improvement
in the field.

Method Aim Improvement Challenge

CNNs
Automatic detection of

microorganisms
Accuracy (quantification) and

speed of diagnosis Transforming lower resolution
into super-resolution images and
constructing 3D images such as
with fluorescence microscopy

Virus classification
(structure, size, and morphology)

Fast and cost-efficient
classification

U-Net Segmentation of images Detection and counting of
colonies

The techniques listed in Tables 1–3 can be applied in cultural heritage and neutron
applications.

2.3. Deep Learning in Neutron Imaging and Future Applications in Cultural Heritage

In Neutron Imaging, Deep Learning models are successfully applied in different stages
of data processing from the acquisition to the data analysis.

Figure 2 shows a general architecture of Neutron Imaging studies based on Deep
Learning.

J. Imaging 2022, 8, 284 5 of 11 
 

 

classified by the attribution of features (geometric characteristics) on microscopic images 
used as input in the DL models [59,60]. Details are reported in Table 3. 

Table 3. Algorithms used in microbiology, with their usability and the corresponding improvement 
in the field. 

Method Aim Improvement Challenge 

CNNs 

Automatic detection of  
microorganisms 

Accuracy (quantification) 
and speed of diagnosis  

Transforming lower 
resolution into super-
resolution images and 

constructing 3D images 
such as with fluorescence 

microscopy 

Virus classification  
(structure, size, and 

morphology) 

Fast and cost-efficient 
classification 

U-Net Segmentation of images 
Detection and counting of 

colonies 

The techniques listed in Tables 1–3 can be applied in cultural heritage and neutron 
applications. 

2.3. Deep Learning in Neutron Imaging and Future Applications in Cultural Heritage 
In Neutron Imaging, Deep Learning models are successfully applied in different 

stages of data processing from the acquisition to the data analysis. 
Figure 2 shows a general architecture of Neutron Imaging studies based on Deep 

Learning. 

 
Figure 2. General overview of the Deep Learning architecture in Neutron Imaging applications. 
Training datasets that correspond to labelled variables are able to validate new datasets where the 
variables are still unlabelled, predicting the clustering of belonging by the similarity of their 
distribution along the regression line. 

In this framework, a selection of the most relevant works is presented in Table 4 
[23,25,26,38]. 

  

Figure 2. General overview of the Deep Learning architecture in Neutron Imaging applications.
Training datasets that correspond to labelled variables are able to validate new datasets where
the variables are still unlabelled, predicting the clustering of belonging by the similarity of their
distribution along the regression line.

In this framework, a selection of the most relevant works is presented in
Table 4 [23,25,26,38].
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Table 4. Deep Learning algorithms used in different Neutron Imaging techniques are listed, with
their usability and the corresponding Neutron Imaging in cultural heritage applicability with the
improvement in the field.

Method NI Technique Aim Applicability to
CH-NI Improvement

CNN-GMSD * Radiography Extracting
features
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To optimize the prediction performance, Qiao et al. [23] applied the Gradient Magni-
tude Similarity Deviation (GMSD) to label the distorted images with a quality score. The
labeling could be very useful in cultural heritage, where one or more categories can be
classified for several purposes: authentication, conservation, and production processes
identification. Micieli et al. [60], indeed, applied iterative optimization methods such as
Neural Network Filtered Back-Projection (NN-FBP) to reduce the acquisition, the scan, the
reconstruction time, and the amount of data storage in neutron tomography experiments.
The NN-FBP model mitigates problems, i.e., artefacts, of the classical analytical reconstruc-
tion algorithm of Filtered Back-Projection. In detail, they quantitatively compared the
NN-FBP, FBP, and Simultaneous Iterative Reconstruction Technique (SIRT) methods as a
function of the number of projections, and applied to a set of simulated data, a phantom of
Cu-CuCrZr pipe, and the real data of the pipe. The evaluation of the image quality was
carried out by computing the Normalized Root Mean Square Error (NRMSE), the Structural
Similarity Index (SSIM), the Feature Similarity Index (FSIM), and the Gradient Magnitude
Similarity Deviation (GMSD). Tomographic scans of two similar samples were collected,
generating a dataset of 1335 projections in the angular range [0◦, 360◦] with 30 s of exposure
time per projection, approximately 11 h for a complete CT scan. The NN-FBP model
reveals that the number of projections can be reduced to 223, i.e., 1/6 of the over-sampled
dataset and 1/3 of the projections required by the sampling theorem (Nyquist–Shannon).
The applicability in the cultural heritage context is immediate: the activation—and as a
consequence, the de-activation—of the samples, in particular for metallic artefacts, is one
of the main problems that need to be controlled because it is in close connection with the
timing dictated by the owners, such as the museums, that require short time of permanence
in the neutron facility and non-invasive and non-destructive investigations.

Lee et al. [26] successfully applied the Generative Adversarial Network (GAN) to
avoid the trade-off for both high-phase sensitivity and high-resolution in interferometric
applications. The GAN is a good option for image generation. It involves two neural
models with conflicting objectives, one generator (G), and one discriminator (D), forcing
each other to improve the output image file to again be converted back to the image file
which represents the file output of the model. In detail, to obtain an image that has high-
phase sensitivity as well as high-spatial resolution, a match of two images at different
positions is acquired: the first one with low-contrast and high-resolution, the second one
with high-contrast and low-resolution. The GAN is applied to generate the final image, a
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good combination of the two input images. The training dataset in ref [26] is composed of
890 image pairs; each picture has a 2000 × 2000 pixels size. The variables are connected
through convolution layers (3 × 3 kernels), batch normalization, and rectified linear unit
(ReLU) function. The final image is then optimized by minimizing the mean square error
(MSE) between the first output image (merge of the two images) and the ground-truth
image (discriminator output). The combined images from the GAN model demonstrate
that the resolution and the sensitivity have been improved even if the shape is complex. In
the cultural heritage context, the GAN approach could facilitate the great problem of the
irregular shapes of investigated ancient objects such as pottery, archaeological objects, or
ancient objects whose original morphology has changed due to degradation processes.

The last-mentioned case from Aoki et al. [38] regards the possibility to identify hidden
profiles, the structure of the surfaces, and the interfaces of various materials. The morphol-
ogy of the damage present in the same multi-material object is a common example. The
degradation processes have a different reactivity as a function of the interfaces between
the various materials. The authors [38] propose network architectures that differentiate
between noisy and clean images. In detail, different blocks with different layers of convo-
lution, batch normalization, and rectified linear units are employed for the ground truth
and simulated neutron reflectometry profiles improve the efficiency of the learning process,
which improves the denoising performance. In Neutron Tomography (NT), the data pro-
cessing is composed of different steps: the acquisition phase at different angles, where the
high number of projections of the object is acquired at different viewing angles; rotating the
object around a vertical axis in the beam; the reconstruction process carried out through
dedicated algorithms, such as the filtered back projection; and finally, the 3D visualization
and data analysis such as segmentation. Appropriate regularization/prior-model parame-
ters for each experiment and data acquisition are also required [61]. The acquisition time
per digital image with high quality can span from a few seconds to minutes. Figure 2
shows the phases of a typical NI experiment and the possible applications of DL, from data
acquisition to data analysis and visualization.

Energy-resolved Neutron Imaging has developed in recent years owing to the use
of bright pulsed neutron beamline facilities at neutron spallation sources and is applied
to study the composition, strain, and texture of the sample as a function of the spatial
resolution [62–64]. Because the data are affected by noise, Machine Learning could be
successfully applied to cultural heritage optimizing the acquisition time and improving the
quantification results.

Table 5 shows the DL applicable in the cultural heritage domain selecting the aim and
the challenge addressed with the consequent improvement [65,66].

Table 5. NT and NR in cultural heritage and the improvements obtained via DL algorithms.

Material
Investigated Aim Challenge DL Applicable Improvement

Metallic statue

Origin, purpose,
manufacturing process,

provenance

Quantitative purpose
(filled voxels are hardly

considered)
CNNs/U-Net Automatic counting of the

voxels

restoration and
conservation purpose

(distinguishing different
corrosion zones)

Classification of
different corrosion

products
CNNs/Patch-CNN

Detection and
quantification of the

damaged products by
automatic segmentation

Ancient
concrete

Studying the
microstructure, cracks, and

water adsorption

Dynamics of water
penetration U-Net/SBL * High-resolution estimation

* SBL: Sparse Bayesian Learning [67].

The automatic segmentation based on U-Net can extract effective information and
improve the level of material damage due to automatic learning image features. U-Net
can be widely used in the cultural heritage image analysis with multiple purposes: for the
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identification of the cracks, i.e., to study the microstructural level of ancient concrete or
mortar, to study the de-cohesions or de-adhesions of the pictorial painting on the supports,
to study the stratigraphic sections segmentation, and classification of morphologies of the
decay at different levels such as the degradation due to soluble salts on different supports.
The U-Net network extracts deeper image features by a large number of feature channels
which allows the network to propagate contextual information to higher-resolution lay-
ers [68]. Patch-CNN is particularly resolved for feature extraction. The latter, characterized
by convolution algorithms, are transferred in the hierarchical fusion model to then have
as output the classifications into labels [69]. Spiking Neural Networks are already tested
in medical imaging and can be used in the cultural heritage context for real-time imple-
mentations for the automation of experiments. In this context, real-time identification and
monitoring of the minimum number of needed radiographies collected at different angles
would increase the safety of the ancient objects during the experiment, minimizing the total
neutron dose and reducing activation.

3. Conclusions: Future Insights and Perspectives

Neutron Imaging is a powerful tool for the analysis of cultural heritage objects to
obtain spatial information about the inner structure, internal morphology, and volumes that
could be used to determine manufacturing processes, provenance, dating, and information
about the state of conservation. In this context, the Deep Learning approach was applied
in the data pre-processing phase to merge radiographs obtained by different set-ups and
for the identification of the required number of radiographic images to obtain a successful
reconstruction. Applications of Deep Learning in the imaging analysis phase, such as
automatic segmentation, can give new ideas and perspectives. The common elements
of the application of these algorithms are employed to reduce the dimensionality of the
data, extract useful features to classify objects, and obtain the best images possible through
optimization processes.

Cultural heritage objects are generally made of complex materials. As such, the activa-
tion of the samples and time irradiation need to be reduced as much as possible through
optimization procedures to guarantee the return of ancient objects to the museum in a
short time. All the experiments, indeed, need to be non-destructive and non-invasive.
Moreover, these objects are characterized by a complex shape and often by a multi-material
composition and get more difficult during the analysis phase. In particular, the available au-
tomatic segmentation procedures based on the grey scale could be enhanced by recognition
algorithms such as semantic computational models that can classify the shape and pattern
of the dataset by metric labelling. Therefore, Convolutional Neural Networks and new
algorithms have been demonstrated as effective to classify the defect in metals, in concrete
materials, recognize structural defects, and extract features on paintings, and can be a good
candidate for future applications in Neutron Imaging. Moreover, there are new, exciting
perspectives in the application of the Convolutional Neural Networks and Spiking Neural
Networks architectures to solve most of the common problems in the Neutron Imaging
applications in cultural heritage, from solving the problem of detection and quantification
of the damaged products by automatic segmentation to estimating with high-resolution
infiltration problems of ancient architectural monuments. In conclusion, Machine Learning
and Deep Learning models can give new perspectives and contributions in the future for
cultural heritage Neutron Imaging applications.
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