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Abstract: Defect inspection using imaging-processing techniques, which detects and classifies manu-
facturing defects, plays a significant role in the quality control of microelectromechanical systems
(MEMS) sensors in the semiconductor industry. However, high-precision classification and location
are still challenging because the defect images that can be obtained are small and the scale of the
different defects on the picture of the defect is different. Therefore, a simple, flexible, and efficient
convolutional neural network (CNN) called accurate-detection CNN (ADCNN) to inspect MEMS
pressure-sensor-chip packaging is proposed in this paper. The ADCNN is based on the faster region-
based CNN, which improved the performance of the network by adding random-data augmentation
and defect classifiers. Specifically, the ADCNN achieved a mean average precision of 92.39% and the
defect classifier achieved a mean accuracy of 97.2%.

Keywords: MEMS pressure sensor; defect detection; convolutional neural network

1. Introduction

A microelectromechanical system (MEMS) is miniaturized, compact, inexpensive,
easy to integrate, and compatible with the standard process [1]. It has been widely used
in industrial productions [2]. The quick development of electronic portable, wearable,
or implantable devices increases the need to develop very small-sized integrated MEMS
sensors [3].

MEMS pressure sensors have prominent advantages in weight and power consump-
tion due to their characteristics [4]. Basov [5] proposed a mathematical model of a high-
sensitivity pressure sensor with a novel electrical circuit utilizing a piezosensitive transistor
differential amplifier with a negative feedback loop. The circuit based on a vertical NPN
and a horizontal differential transistor amplifier was used to analyze and optimize the
pressure sensitivity and output stability of a PNP transistor. Yu et al. [6] presented a
piezoresistive absolute micro-pressure sensor, which was of great benefits for altitude
location. Based on the ANSYS simulation results, the surface stress and deflection were
analyzed. The sensor equation was established. Xu et al. [7] systematically analyzed
and discussed the influence of the bending-stiffness distribution of the diaphragm on the
stress-concentration characteristics of the pressuresensor chip. In order to improve the
application range of the pressure sensor, Basov [8] designed a pressure sensor suitable for
an ultra-low pressure range and optimized its structure. Based on the theoretical model
and experimental characteristics of an ultra-high-sensitivity MEMS pressuresensor chip,
Basov [9] proposed a novel circuit. A pressure-sensitive differential amplifier was adopted
in the circuit and had a negative feedback loop based on two bipolar junction transistors.
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However, some nonelectrical faults may occur in MEMS. Defect detection plays an
essential role in reliability evaluation [10]. The method of deep learning is superior to
traditional machine learning and has been widely used in various fields [11]. Because
of its wide application, various deep-learning neural networks have been promoted. Le-
cun et al. [12] proposed a suitable network architecture that used a gradient-learning
algorithm to synthesize complex decision surfaces. The classification of high-dimensional
patterns such as handwritten characters was realized, and various handwriting-recognition
methods were compared. Convolutional neural networks show the ability to surpass all
other technologies. Simonyan et al. [13] proposed a classic visual-geometry group network
to promote the development of deep learning. The performance of neural networks is
improved by adding neural-network layers, but the cost is a serious shortcoming. More
specifically, a deeper network means more parameters, which can easily cause overfitting,
high computational expenses, and long training cycles. Parameters are related to the fully
connected layer. Therefore, replacing the fully connected layer with sparse connections is
the key to solving these problems [14]. The occurrence of the residual structure increases
the number of network layers and improves the accuracy without the phenomenon of
gradient dispersion and explosion. Some classical neural networks have been proposed.
Krizhevsky et al. [15] first proposed the AlexNet neural network using the ReLu function
as the activation function of neurons. By visualizing the middle layer result of AlexNet,
Zeiler et al. [16] improved the model by reducing the convolution kernel. Szegedy et al. [17]
combined the initial structure with the residual connection to improve the overall effect
of the network. Huang et al. [18] proposed a dense convolutional neural network (CNN)
that connects each layer with all previous layers. Focusing on the channel dimension of
convolutional neural networks, Hu et al. [19] proposed a novel architectural unit, termed
the “Squeeze-and-Excitation” (SE) block, by explicitly modeling the interdependencies
between channel relationships to adaptively recalibrate the channel-wise eigenresponse.
Howard et al. [20] proposed the mobileNet network, which is an efficient, lightweight,
and streamlined network. The separable convolution was used in the depth direction of
the network, and two hyperparameters, width multiplier and resolution multiplier, were
used to balance the model speed and precision. Zhang et al. [21] proposed the ShuffleNet
network, which was a computationally efficient CNN architecture specially designed for
mobile devices with very limited computing power. The new architecture utilized two new
operations, pointwise group convolution and channel shuffling, which greatly reduced
computational cost while maintaining accuracy. Xie et al. [22] proposed a simple, highly
modular network structure for image classification. The network was constructed by
repeating a building block that aggregates a set of transitions with the same topology. San-
dler et al. [23] proposed MobileNetV2 by removing the nonlinear activation layer behind
the small-dimensional output layer. The inverted residual structure was used to ensure
the expressiveness of the model and alleviate the degradation of features. The accuracy
rate of the MobileNetV2 was 78% but the reduction of the numbers of network parameters
reduced the difficulty of the deployment. Based on the traditional convolution-module
design, Mehta et al. [24] proposed an efficient spatial-pyramid convolution module (ESP
Module) that could reduce model computation, memory, and power consumption. The
applicability of terminal devices was improved and the accuracy rate of the ESP Module
was 85%. On the premise of reducing the number of parameters, the detection effect of the
network was maintained. Based on Shufflenet V1, Ma et al. [25] proposed Shufflenet V2 by
reducing the degree of network fragmentation. The number of groupings and element-by-
element operations improves the speed and accuracy of the network. Mehta [26] proposed
an EspNetv2 that replaced the original EspNet pointwise convolutions with group point-
wise convolutions. The accuracy rate of the network was 89%. This network had good
robustness and few parameters, which had a significant impact on the application.

Currently, the mainstream target-detection networks include the Faster Region-based
Convolutional Neural Network (Faster RCNN) and You-Only-Look-Once (YOLO). The
main difference between the two networks was that YOLO had a faster detection speed,
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whereas Faster RCNN had more accurate detection results [27,28]. He et al. [29] classified
the defects of the steel surface with an accuracy of 99.67%; the MAP of defect inspection
was 82.3%. However, the structure of the network was complex and unstable, and the
MAP was still far from the industrial requirements. Some deep-learning algorithms were
proposed for industrial inspections, but could not be fully adapted to the universal defects
inspection. Therefore, in order to obtain better detection, a defect detection algorithm
with low time cost needs to be developed to meet the defect characteristics of different
products. Aiming at the defects in the manufacturing processes of the MEMS pressure
sensor, accurate detection CNN (ADCNN) based on Faster RCNN is proposed in this paper.

First, the devices for packaging the MEMS pressure sensor and the packaging process
of the pressure sensor are introduced. Chip damage, chip scratches, glue surface, gold-wire
bonding, and aluminum-wire bonding are the defects that likely occur in the chip-packaging
processes, which may cause failure of the performance of the MEMS pressure sensor. The
types of defects for MEMS pressure sensors are provided by the MEMS pressure-sensor
manufacturer. Second, an ADCNN network is proposed for MEMS pressure-sensor defect
detection. The ADCNN is based on the Faster RCNN network, which improves the accuracy
by using random-data augmentation and defect classifiers. Then, the training method and
experimental results of the model are presented. Finally, the ADCNN is used to detect the
defects of the MEMS pressure sensor.

2. System Overview

Figure 1a shows the MEMS pressure-sensor packaging devices. A high-temperature
curing device is been widely used for curing the glue used in the production process. An
automatic production line is used for chip packaging. Figure 1b shows the mechanical
device of the automatic production line. The device mainly includes three workstations.
The padding workstation is used to pad raw materials. The gluing workstation is used
to apply the glue. The bonding workstation is used to bond gold and aluminum wires.
The MEMS pressure-sensor-chip packaging achieves automation by streamlining these
workstations. Figure 2 shows the MEMS pressure-sensor packaging process. It consists of
three main steps. First, a machine applies glue to the Al2O3 substrate and pastes the MEMS
pressure-sensor chip. The process requires that the chip not have any damage or scratches.
Second, the bonding workstation bonds the gold wire to connect the chip to the circuit on
the Al2O3 substrate. Gold-wire bonding breaks may occur in the process. The next step
is to reapply the glue and paste the shied adhesive. Then, the gluing workstation pours
potting adhesive into the shied ring and bonds the aluminum wire. Glue-surface wrinkles
and aluminum-wire bonding breaks may occur, resulting in MEMS pressure-sensor failure.
Finally, the finished products are encapsulated.
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Figure 2. Packaging process of the MEMS pressure sensor.

Figure 3 shows the sample defects of the MEMS pressure sensor. The image datasets,
each with a resolution of 1000 × 800, were provided by Wuhan FineMEMS Inc. It contains
five kinds of defects: chip scratch, chip damage, glue-surface wrinkle, broken gold-wire
bonding, and broken aluminum-wire bonding. A chip scratch or chip damage could
damage the internal circuits of the MEMS pressure-sensor chip. A glue-surface wrinkle
could affect the air tightness of the MEMS pressure sensor. Broken gold-wire bonding
and broken aluminum-wire bonding could lead to an open circuit, which could cause the
performance failure of the MEMS sensor.
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Figure 3. Five kinds of defect images of the MEMS pressure sensor from direct observation.

3. Proposed CNN

Defect detection is very important in industrial engineering. The purpose of this paper
aims to determine all the defective objects in the image, and classify and locate them.



J. Imaging 2022, 8, 268 5 of 13

3.1. Improved Network Framework

The ADCNN is based on traditional Faster RCNN target detection. It improves
the network to inspect the MEMS pressure-sensor chip-packaging process by changing
the traditional convolution connection and adding defect classifiers and a random-data-
augmentation module.

Traditional fast RCNN uses CNN to extract features and preset anchors points to
obtain feature-layer and proposed anchor points. Then, the network obtains the location
and classification. Traditional Faster RCNN extracts features and uses feature layers and
suggested anchors to preset the anchor in the detection anchor to obtain the feature layer
and suggested anchor of the target. However, the defects in MEMS pressure-sensor chips
are different in size and scale. The number of defect images is limited. Traditional Faster
RCNN cannot detect these different scale defects in a single image.

Figure 4 shows the detail of the ADCNN. The ADCNN comprises a detection location
and classifier parts. The preliminary improvement changes the traditional convolution
connection by two structures called skip and deep blocks in the detection part. The function
of the skip block is to change the size of features extracted from defective images. It contains
two repeated 1 × 1 convolutions, where strides are doubled. One of the convolutions is
followed by a 3 × 3 convolution and 1 × 1 convolution, where strides are single. Each
convolution is followed by batch-normalization layers and ReLu activation functions to
prevent gradient explosion and vanishing. Features are put into two 1 × 1 convolutions,
and then the convolved features are added. The deep block increases the number of network
layers. It contains two repeated 1 × 1 convolutions and a 3 × 3 convolution. Strides of
convolutions are single in the deep block. Extracted features and inputs are directly added.
Two structures make the network better extract the details of defect images.
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Figure 4. Framework of the ADCNN.

The second improvement is that the ADCNN adds defect classifiers to the traditional
Faster RCNN. The improved traditional network is used to first detect the possible loca-
tions of smaller-scale defects. According to these locked positions, the defect classifier
identifies further defects. The classifier part contains two repeated 7 × 7 convolutions,
5 × 5 convolutions, and 3 × 3 convolutions. Each repeated convolution is followed by
max-pool layers. Classifiers can more effectively extract the features of detection targets by
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using convolutions of different sizes. The defect classifiers can improve the accuracy of the
whole network detection.

3.2. Workflow of the Network

Figure 5 shows the workflow of the ADCNN. The implementation of target detection
depends on a special detection dataset containing expensive manual annotations. Defect
images are obtained from the MEMS pressure-sensor manufacturer and labeled. A total
of 6707 defect images are taken from the production line of Wuhan FineMEMS Inc. The
labeled data are augmented in each training epoch. The defect images are input to the
ADCNN, and these images are processed to adapt to the input form of the network. This
process is called data encoding.
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The detection-location part of the ADCNN obtains defect images and outputs location
and classification. The classifier part of the ADCNN obtains the output in the detection-
location part. The network deals with different kinds of defects in different ways. For large-
scale defects such as glue-surface wrinkling and chip scratching, the detected locations and
classifications are directly output by the network. For gold-wire-bonding and aluminum-
wire-bonding defects, whether the bonding effect is qualified needs to be determined
by classifiers. Small-scale defects for chip damage need to be further identified by the
classifier. By detecting the position information of the positioning part as the special input
of the classifier, the defect images of gold-wire bonding, aluminum-wire bonding, and chip
damage are processed by the network to obtain the classification results. The results of the
classification and location in the detection are output.

4. Training and Validation
4.1. Data Augmentation

Figure 6 shows the distribution of the defect datasets. The distribution is uneven
and the number of defect images is limited. Random-data augmentation is applied to
solve these problems. Random-data augmentation includes image scale, flip, and color-
gamut distortion. The data-augmentation parameters are random in each training epoch.
Thus, it significantly enhances data diversity and effectively avoids overfitting. Figure 7
shows the results from random-data augmentation. The size-scaling range of the defect
image was between 0.9 and 0.5 of the original size. The flip angle was between 0 and
360 degrees. Gamut distortion was used to generate a new image by randomly adjusting
the saturation, brightness, and contrast of the original images. The original image size,
color gamut, and background were changed to obtain more defect images and to improve
network robustness.
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Figure 7. Data augmentation of five kinds of defect images of the MEMS pressure sensor in Figure 3.

4.2. Training Method

The training process of the ADCNN is divided into three parts. First, the network is
trained to obtain the proposal anchors. Then, the network is trained to obtain the detection
location and the first classification result using the proposal anchors. Finally, the classifiers
are trained to obtain the detection results.

The network is optimized by the gradient descent with the loss function as the objective
function. The loss function includes classification loss and regression loss. The Lcls1
classification loss is used to train parameters, which determines whether the preset anchors
contain targets on MEMS pressure sensors. Conversely, the Lreg regression loss is used to
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train parameters, which adjusts the location of the preset anchor on the MEMS pressure
sensor. It is described as follows.

L(pi, ti) =
1

Ncls
Lcls1 + λ

1
Nreg

∑i p∗i Lreg(ti, t∗i ) (1)

Lcls1(pi, p∗i ) = ∑
i
−log[p∗i pi + (1− p∗i )(1− pi)] (2)

Lreg =

{
0.5x2, |x| < 1

|x| − 0.5, x ≥ 1 or x ≤ −1
(3)

where i is the anchor index of the batch and pi is the predicted probability of the target
classification. ti is the predicted coordinate-adjustment value and t∗i is the true coordinate-
adjustment value. λ is the weight, which balances classification loss and regression loss, and
x is the value of the difference between ti and t∗i . p∗i is a binary indicator, indicating whether
the anchor contains the real detection target, and Ncls is the number of classification-training
batches. Nreg is the number of regression-training batches. The adjustment parameters
of the preset anchors are obtained by training networks, and the proposal anchors are
obtained by adjusting parameters. Using the coincidence degree between the proposed
and true anchors eliminates the proposal anchors with a low coincidence degree.

Then, the network is trained to obtain the coordinate-adjustment information of the
proposal anchors and the classification results of detection targets in the detection-location
part. The loss function is the same as in the previous loss function except for Lcls2. The Lcls2
loss is used to train parameters, which determines the classification results of the target on
MEMS pressure sensors. It is described as follows.

L
(
yij, ti, pij, pi

)
= Lcls2 + λ

1
Nreg

∑i p∗i Lreg(ti, t∗i ) (4)

Lcls2
(
yij, pij

)
= − 1

Ncls

Ncls1

∑
i=1

M

∑
j=1

yij log
(

pij
)

(5)

where M is the number of possible classifications. yij is a binary indicator, indicating
whether the classification j is the real classification of input instance xi. pij is the probability
that the network predicts that the input instance xi belongs to classification j.

The final step is to train classifiers for gold-wire bonding, aluminum-wire bonding,
and chip damage. Classifier training is the same as the above training, and the loss function
is the Lcls2 function.

4.3. Training Results

Figure 8a shows the loss before data augmentation. There was over-fitting in training.
Because the data set was very small, the network could not achieving good training results.
Figure 8b shows the loss after data augmentation. The problem of overfitting was solved.
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Figure 8. The MEMS pressure sensor detects the total loss of the positioning network. (a) Loss before
data augmentation. (b) Loss after data augmentation.
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5. MEMS Defect Detection

Figure 9 shows the defect-detection results of the MEMS pressure sensor. The numbers
are the probability of the ADCNN detecting the different defects. The ADCNN could detect
gold-wire bonding, glue-surface wrinkles, aluminum-wire bonding, chip damage, and chip
scratches in the packaging process of the MEMS pressure-sensor chip.
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Average accuracy (AP) is used to evaluate the results of testing experiments. AP is
a good trade-off between accuracy and recall, which are two important testing indexes.
These indexes are defined as follows.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

AP =
Precision + Recall

2
(8)

where TP, FP, and FN represent the number of true positives, false positives, and false
negatives, respectively. The results of the defect detection were obtained for the MEMS
pressure-sensor dataset. They include the mean average precision (MAP) and the accuracy
in the detection location and classifier. Table 1 shows the target-detection statistics before
network optimization. The MAP only achieved 89.6%, and the AP of chip damage only
achieved 65.8%. The APs of chip scratches, gold-wire bonding, and aluminum-wire bonding
were high.

Table 1. Statistics of target-detection results without network optimization.

Detection Classes Recall
(%)

Precision
(%)

AP
(%)

MAP
(%)

Chip scratch 100.0 95.2 98.2

89.6
Chip damage 94.5 60.9 65.8

Gold-wire bonding 99.7 98.2 99.7
Glue-surface wrinkles 82.0 98.8 84.3

Aluminum-wire bonding 100.0 100.0 100.0

In order to obtain high performance of defect identification and classification, the
Adam optimizer was used with a learning rate of 0.05 and a batch number of 2. These
parameters were determined based on the characteristics of the dataset. Table 2 shows
the target-detection statistics after network optimization. The MAP achieved 92.4%. The
random-data augmentation greatly alleviated the problem of fewer defects in the MEMS
pressure sensor and the MAP of network was improved by optimization of the network. Re-
call of chip damage was 80%, but the precision was only 75.8%. Other defects scattered the
attention of the network, which may have caused low precision of chip-damage detection.
The network trained classifiers to solve this problem. Figure 10a shows the loss of classifiers.
As shown in Figure 10a, the performances were excellent because overfitting did not occur
in training. Figure 10b shows the accuracy of classifiers, where the average accuracy of
classifiers was 97.2%. Since there is currently no research that combines deep learning
and MEMS pressure-sensor chip-defect detection, it was compared with the research on
steel-surface detection using deep learning. He et al. [29] classified the defects of a steel
surface with an accuracy of 99.67%, and the MAP of defect inspection was 82.3%. Therefore,
the low accuracy of chip damage was effectively solved by the classifiers. In addition, the
stability of the network was improved by locating the aluminum-wire-bonding area and
the gold-wire-bonding area, and checking the defects by classifiers.
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Table 2. Statistics of target-detection results with network optimization.

Detection Classes Recall
(%)

Precision
(%)

AP
(%)

MAP
(%)

Chip scratch 96.1 86.8 92.3

92.4
Chip damage 80.0 75.8 71.5

Gold-wire bonding 98.3 82.7 98.8
Glue-surface wrinkles 88.1 93.5 95.4

Aluminum-wire bonding 100.0 100.0 100.0
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Figure 10. MEMS pressure-sensor detection-classification network. (a) Loss. (b) Accuracy.

It can be seen from Table 3 that the average detection accuracy of the network used in
this work was 92.4%, and compared with the Faster RCNN, YOLOv3, YOLOv4 networks,
the average detection-accuracy values were improved by 2.6%, 9.4%, and 1.1%, respectively.
The detection time of a single defect picture was 68 ms, which meets the requirements
of defect detection for a production line. Compared with other networks, the training
results of the ADCNN were more accurate, and the detection time of a single image met
the test requirements.

Table 3. Comparison of detection results of different networks.

Network

AP/%
MAP

/%

Single-Picture
Detection
Time/ms

Chip
Scratch

Chip
Damage

Gold-Wire
Bonding

Glue-Surface
Wrinkles

Aluminum-Wire
Bonding

Faster RCNN 90.5 89.6 93.5 85.7 89.9 89.8 51
YOLOv3 85.4 79.9 83.0 87.6 81.8 83.0 45
YOLOv4 92.8 82.7 95.5 93.2 92.4 91.3 42
ADCNN

(This work) 92.3 91.2 98.8 95.4 98.4 92.4 68

6. Conclusions

In this paper, a defect-detection system for MEMS pressure-sensor chip packaging is
proposed. The system can obtain the specific category and detailed location of the defect.
The ADCNN improves on the Faster RCNN framework with a skip block and a deep block.
Additionally, it adds a defect classifier and data augmentation to improve the accuracy
of the network. The experiments of the ADCNN on the MEMS pressure-sensor defect
dataset show that the network achieved 92.4% MAP for the defect detection. These results
demonstrate a high level in the industry. Future studies will focus on the following two
directions. Firstly, because of the expensive manuals and symbols in the detection data
set, a generative countermeasure network should be developed. Secondly, CNN is used
for feedback control of the MEMS pressure-sensor chip package so as to obtain a more
intelligent system.
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