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Abstract: The last two years are considered the most crucial and critical period of the COVID-19
pandemic affecting most life aspects worldwide. This virus spreads quickly within a short period,
increasing the fatality rate associated with the virus. From a clinical perspective, several diagnosis
methods are carried out for early detection to avoid virus propagation. However, the capabilities
of these methods are limited and have various associated challenges. Consequently, many studies
have been performed for COVID-19 automated detection without involving manual intervention
and allowing an accurate and fast decision. As is the case with other diseases and medical issues,
Artificial Intelligence (AI) provides the medical community with potential technical solutions that
help doctors and radiologists diagnose based on chest images. In this paper, a comprehensive review
of the mentioned AI-based detection solution proposals is conducted. More than 200 papers are
reviewed and analyzed, and 145 articles have been extensively examined to specify the proposed AI
mechanisms with chest medical images. A comprehensive examination of the associated advantages
and shortcomings is illustrated and summarized. Several findings are concluded as a result of a deep
analysis of all the previous works using machine learning for COVID-19 detection, segmentation,
and classification.

Keywords: augmentation; COVID-19; CT images; deep learning; diagnosis; machine learning;
pneumonia

1. Introduction

COVID-19 is a new disease that surfaced two years ago. It is caused by Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. The COVID-19 pandemic has
affected health resources and most people’s lives—socially, educationally, and economi-
cally [2–4]. With the vast and growing number of infected people due to the fast spread of
this virus, all countries have applied multiple measures to control the disease propagation.
Most airports were closed, and governments assessed country-wide lockdowns; some cities
were entirely quarantined as infested areas.

In addition to all the above complications, the COVID-19 diagnosis has many limi-
tations and challenges of its own. For example, using PCR test kits incurs a considerable
likelihood of false negatives, which is considered a primary drawback in diagnosis correct-
ness. This leads doctors to use chest images (X-ray or CT scan) for a more accurate diagnosis
that can better help doctors in their decisions. However, chest imaging availability is limited
primarily due to the scarce availability of imaging equipment.

Producing a drug for COVID-19 takes months or even years due to the clinical trials
that need to be carried out on humans and require approval for ethical and other reasons.
Additionally, the various genetic mutations the virus shows cause further delay in produc-
ing a cure for this virus. From a technical perspective, many researchers have proposed
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and developed AI solutions for COVID-19 diagnosis, which helps the medical staff in their
work, especially with the shortage of imaging equipment coupled with the large number of
images needed for a more confident diagnosis by expert radiologists.

Machine Learning (ML) and deep learning are efficient tools that present solutions
in medical image recognition and disease prediction [5–8]. Machine learning “is an inter-
disciplinary area, involving probability theory, statistics, approximation theory, convex
analysis, algorithm complexity theory, and other disciplines” [9]. Machine learning algo-
rithms are mathematical models used for prediction based on training these models using
specific information.

Arthur Samuel proposed the “machine learning” concept for the first time in 1959 [10].
Since then, many machine learning algorithms have been developed based on a variety
of mathematical concepts and are widely applied in daily life, such as biometric recogni-
tion [11,12], medical image recognition [13,14], speech and handwriting recognition [14,15],
computer vision [16,17], aquaculture experiments [18–21], and robots [22,23].

Deep Learning or hierarchical learning concepts are a part of machine learning ap-
proaches based on data representation [24]. The deep learning methods rely on algorithms
typically based on multi-layered neural networks corresponding to the abstraction lev-
els [25]. The first model-based learning approach was introduced in 1965 by Oleksiy
Ivakhnenko [26], who is named the “Father of Deep Learning” [27]. He presented a multi-
layer approach in which the input data properties are automatically filtered. The DL term
was introduced in 1986 by Rina Dechter [28].

In DL, the most commonly used algorithm in image analysis is the Convolutional
Neural Network (CNN) which is a multi-layer of perceptrons with minor pre-processing
requirements [28,29]. The main difference between DL and traditional machine learning
methods can be summarized by the feature extraction process [30]. The DL network
structure is designed to extract the essential information using filters, as opposed to the
traditional approach involving the feature engineering process, which is considered an
expensive and challenging process [31–33].

One of the most significant challenges of the COVID-19 pandemic has been the highly
contagious nature of the virus and elevated fatality rate. This increases the pressure on
the health care system due to the massive number of cases that need a fast diagnosis.
Combining the benefits of AI with medical knowledge can help the health system by
providing automated solutions for COVID-19 diagnosis that can deal with many cases
in a shorter time. Another advantage of using AI in COVID-19 diagnosis is reducing the
human intervention required and consequently increasing the social distancing measures
necessary to limit the infection’s spread.

The main challenge that may face ML in COVID-19 prediction is the limited availability
of training data sets, as such sets have started with a relatively small number of images,
despite being open-source data sets [34,35]. However, increasing the number of public
data images available to researchers is expected to boost the accuracy rate of the trained
ML systems.

Most of the artificial intelligence systems for COVID-19 detection are based on X-ray
or CT scan images. However, some studies have been proposed based on blood tests for
COVID-19 screening. Several features have been used in this type of detection models,
such as gender, age, platelets, basophils, and monocytes, using different AI algorithms
such as ANNs, SVM, KNN, decision trees, and random forest [36–39]. In this paper, the
review focused on using image processing and machine learning algorithms for COVID-19
detection for X-ray and CT scan images.

Deep learning techniques that were proposed for COVID-19 classification have been
presented and discussed in several previous review papers [40–42]. A more extensive
survey was presented by Alyasseri et al. [43], in which the most efficient and highest-
performance ML and DL systems were illustrated and explained. This study demonstrated
and highlighted the proposed systems in specific publishers such as Elsevier, IEEE, and
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Springer. The studies were summarized according to which is related to ML or DL or a
hybrid of both approaches.

This paper presents a comprehensive study of artificial intelligence systems applied
for COVID-19 diagnosis using X-ray and CT (Computed Tomography) images which have
been proposed, developed, and published, during the pandemic. This study covered
the most popular studies regarding classification, segmentation, and data augmentation.
Selection studies started using several sources, such as Google Scholar, Research Gate,
and IEEE websites. The main keywords that were used for the search include AI, ML,
DL, COVID-19, COVID-20, and segmentation. After collecting more than 200 papers, the
studies are filtered according to the main subjects in which this study is organized.

This review paper consists of the following sections: Section 2 presents the research
strategy of this paper. Section 3 presents the material that has been used in the reviewed
systems. Section 4 discusses the proposed data augmentation techniques that have been
used in several studies. Section 4 demonstrates and highlights the segmentation techniques
of the infected areas of the lung tissues. Finally, Section 5 presents and illustrates the
proposed classification system for COVID-19 detection.

2. Searching Strategy

The proposed survey started by searching process using the most used keyword
such as: COVID-19, COVID-20, classification, machine learning, deep learning, artificial
intelligence, segmentation, and data augmentation. Searching process has been carried out
using several digital databases such as, Springer, Elsevier, MDPI, IEEE, medRxiv, nature,
and others, as shown in Figure 1.
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Figure 1. Number of articles per database.

Collecting articles was carried out in March 2022 which was the first step of the
searching strategy, where 203 studies were retrieved using the mentioned keywords. The
second step was screening the most relevant papers and excluding any duplicates or
out of scope studies. There were 33 excluded articles, which present 16% of the total
number of collected studies. According to the used keywords, several papers were filtered
for eligibility in the third step of the proposed strategy. The papers should successfully
combine COVID-19 or COVID-20 detection with machine learning or deep learning using
chest images. Some articles presented a different type of database, use different techniques
for diagnosis, or did not have the required information, such as the performance or the
used dataset. Finally, 145 papers were extensively analyzed, illustrated, and summarized
in this paper. The analysis covered the proposed systems including the performance and
the limitations that can be improved by researchers. Figure 2 shows a summary of the
selection strategy of the reviewed papers.
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3. Materials

One leading limitation of the PCR test is the high rate of false-negative results, i.e.,
the diagnosis is negative, whereas the patient in reality is a positive carrier of the virus.
Moreover, in many regions of the world, PCR test accessibility is restricted. Consequently,
Computer Tomography (CT) and X-ray images can be used as the best alternative to identify
this infection. CT or X-ray images are promptly accessible where there are no PCR test kits.
Additionally, PCR kits are costly and take a lot of time to produce results, especially when
the volume of tests is high. Furthermore, a professional clinician is needed to gather PCR
tests, which may require additional training. Alternatively, it is somewhat simpler to work
with CT and X-ray images.

Artificial Intelligence is a rising field that could fulfill a significant role in COVID-19
detection. For this purpose, any trained model needs enough data (mostly chest images)
for virus recognition. With promising results, researchers have used machine learning to
detect COVID-19 using medical images such as CT and X-ray images.

A CT image of the chest is taken using the computed tomography CT scan procedure.
This procedure is known as computed axial tomography, a medical imaging technique
that provides the clinician with detailed images of the body for diagnostic purposes [35].
Figure 3 shows a CT scan image of a COVID-19 pneumonia patient’s lung.
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Despite its benefits, CT scans are generally considered expensive. Accordingly, clini-
cians use another type of chest image, namely X-ray images, instead of CT imaging. X-ray
is a methodology that is traditionally used to produce chest images and is generally more
available in most regions of the world, including developing countries. However, a CT
scan generates images with further details, making COVID-19 diagnosis more effortless
and efficient.

Several studies use CT scan images for COVID-19 detection. Yasar and Ceylan pro-
posed a CNN model for COVID-19 detection using 386 CT scan images, and their study
achieved 94.7% accuracy [44]. This is considered a low number of images, especially when
using a deep learning algorithm. At the time of the study in 2020, the data set availability
was limited.

In the following year (2021), the data sets had been increased because of the broader
spread of the disease and the continuously growing number of patients. Since 2021, more
studies have used CT scan images based on artificial intelligence algorithms for disease
detection. For example, in [45–47], the researchers proposed artificial intelligence models
for COVID-19 detection using CT scan images. The number of images in these studies was
more significant than in the previous ones, and the system’s accuracy was 95.0, 93.44, 94.73,
and 98.78%, respectively.

Most studies have been conducted based on X-ray images. X-rays have much more
limited frequencies than apparent light, which makes it conceivable to test structures signif-
icantly more modest than can be seen utilizing an ordinary magnifying instrument. This
feature is utilized in X-ray microscopy to obtain high-resolution images and in crystallogra-
phy to examine and find the location of atoms in precious stones [48]. Figure 4 shows an
example of X-ray images.
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X-ray images focus on bones and give more details about the surrounding tissues.
Medical X-ray images are a critical product that uses radiation. In 1987, they represented
58% of human-made technologies in the United States. The more significant part came
from traditional sources (82%); clinical X-rays represented just 10% of American radiation
products [49].

By 2006, the operations in the United States were contributing significantly more
ionizing radiation products than during the mid-1980s. In 2006, medical tools comprised
almost 50% of the U.S.’s radiation products. This expansion reflects the advances and
increased utilization of clinical imaging methodology, specifically processed tomography
(CT) and atomic medicine [50].

Several organizations, such as Kaggle.com [51–56], github.com [57–61], and others,
provide researchers with data sets of lung images like CT or X-ray images. According to
different studies, some data sets are private and need access to be used. However, the
public data sets have been rapidly and continuously growing.

Some studies used both CT and X-ray image types [62,63]. The first study used deep
learning CNN for detection and classification and achieved the same accuracy for both CT
and X-ray images. However, the second study proposed a different algorithm for the two
types of images which gave different performances, where it was 93.44% for X-ray images
and 87.98% for CT images.
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4. Data Augmentation

Data augmentation is a great process that can give new, extra images that save the orig-
inal information. However, it can likewise create noise that can affect the training process
efficiency of the AI model. For example, data augmentation was necessary, especially at the
beginning of the pandemic, as the number of images was negligible. At the same time, the
artificial intelligence algorithms required a more extensive data set to be trained efficiently.

In the study [64], the authors used a data set with 585 X-ray images. This number is
considered minor, and consequently, the researchers attempted to augment these images
for a more efficient training experience. The images were produced randomly during the
training process by flipping, translation, and rotation operations. Table 1 demonstrates the
used augmentation algorithms.

Table 1. Image augmentation settings.

Method Setting

Rotation angle 10

Width shift 0.2

Height shift 0.2

Horizontal flip True

In another study [65], data augmentation was carried out by several transformation
processes, as follows, and as shown in Figure 5:

• Use stationary wavelets to split the training images into three levels;
• Apply shear operation using values [−30, 30];
• Apply rotation transformation within [−90, 90];
• Translate the pixels within [−10, 10].
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As indicated earlier, the data augmentation process is a useful tool, but it can produce
noise that affects the training model’s efficiency. Nishio et al. combined three different meth-
ods for data augmentation to prevent the overfitting problem. They used the conventional
method, mixup, and RICAP, with the following parameters [66]:

• ±15◦ rotation;
• ±15% x-axis shift;
• ±15% y-axis shift;
• horizontal flipping;
• 85–115% scaling and shearing;
• mixup = 0.1.

The results of this work showed better accuracy using a combination of the three algo-
rithms than no-augmentation, or using any of the mentioned three methods separately [66].
Another study aimed to prevent the overfitting problem by monitoring the training loss.
The data augmentation was done based on rotation and flipping [67].
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The mentioned data augmentation techniques, such as flipping, rotating, and color
changing, are fast, reliable, and easy to apply. However, such changes in the structure are
limited in their benefits and do not produce completely new data. For example, in [68], the
authors proposed a new technique for data augmentation using a Generative Adversarial
Network (GAN). This model can generate artificial images with inconspicuous examples
and without supervision [69]. The main idea of this network is to utilize two restricting
networks and a generator that delivers a clear picture to deceive the other network that is
prepared to most separate between the positive and false images in the discriminator [70].
Figure 6a,b shows the system performance with, and without, data augmentation [68].
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5. Segmentation

In some studies, researchers have tried to segment the infected tissues of the lung to
develop COVID-19 virus detection in CT scan images. The segmentation process can be con-
sidered a Region of Interest (ROI), which improves the system performance by specifying
only the infected area and minimizing the wasted time reading all the image features.

Despite all the advantages of segmenting the infected lung tissues, there are several
challenges facing this process, such as the high variation between infected cells, the irregu-
larity of these cells, the low contrast of the tissues, and the differences in the illumination.
Irrespective of the mentioned challenges, some studies proposed several algorithms for de-
fected tissue segmentation. For example, in [71], the authors used Support Vector Machine
(SVM) and active contour modeling to segment the defected tissues. The detection rate of
three types of nodules (solid, non-solid, and cavitary) was 89%, whereas the false positive
was 7.3%, and the proposed model correctly specified the location of the nodules.

In the study [72], three benchmarks were built for lung and infection segmentation
processes using 70 COVID-19 cases, which contain momentum dynamic research field-
stones, e.g., scarcely any shot learning, area speculation, and information move. This work
was proposed using 40 pre-trained models. The results of this research were 67.3% for
average Dice Similarity Coefficient (DSC) scores of infection segmentation, whereas the
average Normalized Surface Dice (NSD) score was 70.0% for infection area segmentation.

Another study to address the lung segmentation challenges was proposed by
Fan et al. [73]. This study was conducted based on Infection Network (Inf-Net) for segmen-
tation. This system started with extracting the low-level features. The performance of these
features was increased by adding an edge attention model. The overall infection network
is shown in Figure 7. The system performance was promising and considerably closer to
the ground truth compared to other studies, as shown in Figure 8.
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In another study, the authors used the UNet++ for lung segmentation by inheriting the
basic structure of UNet++ and then composing it with SCOAT-Net based on the encoder
and the decoder semantic level. This method uses a smaller number of parameters and
reduces the calculation cost. Further, the performance was good for small-scale datasets.
On the other hand, this method could not detect certain delicate opacity regions, as shown
in case 5 in Figure 9 [74].

Based on the proposed literature, infected cell segmentation provides radiologists
with more informative results related to the volume, shape, and percentage, of the infected
area. Furthermore, this process generates the most important and impressive information
for ML models, which has been validated in numerous studies [72,75–77].

To minimize the time that has been consumed for manual masking of the infected
tissues of the lung, an enhanced segmentation framework was introduced in [78]. A multi-
agent Deep Reinforcement Learning (DRL) approach was proposed for lung infection
segmentation, which is an improved version of Deep Q-network and based on CT images.
The suggested mask detection was carried out like a tree for 3D images to cover all agents in
terms getting a best segmentation and detection process, as shown in Figure 10. This study
outcome was compared with the other existing segmentation systems and the ground truth;
the precision of the proposed model was 97.12%, the sensitivity, specificity, precision, and
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the F1 score were 79.97, 99.48, 85.21, and 83.01%, respectively. This model used the multi-
agent to get several masks for a 3D image to cover all areas and specially the unobservable
regions of the lung.
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6. Classification

Radiologists recently discovered that the DL approach, which was able to detect
tuberculosis in chest X-rays, could also be practical for recognizing COVID-19-related
lung abnormalities, and assisting physicians in choosing the treatment order for high-risk
COVID-19 patients. Others have proven that medical imaging is an essential source of
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information for a quick diagnosis of COVID-19 and that the combination of AI and chest
imaging can assist in explaining COVID-19 problems [76].

In terms of COVID-19 image analysis, a chest X-ray is an imaging tool used by hospitals
to diagnose COVID-19 infection, and it was the first image-based strategy utilized in Spain.
Suppose clinical suspicion of infection exists after inspection. In that case, a sample of
nasopharyngeal exudate is taken to evaluate the reverse transcription-polymerase chain
reaction (RT-PCR), followed by the acquisition of a chest X-ray film. Because the results of
the PCR test can take several hours to obtain, the information revealed by the chest X-ray is
critical for a quick clinical diagnosis. For example, if the patient’s clinical condition and
chest X-ray are both normal, the patient is sent home while the etiological test results are
awaited. The suspected patient will be admitted to hospital for close observation if the
X-ray reveals abnormal results [77].

In general, the lack of, or presence of, abnormal signs on a chest X-ray is used to
determine whether the patient should be sent home or kept in the hospital for additional
observation. While radiography in medical examinations can be performed quickly and
widely due to the prevalence of chest radiology imaging systems in healthcare systems, the
radiologists’ ability to interpret radiography images is limited due to the human capacity
to detect subtle visual features present in the images [79].

Many studies have been reported in this literature on new advances in DL models
employing types of neural networks for separating COVID-19 from non-COVID-19 cases
using neural networks, since AI can uncover patterns in chest X-rays that radiologists
would generally miss.

COVID-19 and other kinds of pneumonia with different localization from chest X-
rays are proposed to be detected quickly using a deep neural network architecture called
CovXNet. Instead of utilizing classic convolution, efficient depth-wise convolution with
varying dilation rates is used to analyze anomalies in 5856 X-rays images from various
perspectives by integrating data from multiple receptive fields. For the initial training
of the deep network, an enormous database containing X-rays from normal and other
typical pneumonia patients is used to supplement the modest number of COVID-19 X-rays.
Due to overlapping solid characteristics between COVID-19 and other pneumonia, a very
excellent result may be achieved with a smaller database, including COVID-19 X-rays, by
transferring the first trained convolutional layers with some extra fine-tuning layers [80].

Furthermore, it has been discovered that stacking algorithm improvements can be
made by further improving predictions obtained from multiple CovXNet variants, which
are principally optimized with varying input X-ray resolutions. In addition, a created class
activation map allows for the discriminative localization of aberrant zones, which can aid in
the diagnosis of clinical pneumonia symptoms on X-rays. More sample X-rays of COVID-19
patients for training in the transfer learning phase should increase the performance of these
schemes even more.

Extensive simulation findings indicate that it could be an effective solution for the
faster diagnosis of COVID-19 and other pneumonia patients. Furthermore, the proposed
CovXNet is extremely scalable and has a sizeable receptive capacity, making it suitable
for various computer vision applications. As a result, a gradient-based discriminative
localization is implemented to identify the aberrant regions of X-ray pictures relating to
distinct forms of pneumonia [78].

Extensive testing utilizing two distinct datasets reveals that COVID-19/Normal, 96.9%
for COVID-19/Viral pneumonia, and 94.7% for COVID-19/Bacterial pneumonia. On the
other hand, the accuracy was 90.2% for multiclass COVID-19/normal/Viral/Bacterial
pneumonia, providing outstanding detection performance, shown in Figure 11. As a
result, at the current state of the COVID-19 pandemic, the proposed methods can be an
effective tool.
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In another attempt, the authors present a model for automatically collecting the
radiological abnormalities congruent with COVID-19 in chest CT data and creating a
robust ML model [79]. These findings show that a typical machine learning approach
can predict the presence of the virus in a radiological test. To improve the model, an AI
system was utilized to extract COVID-19-related illnesses and feed them to the algorithm
as supplementary data, with an accuracy of 89.15%. The best method proposed (SVM)
is efficient, quality, and cost-effective. As a result, radiologists will use this approach as
a decision support tool to detect suspected COVID-19 cases in real-world circumstances
and attain roughly 90% accuracy with this method, improving the baseline findings by
five points.

A multi-classification deep learning model for detecting COVID-19, pneumonia, and
lung cancer, has been developed and tested from X-rays and CT scans of the chest. Ac-
cording to our knowledge, this model is accurate [80]. The first attempt is to classify the
three chest disorders systematically. A single design is critical to accurately diagnose
these conditions as soon as possible, as COVID-19 patients should receive the appro-
priate treatment and be isolated from halting the spread of the virus. There were four
different architectures. VGG19+CNN, ResNet152V2, ResNet152V2+GRU, VGG19+CNN,
ResNet152V2+GRU, VGG19+CNN, ResNet152V2+GRU, VGG19+CNNResNet152V2+Bi-
GRU, and ResNet152V2+Bi-GRU.

Through extensive experiments and results performed on collected datasets from
several sources that contained chest X-ray and CT images, the VGG19+CNN model out-
performed the other three proposed models. The VGG19+CNN model achieved 98.05%
accuracy, 98.05% recall, 98.43% precision, 99.5% specificity, 99.3% negative predictive value,
98.24% F1 score, 97.7% MCC, and 99.66% AUC, based on X-ray and CT images [80].

A Computer-Aided Design (CAD) technique for identifying COVID-19 patients from
2.300 CXR pictures is provided. A rich representation is built from an optimal set of GLCM-
based texture features to precisely represent the segmented lung tissue ROIs of each CXR
image [81]. The collected features are normalized for the final COVID-19 classification and
fed into a discriminative LDCRF model. Using 5-folds cross-validation, the approach was
thoroughly evaluated and validated on a large publicly available dataset of frontal CXR
pictures, reaching an average accuracy of 95.88%, with precision, recall, and F1-score of
96.17%, 94.45%, and 95.79%, respectively. These findings show that the suggested CAD
approach can assist radiologists and medical physicists in developing a reliable diagnosis
model to differentiate COVID-19 from non-COVID-19, as shown in Figure 12.
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There are three types of deep learning approach for classifying and segmenting X-ray
pictures of COVID-19 virus-infected patients’ lungs. Two systems are presented for patient
diagnosis: a deep neural network (DNN) method based on the fractal feature of input
photos, and a CNN method based on CT scan images [82]. The given CNN architecture,
with greater accuracy (93.2%) and sensitivity (96.1%), outperforms the DNN technique,
which has an accuracy of 83.4% and a sensitivity of 86%. With impressive performance, the
provided CNN architecture can be used to diagnose COVID-19 patients.

Reverse Transcription Polymerase Chain Reaction is currently the best method for
diagnosing patients (RT-PCR). However, many people cannot use this method on patients;
the procedure is costly and time-consuming. As a result, it is critical to propose an artificial
intelligence strategy for better diagnosing COVID-19 patients. The resulting approach
can be used in place of RT-PCR and demonstrates a reliable and successful approach
to COVID-19 patient non-contact testing, which can aid in the early and cost-effective
detection and screening of COVID-19 cases. To see if the model extracts enough biomarkers
for COVID-19 positive cases, a group of medical specialists will have to work together [82].

The regions of focus for verified COVID-19 positive cases, bacterial pneumonia, and
healthy cases, are shown in the CAM images of chest radiographs. Methods mentioned in
this study could be used as an initial screening tool to assist healthcare providers in treating
COVID-19 patients by better recognizing and promptly screening illness. In addition, it
offers not only a low-cost but also high-quality service. In addition, medical practition-
ers can use an automatic noncontact testing approach to reduce the risk of contracting
COVID-19. Initial tests revealed that the model produced satisfactory results and may be
utilized to speed up COVID-19 identification. In two and three output class examples, the
experimentation revealed an accuracy of 96% and 92.5% [82].

Based on chest X-ray pictures, the current study used three deep CNN techniques
to detect COVID-19. Two transfer learning methodologies were evaluated: deep feature
extraction and fine-tuning, as well as an end-to-end trained new CNN model. In addition,
SVM classifiers were used to classify the in-depth features and several kernel functions.
Analyzing eight well-known local descriptors yielded the following conclusions: Local de-
scriptors outperformed deep learning algorithms [83]. Deep features and the SVM classifier
exceeded the other approaches; deep feature extraction and local feature descriptor extrac-
tion take less time than fine-tuning and end-to-end training. In deep feature classification,
the Cubic kernel function surpassed all other kernels.

The ResNet50 model outperformed the other pertained CNN models in most cases.
Deep CNN models outperformed external networks in terms of end-to-end training. The
accuracy score for the deep features retrieved from the ResNet50 model and SVM classifier
using the Linear kernel function was 94.7%, the highest of all the findings. The fine-tuned
ResNet50 model had a 92.6% success rate, whereas the constructed CNN model had a 91.6%
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success rate after end-to-end training. Various local texture descriptors and SVM classifica-
tions were also employed to compare performance with alternative deep approaches to
identifying COVID-19 based on chest X-ray images. The findings indicated that the deep
techniques tend to be efficient when compared to the local texture descriptors [83].

COVID-19 symptoms were diagnosed using Artificial Intelligence models based on
human-generated respiratory sounds such as voice/speech, cough, and breath. The Con-
volutional Neural Network is a type of AI network used to manage various real-world
challenges. The Deep Convolutional Neural Network (DCNN) model was used in this
study to diagnose COVID-19 disease using human respiratory sounds from the COVID-19
sounds crowdsourced dataset [84].

Using multi-feature channels instead of standard techniques allowed the model to
extract deep features of the acoustic respiratory sound signal with a 7% higher accuracy
on the COVID-19 crowdsourced benchmark dataset. Using a DCNN classifier, the model
classified sounds as asthma sounds, COVID-19 sounds, pertussis, bronchitis, and ordinary
healthy sounds, with an accuracy of 95.45%. COVID-19 detection using respiratory sounds
is the suggested approach to improve the efficiency of detecting COVID-19 positive cases.

Automatic detection of COVID-19 from chest X-ray pictures, EMCNet, can help af-
fected patients. EMCNet extracts high-level characteristics from X-ray pictures using CNN.
The ensemble model accurately identifies COVID-19 vs. normal instances. In comparison
with a previous recent study, the dataset comprises a considerable number of COVID-19
photos with 98.91% accuracy, 100% precision, 97.82% recall, and 98.89% F1-score; a thor-
ough trial reveals improved performance. With these findings, EMCNet can serve as a
valuable resource for doctors and may be used as an alternative to manual radiological
analysis for the automatic detection of COVID-19. EMCNet has certain limitations, for
example, it can misclassify some COVID-19-positive situations as negative, but it can be
used as a backup [84].

For the detection of new COVID-19 cases from X-ray pictures, a deep CNNLSTM
network was introduced. For coronavirus detection, CNN is employed as a feature extractor
and the LSTM network as a classifier. Combining retrieved characteristics with LSTM that
distinguish COVID-19 cases from others improves the performance of the proposed system.
The created system had a 99.4% accuracy, 99.9% AUC, 99.2% specificity, 99.3% sensitivity,
and a 98.9% F1-score. On the same dataset, the proposed CNN-LSTM and competitive
CNN architectures are used [85]. The results of the rigorous testing demonstrated that
the proposed design outperforms a competing CNN network and that the suggested
system could produce a tool for COVID-19 patients and caregivers during this global
COVID-19 pandemic.

To lessen the effort of medical diagnosis, they employ X-ray pictures of the chest
region collected from COVID-19 infected patients, as well as healthy people, to build a
system using a deep transfer learning approach. Three CNN models, Inception- ResNetV2,
InceptionV3, and ResNet50, are compared, with ResNet50 providing the best performance
and accuracy of around 98% [86]. In the suggested framework, the class imbalance problem
is solved utilizing a modified loss function and numerous layers of convolution and capsule.
Following the adoption of this system, doctors and those in clinical practice would be able
to make better decisions due to enhanced performance. In addition, the model’s area under
the curve, specificity, and accuracy, can all be improved with pre-training. The number of
images in the datasets can be increased to improve the quality.

Deep feature and SVM are used to adapt an approach for detecting coronavirus
(COVID-19) using X-ray pictures by extracting the deep features of 13 pre-trained CNN
models and feeding them to the SVM classifier one by one. Each classification model is run
20 times, and the average value is recorded to improve the robustness of the classification
model [87]. The ResNet50 plus SVM classification model performs better than the other
12 classification models. The proposed classification model for COVID-19 detection has a
95.33% accuracy rate. The accuracy of 95.33% is based on the average of 20 independent
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executions, with a maximum accuracy value of 98.66%. A vast dataset might be used to
expand this study. The method’s restriction is that it cannot be used if the patient is in pain.

Zhou et al. proposed a segmentation network based on the U-Net with an attention
mechanism [88]. Because most contemporary segmentation networks are trained with
dice loss, which equally penalizes false negative and false positive voxels, they contribute
a high specificity but low sensitivity. They used the focused Tversky loss to train the
model to improve the tiny ROI segmentation performance. Furthermore, they enhanced
the baseline U-Net by adding the attention mechanism into each layer to capture rich
contextual interactions and improve feature representations.

The outcomes of the experiment show that their proposed strategy is effective. How-
ever, the study is constrained by the tiny dataset. It believes that the proposed method
could obtain more competitive outcomes with a more extensive training dataset. The exper-
iment’s findings, evaluated on a short dataset with only 100 CT available slices, show that
the proposed strategy works. On COVID-19 segments, it is possible to produce accurate
and quick segmentation. The dice score, sensitivity, and specificity achieved are 69.1%,
81.1%, and 97.2% of the time, respectively [88].

Growing the number of research proposes employing deep learning to enable quick
and dependable COVID-19 assessment using chest CT using a multi-center dataset. The
study suggested the first systematic comparison of a wide range of deep learning ap-
proaches for CT segmentation. Seven in-house deep learning methods were compared to
four public deep learning methods [89]. All procedures predicted overall lesion volume
with an average volume deference that was lower than the human rater’s accuracy. In
addition, they compare 12 deep learning methods using a multi-center dataset, including
open-source and in-house built algorithms.

The results suggest that combining several approaches improves overall test set per-
formance for lung segmentation, binary lesion segmentation, and multiclass lesion segmen-
tation, with mean dice scores of 0.982, 0.724, and 0.469, respectively. The binary lesions
were segmented with a mean absolute volume error of 91.3 mL. With a mean fundamental
volume difference of 152 mL and mean dice scores of 0.369 for consolidation and 0.523
ground-glass opacity, identifying different lesion types was more difficult. All algorithms
accomplish binary lesion segmentation with an average volume error lower than that of
human raters’ visual assessment, implying that methods have matured to the point where
they can be evaluated on a wide scale and used in clinical practice [89].

A deep learning approach for COVID-19 lung infection segmentation in chest CT
scans was provided in this paper [90]. The FCN was designed utilizing a U-net architecture
as the backbone, with proposed ResDense blocks at each level along the encoding and
decoding routes. Because of the concatenation skip connection in each ResDense block, the
feature maps of the infection zones and lung backdrop travel through the network with a
minor change in their values, improving network learning and segmentation performance.
Furthermore, the method includes an EED step that enhances the look of infection regions
in CT slices by increasing contrast and homogeneity.

The qualitative and quantitative evaluation results demonstrate the system’s useful-
ness and ability to segment COVID-19 infection regions from CT images. This system is
trained and verified using a variety of datasets from various sources, demonstrating its
generalizability and potential as a tool for automatic COVID-19 infection segmentation
and clinical practice. Researchers used different metrics for lung and infection regions
segmentation and achieved dice overlapping scores of 0.961 and 0.780, respectively. Many
2D CT slices taken from various datasets from various sources are used to train and evaluate
the proposed system, demonstrating its generality and efficiency [90].

COVID-19’s diagnostic performance was improved using pre-trained knowledge and
study of the potential using a deep learning technique called returning transfer learning,
to help clinicians diagnose COVID-19 [91]. COVID-19 was distinguished from viral and
bacterial pneumonia by their approach. Their method can potentially increase the effi-
ciency of diagnosis, isolation, and the treatment of COVID-19 patients, relieve radiologists’
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workload, and bring the pandemic under control. Using ResNet in binary classification, the
suggested system can accurately classify COVID-19 from healthy patients, COVID-19 from
bacterial pneumonia, and COVID-19 from viral pneumonia. Using this model provided
97.20% accuracy on three classes and 80.95% on four classes in multi-class classification.

Automatic algorithms for classifying chest X-ray pictures using three separate cate-
gories of analysis: COVID-19, pneumonia, and healthy patients are presented [92]. Given
the similarity in pathological impact on the lungs between COVID-19 and pneumonia,
particularly during the early phases of both lung diseases, they conducted a comprehensive
investigation of differences considering various pathological circumstances. They evalu-
ated six representative state-of-the-art deep network architectures on three different public
datasets to address these classification tasks: (I) the Radiological Society of North America
(RSNA) Chest X-ray dataset; (II) the COVID-19 Image Data Collection; and (III) the SIRM
dataset of the Italian Society of Medical Radiology.

Various typical tests were done to validate the designed methodologies for 6070 chest
X-ray radiographs classification. In general, the outcomes of the experiments were favorable.
The developed methods achieved accuracy values of 0.9706, assisting doctors in diagnosis
and, as a result, allowing for early treatment of this crucial pandemic pathology [92].

A deep convolutional neural network is proposed to detect COVID-19 pneumonia pa-
tients using digital chest X-ray pictures, while maximizing detection accuracy (DCNN) [93].
The collection has 864 COVID-19, 1345 viral pneumonia, and 1341 normal chest X-ray
images. In this study, a DCNN-based model called Inception V3, with transfer learning,
was developed for detecting coronavirus pneumonia infected patients using chest X-ray
radiographs, with a classification accuracy above 98% (training accuracy of 97% and valida-
tion accuracy of 93%). The findings reveal that transfer learning for COVID-19 detection is
effective, has stable performance, and is simple to implement.

A Deep Convolutional Neural Network technique for identifying COVID-19 infection
cases from patient chest X-ray pictures quickly and reliably is presented [94]. Chest X-ray
pictures of more than 150 verified COVID-19 patients from the Kaggle data pool were used
in the experiments to validate the performance of the proposed method. The results reveal
that the suggested method correctly detects the results 93% of the time.

Based on the knowledge gained from CT scan images, a new COVID-19 diagnosis
technique is developed as a binary classification challenge utilizing a sequential CNN.
The findings indicate that the model is quite effective at doing its job, with a maximum
accuracy of 92.48% [95]. Other linked parameters confirm the validity of the proposed
method’s outcome and establish its superiority over earlier methods. The main goal of this
research is to aid in the worldwide war against COVID-19, which medical professionals are
waging with zeal, by providing them with a simple and effective method of diagnosing the
condition. As academics, we hope that this approach will be applied and used globally and
that we will be able to contribute to putting this pandemic behind us.

An integrated deep learning architecture for COVID-19 classification is presented
using two widely used classification networks, ResNet and Xception, to run experiments to
uncover obstacles and limitations [96]. The findings reveal that deep learning models can
overestimate their performance due to experimental design flaws and overfitting of the
training dataset. Instead, the study used an independent test set to compare the suggested
architecture to state-of-the-art approaches and found that several highlighted bias and
overfitting concerns are minimized.

Even though the proposed deep learning architecture provides the best performance
with the best feasible setup, it highlights the difficulties in comparing and interpreting
the results of various deep learning algorithms. While deep learning algorithms based on
chest imaging data have shown promising results in the past, the tests imply that a more
extensive, more comprehensive database, with less bias, is required for building tools that
may be used in real-world clinical situations.

Using a convolutional neural network is proposed to use chest radiographs to detect
COVID-19 positive individuals. Previous research has shown that COVID-19-positive
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patients’ lung X-rays have precise characteristics. This is a valid method for testing patients
since X-ray inspection of suspect positive individuals is more accessible than PCR [97].
With a classification accuracy of 99.45% (training accuracy of 99.70%), a sensitivity of
99.30%, and a specificity of 99.40% obtained from 820 chest radiographic images (excluding
data augmentation) collected from three databases, this model has proven to be a reliable
COVID-19 detector.

Another machine learning algorithm is demonstrated using a SVM classifier, trained
using a combination of deep convolutional and handcrafted features taken from X-ray chest
scans [98]. This combination of characteristics is used to distinguish between healthy people
with common pneumonia and COVID-19 patients. A regular convolutional neural network
and a SVM, trained using handcrafted features, are used to compare the performance of
the combined feature strategy discovered. Combining these features in the innovative
framework enhances classification performance compared to applying convolutional and
handcrafted features separately. The classification problem attained a 0.988 accuracy with
the combined technique, compared to 0.963 and 0.983 accuracies with SVM and CNN,
respectively, for handcrafted features.

DenResCov-19 is a new deep-learning network that can offer reliable classification
results in multi-class lung disorders. The suggested model was tested on three distinct
published datasets with four classes: COVID-19 positive, pneumonia, tuberculosis, and
healthy individuals [99]. It also addressed the class imbalance issue by appropriately
combining the datasets (except for DXR4, where the dataset is imbalanced in COVID-19
positive cases due to a limited number of available images).

As a result of the experimental research, the proposed model has a positive gener-
alization and robust behavior. According to the proposed analysis, their network has
better classification accuracy than state-of-the-art networks like ResNet-50, DenseNet-121,
VGG-16, and Inception-V3. In addition, the proposed network would be able to provide the
results of the well-balanced AUC-ROC and F1 metrics that have been confirmed. In most
situations, our network’s detection points from heatmaps match the expert radiologist’s
detection points. To summarize, they created a pre-screening fast-track decision network
based on CXR images to detect COVID-19 and other lung diseases [99].

An approach based on pre-trained deep neural networks is shown, which has achieved
state-of-the-art performance for the job at hand, i.e., 99.60% accuracy, by utilizing a cyclic
generative adversarial net (CycleGAN) model for data augmentation [100]. A dataset
of 3163 photos from 189 patients was also collected and labeled by clinicians to test the
approach. Unlike previous datasets, standard data of persons having COVID-19 disease
was collected rather than data from other disorders, and this database was made pub-
licly available.

The suggested study includes basic measures such as grouping and clustering in the
classification report [101]. The proposed methods are evaluated using J48 and Simple
K Means analyses. The simulation tests the right diagnosis and confirms the accuracy
figures of 99.63% for Classifying Date and 96.27% for Classifying State. Highlights are
finely extracted for arrangement, and parameters are generated to create a Weka class. In
structured tree decision, J48 percept is supplied ostensible information and evaluates each
perceptron to send the best findings to each other.

Deep Learning has proven to be an effective way of extracting high-dimensional
information from medical photos. In this paper, the state-of-the-art Convolutional Neural
Network Mobile Net is used and trained from the ground up to evaluate the value of the
retrieved features for the classification job [102]. Mobile Net v2, which has been shown to
deliver impressive performance in related tasks, is trained using a large-scale dataset of
3905 X-ray images corresponding to six diseases.

This results both in discriminating the X-rays between the seven classes and between
COVID-19 and non-COVID-19, and training the CNNs from scratch surpasses the other
transfer learning strategies. Classification accuracy of 87.66% is attained between the seven
classes. Furthermore, this approach has a 99.18% accuracy, 97.36% sensitivity, and 99.42%



J. Imaging 2022, 8, 267 17 of 29

specificity in the field when COVID-19 was found to be present. The findings show that
training CNNs from scratch could reveal essential biomarkers associated with, but not
limited to, the COVID-19 disease. At the same time, the highest classification accuracy
suggests that the X-ray imaging potential should be investigated further [102].

Using deep features, the help vector gadget distinguishes corona impacted X-ray
images from others. Clinical practitioners can employ the approach to discover COVID-19-
infected patients early. With COVID-19, the proposed technique of multi-level thresholding
plus SVM showed good accuracy in classifying the infected lung [103]. All the images were
the same size and saved in JPEG format with 512 × 512 pixels. The lung classification’s
average sensitivity, specificity, and accuracy, utilizing the suggested model findings were
95.76, 99.7, and 97.48%, respectively.

Using a convolutional neural network and the pre-trained DenseNet201 model, a
novel deep transfer learning model for COVID-19 disease has been developed [104]. The
proposed model classifies chest CT scans as having 99.82, 96.25, and 97.4% training, testing,
and validation accuracy, respectively. In comparison to specific well-known deep trans-
fer learning models, the DenseNet201-based CNN performs much better, according to
comparative evaluations.

The proposed model achieves 97% accuracy, but the accuracy of VGG-16 and Resnet152V2
is 96 and 95%, respectively. Compared to competitive models, the proposed approach
demonstrated a 1% improvement. When applying the proposed method to an enormous
population, however, the 1% performance advantage can save many individuals’ lives. The
proposed methodology can improve the COVID-19 testing procedure because CT scans are
available in most medical institutes. As a result, the proposed model can be used instead of
several COVID-19 testing kits [104].

For coronavirus identification utilizing deep features and the J48 method, the chest
X-ray pictures utilized for simulation purposes were acquired from GitHub and Kaggle
sources. The extraction is conducted with the use of 11 pre-trained CNN models that
have been separately supplied for J48 classification [105]. In addition, a statistical study is
conducted to choose the optimal classification pattern. The statistical performance of the
ResNet101 plus J48 classification model outperforms the other 10 competing models.

As a result, the proposed classification model’s accuracy for detecting COVID-19
disease is 98.54%. An optimized convolutional neural network model (ADECOCNN) was
presented to distinguish between infected and uninfected patients. The ADECO-CNN
approach is also compared to the VGG19, Google Net, and ResNet models, which are based
on convolutional neural networks (CNNs). The ADECO-CNN-optimized CNN model
can categorize CT images with 99.99% accuracy, 99.96% sensitivity, 99.92% precision, and
99.97% specificity, according to extensive testing [105].

Garg et al. proposed a different study type [106]. This study designed, examined, and
compared, using 20 varieties of convolutional neural networks for COVID-19 detection,
including EfficientNet-B5, DenseNet169, InceptionV3, ResNet50, VGG16, and others. The
examined models were applied using 4173 CT images of lung tissues. As a result of this
study, EfficientNetB5 was considered the best model performance with about 98% accuracy
and sensitivity. This model has a higher performance and the smallest size compared to
the other 21 models. Table A1 presents a summary of the existed ML and DL systems for
COVID-19 detection and classification.

7. Conclusions

COVID-19 is a high severity disease that has spread widely over the world. Artificial
intelligence systems using medical images have played a significant role in COVID-19
diagnosis. This paper discussed the most efficient and accurate AI systems for COVID-
19 diagnosis using X-ray or CT scan chest images and illustrated the range of machine
learning or deep learning techniques used for the detection and classification of the COVID-
19 virus. The AI platforms, image augmentation, and image segmentation techniques
have been briefly reviewed and discussed. Two types of images (X-ray and CT scan
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images) were covered in this literature to demonstrate the effectiveness of AI models for
COVID-19 diagnosis.

Two main categories have been taken in order to filter the studies; the first one is
using chest images, either X-ray or CT scan, whereas the other criteria were using machine
learning, including deep learning algorithms. Some studies used data augmentation and
segmentation which can be recognized as a valuable additive that enriches this study to
be more detailed and comprehensive. Machine learning algorithms include deep learning
algorithms, either the pre-defined, the improved, or the optimized ones. The Table A1 in
Appendix A summarizes these studies, which are related to classification by focusing on
each study’s methodology and performance.

In summary, many studies have been proposed for COVID-19 detection and classi-
fication with promising results. Screening for COVID-19 can help in early detection and
aid radiologists in their diagnosis efforts. In addition, more research can be developed to
predict the severity of the disease, which is very important in order to estimate the need
for ICU and to make clinical decisions regarding disease treatment, therefore, reducing the
load on hospitals and health care centers.
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Appendix A

Table A1. Summary of existing AI systems for COVID-19 detection.

Study Year Data Set Methodology Accuracy

A multi-dilation convolutional neural
network for automatic COVID-19 and other

pneumonia detection from chest X-ray images
with transferable multi-receptive feature

optimization [75]

2020 5856
X-ray images

A deep neural network
architecture namely CovXNet.

97.4% COVID-19/Nomal
96.9% COVID-19/Viral pneumonia

94.7% COVID-19/Bacterial
pneumonia

90.2% multiclass
COVID-19/normal/

Vral/Bacterial
pneumonias

COVID-19 detection in radiological text
reports integrating entity recognition [76] 2021

CT Scan
295 anonymous CT scan

reports

ML model
NER system

Five statistical parameters.
90%

Deep-chest: Multi-classification deep learning
model for diagnosing COVID-19, pneumonia,

and lung cancer chest diseases [77]
2021 33,676

X-ray and CT images
CNN and recurrent neural

network (RNN)
The VGG19+CNN model achieved

98.05% accuracy (ACC)

COVID-19 cough classification using machine
learning and global smartphone

recordings [83]
2021 Data set CNN 95.3%

Automatic detection of COVID-19 using
pruned GLCM-Based texture features and

LDCRF classification [78]
2021 X-ray images

2300
CAD methodology

segmentation 95.88%
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Table A1. Cont.

Study Year Data Set Methodology Accuracy

Diagnosis and detection of infected
tissue of COVID-19 patients based

on lung X-ray image using
convolutional neural network

approaches [79]

2020 X-ray images
682

Deep Neural Network (DNN) and
Convolutional Neural Network

(CNN)

CNN
(93.2%)
DNN
83.4%

Automatic method for classifying
COVID-19 patients based on chest
X-ray images, using deep features
and PSO-optimized XGBoost [106]

2021
X-ray

images
5586

Extreme Gradient Boosting
(XGBoost) optimized by particle

swarm optimization (PSO).
98.71%

COVID-19: Automatic Detection of
the Novel Coronavirus Disease From

CT Images Using an Optimized
Convolutional Neural Network [107]

2021 CT Scan Optimized Convolutional Neural
Network 95.7%

Automatic detection of COVID-19
from chest radiographs using deep

learning [108]
2020 X-ray images

1428 Deep Learning model 96%

Deep learning approaches for
COVID-19 detection based on chest

X-ray images [82]
2020 200

X-ray images
Deep Convolutional Neural

Network 91.6%

Automatic diagnosis of COVID-19
disease using deep convolutional
neural network with multi-feature

channel from respiratory sound data:
Cough, voice, and breath [84]

2021
4.5 k samples/web-based

application. 2.5 k samples/
android based application

Multichannel Deep Convolutional
Neural Network (DCNN)

80% accuracy for respiratory-based
sound classification

62% for audio-based classification

EMCNet: Automated COVID-19
diagnosis from X-ray images using
convolutional neural network and

ensemble of machine learning
classifiers [109]

2020 400
X-ray images EMCNet 98.91%

A combined deep CNN-LSTM
network for the detection of novel

coronavirus (COVID-19) using X-ray
images [86]

2020 613
X-ray images Deep CNNLSTM network 99.4%

Deep Net Model for Detection of
COVID-19 using Radiographs based

on ROC Analysis [87]
2020 100

X-ray images CNN 98%

The Role of Artificial Intelligence in
Management of Critical COVID-19

Patients [110]
2020 CT Scan AI -

Detection of coronavirus Disease
(COVID-19) based on Deep Features

and Support Vector Machine [88]
2020 127

X-ray images ResNet plus SVM model 98.66%.

An automatic COVID-19 CT
segmentation based on U-Net with

attention mechanism [89]
2020 100

CT Scan U-Net based segmentation -

A Critic Evaluation of Methods for
COVID-19 Automatic Detection

from X-ray Images [111]
2020 108,948

X-ray images - 92%

Comparative study of deep learning
methods for the automatic

segmentation of lung lesion, and
lesion type in CT scans of COVID-19

patients [90]

2020 1103
CT Scan Twelve deep learning methods -

Automatic Deep Learning System
for COVID-19 Infection

Quantification in chest CT [91]
2020 240,270

CT Scan CNN -

Improving Coronavirus (COVID-19)
Diagnosis using Deep Transfer

Learning [92]
2020 19,200

X-ray CNN 98.7%

Fully automatic deep convolutional
approaches for the analysis of
COVID-19 using chest X-ray

images [93]

2020 5856
X-ray CNN 0.97%

Classification of COVID-19 from
Chest X-ray images using Deep

Convolutional Neural Networks [94]
2020 315

X-ray
Deep Convolutional Neural

Networks 98%

Automatic Detection of COVID-19
Infection from Chest X-ray using

Deep Learning [95]
2020 X-ray Deep Convolutional Neural

Network 93%
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Table A1. Cont.

Study Year Data Set Methodology Accuracy

An Automatic Computer-Based
Method for Fast and Accurate

COVID-19 Diagnosis [96]
2020 195

CT Scan CNN 92.5%

Challenges of Deep Learning
Methods for COVID-19 Detection

Using Public Datasets [97]
2020 CT scan Deep Neural Network 98-99%

Automatic COVID-19 Detection
from chest radiographic images

using Convolutional Neural
Network [98]

2020 5740
X-ray CNN 99.45%

Classification of COVID-19 X-ray
Images Using a Combination of

Deep and Handcrafted Features [99]
2021 5143

X-ray/CT Scan SVM &CNN 98.8%

DenResCov-19: A deep transfer
learning network for robust
automatic classification of

COVID-19, pneumonia, and
tuberculosis from X-rays [100]

2021 3883
X-ray/CT Scan Deep Learning Network 86.4%

Automatic Diagnosis of COVID-19
from CT Images using CycleGAN

and Transfer Learning [101]
2021 1766

CT Scan CycleGAN 99.60%

An Automatic Classification of
COVID with J48 and Simple
K-Means using Weka [102]

2020 - k-Means 99.63%

Extracting Possibly Representative
COVID-19 Biomarkers from X-ray

Images with Deep Learning
Approach and Image Data Related to

Pulmonary Diseases [103]

2020 3905
X-ray Convolutional Neural Network 99.18%

Automatic X-ray COVID-19 Lung
Image Classification System based
on Multi-Level Thresholding and

Support Vector Machine [104]

2020 X-ray SVM 97.48%

Classification of the COVID-19
infected patients using DenseNet201

based deep transfer learning [105]
2020 2492

CT Scan CNN 99.82%

ADOPT: automatic deep learning
and optimization-based approach
for detection of novel coronavirus

COVID-19 disease using X-ray
images [106]

2021 50
X-ray

11 different convolutional neural
network-based (CNN) models 98.54%

COVID-19: Automatic Detection of
the Novel Coronavirus Disease From

CT Images Using an Optimized
Convolutional Neural Network [107]

2021 CT Scan Optimized Convolutional Neural
Network 95.7%

An intelligent tool to support
diagnosis of COVID-19 by texture
analysis of X-ray images. Research
on Biomedical Engineering [112]

2020 6309
X-ray IKONOS 89.78%

An automatic approach based on
CNN architecture to detect

COVID-19 disease from chest X-ray
images. [113]

2020 8830
X-ray CNN 99.32% for binary

class and 97.55% for multi-class

Automatic COVID-19 detection
using exemplar hybrid deep features

with X-ray
images [114]

2021 11,104
X-ray

COVID-19FclNet9
(CNN optimized) 99.64%

An integrated feature frame work for
automated segmentation of

COVID-19 infection from lung CT
images [115]

2020 80 X-ray/CT DNN Model -

Automatic COVID-19 CT
segmentation using U-Net

integrated spatial and channel
attention mechanism [116]

2020 473 CT U-Net Model 83.1%

Transfer learning-based automatic
detection of coronavirus disease

2019 (COVID-19) from chest X-ray
images [117]

2020 348
X-ray

Visual Geometry Group (VGG)-16,
VGG-19, MobileNet, and

InceptionResNetV2
(CNN optimized)

>90.0%
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Table A1. Cont.

Study Year Data Set Methodology Accuracy

Deep convolutional neural networks
for COVID-19 automatic

diagnosis [118]
2021 1954

X-ray CNN
99%, 99.12%, and 99.29% for

ResNet18, ResNet50, and ResNet101,
respectively.

Optimized genetic
algorithm-extreme learning machine
approach for automatic COVID-19

detection [119]

2020 188
X-ray

Optimized Genetic
Algorithm-Extreme Learning

Machine (OGA-ELM)
100.00%

Automatic evaluation of the lung
condition of COVID-19 patients

using X-ray images and
convolutional neural networks [120]

2021 185
X-ray CNN 96%

Cascaded deep learning classifiers
for computer-aided diagnosis of

COVID-19 and pneumonia diseases
in X-ray scans [121]

2020 306
X-ray

CNN:
VGG

ResNe
99.9%

Evaluation of deep learning-based
approaches for COVID-19

classification based on chest X-ray
images [122]

2021 760
X-ray DCNN 98.69%

Multi-task contrastive learning for
automatic CT and X-ray diagnosis of

COVID-19 [123]
2021

4758
CT

5821
X-ray

Contrastive Multi-Task
Convolutional Neural Network

(CMT-CNN)

CT
(5.49–6.45%)

X-ray
(0.96–2.42%)

Multi-task deep learning based CT
imaging analysis for COVID-19
pneumonia: Classification and

segmentation [124]

2020 1369 CT Multitask Deep Learning model 97%

Automatic detection of coronavirus
disease (COVID-19) using X-ray
images and deep convolutional

neural networks [125]

2021 7065
X-ray DCNN 99.7%

Deep transfer learning with apache
spark to detect COVID-19 in chest

X-ray images [126]
2020 320

X-ray
Deep Transfer Learning (DTL)

Using (CCN)

99.01% pre-trained InceptionV3
model

98.03% ResNet50 model

Implementation of convolutional
neural network approach for

COVID-19 disease detection [127]
2020 4576

X-ray DCNN 98.92%

A novel approach of CT images
feature analysis and prediction to

screen for corona virus disease
(COVID-19) [128]

2020 51
CT

Composed Hybrid Feature
Selection (CHFS) and Optimizes

Genetic Algorithm (OGA)
96.07%

Automatic Classification Approach
for Detecting COVID-19 using Deep

Convolutional Neural
Networks [129]

2020 1140
X-ray DCNN

92.54%, precision: 93.05%, recall:
92.81%,

F1-score: 92.83%, specificity: 97.47%

Artificial intelligence distinguishes
COVID-19 from community

acquired pneumonia on chest CT.
Radiology [130]

2020 4356 CT COVNet 95%

A machine learning-based
framework for diagnosis of
COVID-19 from chest X-ray

images [131]

2021 500
X-ray

Logistic Regression (LR) and
Convolutional Neural Networks

(CNN)
95.2–97.6%

Deep learning-based meta-classifier
approach for COVID-19

classification using CT scan and
chest X-ray images [132]

2021
8055 CT

9544
X-ray

CNN 99.48%

Rapid identification of COVID-19
severity in CT scans through

classification of deep features [133]
2020 729 CT Images DNN

(Deep Neural Network) 95.34%

Machine-learning classification of
texture features of portable chest

X-ray accurately classifies COVID-19
lung infection [134]

2020 250 CT Images Deep Learning -

Automatic classification between
COVID-19 pneumonia,

non-COVID-19 pneumonia, and the
healthy on chest X-ray image:

combination of data augmentation
methods [65]

2020
1248
X-ray

images

Conventional Neural
Network/data augmentation >90%
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Table A1. Cont.

Study Year Data Set Methodology Accuracy

The study of automatic machine
learning base on radiomics of

non-focus area in the first chest CT
of different clinical types of
COVID-19 pneumonia [135]

2020 219
X-ray Auto ML 95%

A novel hand-crafted with deep
learning features based fusion model

for COVID-19 diagnosis and
classification using chest X-ray

images [136]

2021 516
X-ray

FM-HCF-DLF model
[Optimized CNN] 94.08%

Classification of COVID-19 patients
from chest CT images using
multi-objective differential

evolution–based convolutional
neural networks [137]

2020 CT
Images CNN +ANN+ ANFIS

92% proposed
91.7% CNN

91.4% ANFIS
89.5% ANN

Densely connected convolutional
networks-based COVID-19

screening model [138]
2021

11,494
CT

Images

Densely Connected convolutional
networks (DCCNs)
[Optimized CNN]

98.83%

End-to-end automatic differentiation
of the coronavirus disease 2019

(COVID-19) from viral pneumonia
based on chest CT [139]

2021
448
CT

Images

Large-scale bidirectional
generative adversarial network

(BigBiGAN) architecture
92%

Toward real-time and efficient
cardiovascular monitoring for

COVID-19 patients by 5G-enabled
wearable medical devices: a deep

learning approach [140]

2021 -
Convolutional Neural Networks

and long short-term memory
networks model

99.29%

Within the lack of chest COVID-19
X-ray dataset: a novel detection
model based on GAN and deep

transfer learning [141]

2020 307
X-ray

GAN and Deep
Transfer Learning 99.9%

Automatic detection of COVID-19
infection using chest X-ray images

through transfer learning [142]
2021 194

X-ray

Different architectures of
Convolutional Neural Networks

(CNNs)
98.5%

Automatic COVID-19 lung infected
region segmentation and

measurement using CT scans
images [143]

2020 275
CT

Automated tool of
segmentation and measurement 98%

Automatic detection of COVID-19
from chest X-ray images with

convolutional neural networks [144]
2021 165

X-ray CNN 97.56%

Auto-diagnosis of COVID-19 using
lung CT images with

semi-supervised shallow learning
network [145]

2021 2482
CT CNN optimized —–

A deep learning-based COVID-19
automatic diagnostic framework
using chest X-ray images [146]

2021 6273
X-ray

Deep learning algorithm-based
model 97.11%

Performance evaluation of the
NASNet convolutional network in

the automatic identification of
COVID-19 [147]

2020 240
X-ray

Neural Architecture Search
Network (NASNet) 97%

A weakly-supervised framework for
COVID-19 classification and lesion

localization from chest CT [148]
2020

530
CT

images
DeCoVNet 97.6%

Classification of COVID-19 in chest
X-ray images using DeTraC deep

convolutional neural network [149]
2021

196
X-ray

images
DeTraC deep CNN 93.1%

Novel artificial intelligence
algorithm for automatic detection of

COVID-19 abnormalities in
computed tomography images [150]

2021
1581
CT

images

artificial intelligence (AI)
algorithm 92.0%

CCBlock: an effective use of deep
learning for automatic diagnosis of
COVID-19 using X-ray images [151]

2020
1828
X-ray

images

enhancement of the classical
visual geometry group (VGG)

network
95.34%

An effective deep residual
network-based class attention layer

with bidirectional LSTM for
diagnosis and classification of

COVID-19 [152]

2020 X-ray
images

work (ResNet) based Class
Attention Layer with Bidirectional

LSTM called RCAL-BiLSTM for
COVID-19 Diagnosis

94.88%
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Table A1. Cont.

Study Year Data Set Methodology Accuracy

COVID-caps: A capsule
network-based framework for

identification of COVID-19 cases
from X-ray images [57]

2020 X-ray
images Capsule Networks 95.7%

Automated detection of COVID-19
cases using deep neural networks

with X-ray images [153]
2020 127

X-ray Deep Neural Networks 98.08%

COVID-19: automatic detection from
X-ray images utilizing transfer

learning with convolutional neural
networks [51]

2020 1427
X-ray images CNN 96.78%

An open-source COVID-19 CT
dataset with automatic lung tissue
classification for radiomics [154]

2021 62 CT
images —-

Explainable artificial
intelligence-based edge fuzzy

images for
COVID-19 detection and

identification [155]

2022 5888 X-ray Fuzzy CNNs 95%

Ensemble Deep Learning and
Internet of Things-Based Automated

COVID-19 Diagnosis
Framework [156]

2022 12,146 CT scan Deep learning and Internet of
Things 98.98%

Explainable Machine Learning for
COVID-19 Pneumonia Classification

With Texture-Based Features
Extraction in Chest
Radiography [157]

2022 5222 X-ray XGBoost (XGB) and Random
Forest (RF). 82%

A COVID-19 CXR image recognition
method based on

MSA-DDCovidNet [158]
2022 5863 X-ray

multi-scale spatial attention
mechanism with a convolutional

neural network model
(MSA-DDCovidNet)

97.962%
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83. Ismael, A.M.; Şengür, A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst. Appl. 2021,
164, 114054. [CrossRef]

84. Lella, K.K.; Pja, A. Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature
channel from respiratory sound data: Cough, voice, and breath. Alex. Eng. J. 2022, 61, 1319–1334. [CrossRef]

85. Pahar, M.; Klopper, M.; Warren, R.; Niesler, T. COVID-19 cough classification using machine learning and global smartphone
recordings. Comput. Biol. Med. 2021, 135, 104572. [CrossRef]

86. Islam, M.Z.; Islam, M.M.; Asraf, A. A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19)
using X-ray images. Inform. Med. Unlocked 2020, 20, 100412. [CrossRef]

87. Dhaya, R. Deep net model for detection of COVID-19 using radiographs based on roc analysis. J. Innov. Image Process. 2020, 2,
135–140.

88. Sethy, P.K.; Behera, S.K. Detection of Coronavirus Disease (COVID-19) Based on Deep Features. Preprints 2020, 2020030300.
[CrossRef]

89. Zhou, T.; Canu, S.; Ruan, S. An automatic COVID-19 CT segmentation based on U-Net with attention mechanism. arXiv 2020,
arXiv:2004.06673.

90. Tilborghs, S.; Dirks, I.; Fidon, L.; Willems, S.; Eelbode, T.; Bertels, J.; Ilsen, B.; Brys, A.; Dubbeldam, A.; Buls, N.; et al. Comparative
study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients.
arXiv 2020, arXiv:2007.15546.

91. Alirr, O.I. Automatic deep learning system for COVID-19 infection quantification in chest CT. Multimed. Tools Appl. 2022, 81,
527–541. [CrossRef] [PubMed]

92. Rehman, A.; Naz, S.; Khan, A.; Zaib, A.; Razzak, I. Improving coronavirus (COVID-19) diagnosis using deep transfer learning.
MedRxiv 2020. [CrossRef]

93. De Moura, J.; Novo, J.; Ortega, M. Fully automatic deep convolutional approaches for the analysis of COVID-19 using chest X-ray
images. Appl. Soft Comput. 2022, 115, 108190. [CrossRef]

94. Asif, S.; Wenhui, Y.; Jin, H.; Jinhai, S. December. Classification of COVID-19 from chest X-ray images using deep convolutional
neural network. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC),
Chengdu, China, 11–14 December 2020; pp. 426–433.

95. Medhi, K.; Jamil, M.; Hussain, M.I. Automatic detection of COVID-19 infection from chest X-ray using deep learning. Medrxiv 2020.
[CrossRef]

96. Jim, A.A.J.; Rafi, I.; Chowdhury, M.S.; Sikder, N.; Mahmud, M.P.; Rubaiee, S.; Masud, M.; Bairagi, A.K.; Bhakta, K.; Nahid, A.A.
An automatic computer-based method for fast and accurate COVID-19 diagnosis. medRxiv 2020. [CrossRef]

97. Hasan, M.K.; Alam, M.A.; Dahal, L.; Elahi, M.T.E.; Roy, S.; Wahid, S.R.; Martí, R.; Khanal, B. Challenges of deep learning methods
for COVID-19 detection using public datasets. medRxiv 2020. [CrossRef]

98. Asif, S.; Amjad, K. Automatic COVID-19 Detection from chest radiographic images using Convolutional Neural Network.
medRxiv 2020. [CrossRef]

99. Zhang, W.; Pogorelsky, B.; Loveland, M.; Wolf, T. Classification of COVID-19 X-ray images using a combination of deep and
handcrafted features. arXiv 2021, arXiv:2101.07866.

http://doi.org/10.1109/TMI.2020.2996645
http://www.ncbi.nlm.nih.gov/pubmed/32730213
http://doi.org/10.1016/j.patcog.2021.108109
http://doi.org/10.1155/2021/5544742
http://doi.org/10.3390/s21217116
http://doi.org/10.1016/j.compbiomed.2020.103869
http://www.ncbi.nlm.nih.gov/pubmed/32658740
http://doi.org/10.1016/j.compbiomed.2020.104066
http://www.ncbi.nlm.nih.gov/pubmed/33130435
http://doi.org/10.1016/j.compbiomed.2021.104348
http://www.ncbi.nlm.nih.gov/pubmed/33774272
http://doi.org/10.1016/j.compbiomed.2021.104781
http://doi.org/10.1016/j.chaos.2020.110170
http://www.ncbi.nlm.nih.gov/pubmed/32834651
http://doi.org/10.1016/j.eswa.2020.114054
http://doi.org/10.1016/j.aej.2021.06.024
http://doi.org/10.1016/j.compbiomed.2021.104572
http://doi.org/10.1016/j.imu.2020.100412
http://doi.org/10.20944/preprints202003.0300.v1
http://doi.org/10.1007/s11042-021-11299-9
http://www.ncbi.nlm.nih.gov/pubmed/34539221
http://doi.org/10.1101/2020.04.11.20054643
http://doi.org/10.1016/j.asoc.2021.108190
http://doi.org/10.1101/2020.05.10.20097063
http://doi.org/10.1101/2020.07.02.20136721
http://doi.org/10.1016/j.imu.2022.100945
http://doi.org/10.1101/2020.11.08.20228080


J. Imaging 2022, 8, 267 27 of 29

100. Mamalakis, M.; Swift, A.J.; Vorselaars, B.; Ray, S.; Weeks, S.; Ding, W.; Clayton, R.H.; Mackenzie, L.S.; Banerjee, A. DenResCov-19:
A deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays.
Comput. Med. Imaging Graph. 2021, 94, 102008. [CrossRef] [PubMed]

101. Ghassemi, N.; Shoeibi, A.; Khodatars, M.; Heras, J.; Rahimi, A.; Zare, A.; Pachori, R.B.; Gorriz, J.M. Automatic diagnosis of
COVID-19 from ct images using cyclegan and transfer learning. arXiv 2021, arXiv:2104.11949.

102. Chakkaravarthy, A.P.; Pugalenthi, R.; Ramya, J.; Dhanalakshmi, J. An Automatic Classification of COVID with J48 and Simple
K-Means using Weka. Int. J. Future Gener. Commun. Netw. 2020, 13, 490–500.

103. Apostolopoulos, I.D.; Aznaouridis, S.I.; Tzani, M.A. Extracting possibly representative COVID-19 biomarkers from X-ray images
with deep learning approach and image data related to pulmonary diseases. J. Med. Biol. Eng. 2020, 40, 462–469. [CrossRef]

104. Mahdy, L.N.; Ezzat, K.A.; Elmousalami, H.H.; Ella, H.A.; Hassanien, A.E. Automatic X-ray COVID-19 lung image classification
system based on multi-level thresholding and support vector machine. MedRxiv 2020. [CrossRef]

105. Jaiswal, A.; Gianchandani, N.; Singh, D.; Kumar, V.; Kaur, M. Classification of the COVID-19 infected patients using DenseNet201
based deep transfer learning. J. Biomol. Struct. Dyn. 2021, 39, 5682–5689. [CrossRef]

106. Dhiman, G.; Chang, V.; Kant Singh, K.; Shankar, A. Adopt: Automatic deep learning and optimization-based approach for
detection of novel coronavirus COVID-19 disease using X-ray images. J. Biomol. Struct. Dyn. 2021, 40, 5836–5847. [CrossRef]

107. Castiglione, A.; Vijayakumar, P.; Nappi, M.; Sadiq, S.; Umer, M. COVID-19: Automatic detection of the novel coronavirus disease
from ct images using an optimized convolutional neural network. IEEE Trans. Ind. Inform. 2021, 17, 6480–6488. [CrossRef]

108. Pandit, M.K.; Banday, S.A.; Naaz, R.; Chishti, M.A. Automatic detection of COVID-19 from chest radiographs using deep learning.
Radiography 2021, 27, 483–489. [CrossRef]

109. Saha, P.; Sadi, M.S.; Islam, M.M. EMCNet: Automated COVID-19 diagnosis from X-ray images using convolutional neural
network and ensemble of machine learning classifiers. Inform. Med. Unlocked 2021, 22, 100505. [CrossRef]

110. Rahmatizadeh, S.; Valizadeh-Haghi, S.; Dabbagh, A. The role of artificial intelligence in management of critical COVID-19 patients.
J. Cell. Mol. Anesth. 2020, 5, 16–22.

111. Maguolo, G.; Nanni, L. A critic evaluation of methods for COVID-19 automatic detection from X-ray images. Inf. Fusion 2021, 76,
1–7. [CrossRef] [PubMed]

112. Gomes, J.C.; Barbosa, V.A.D.F.; Santana, M.A.; Bandeira, J.; Valença, M.J.S.; de Souza, R.E.; Ismael, A.M.; dos Santos, W.P. IKONOS:
An intelligent tool to support diagnosis of COVID-19 by texture analysis of X-ray images. Res. Biomed. Eng. 2020, 38, 15–28.
[CrossRef]

113. Hira, S.; Bai, A.; Hira, S. An automatic approach based on CNN architecture to detect Covid-19 disease from chest X-ray images.
Appl. Intell. 2021, 51, 2864–2889. [CrossRef] [PubMed]

114. Barua, P.D.; Muhammad Gowdh, N.F.; Rahmat, K.; Ramli, N.; Ng, W.L.; Chan, W.Y.; Kuluozturk, M.; Dogan, S.; Baygin, M.;
Yaman, O.; et al. Automatic COVID-19 detection using exemplar hybrid deep features with X-ray images. Int. J. Environ. Res.
Public Health 2021, 18, 8052. [CrossRef]

115. Selvaraj, D.; Venkatesan, A.; Mahesh, V.G.; Joseph Raj, A.N. An integrated feature frame work for automated segmentation of
COVID-19 infection from lung CT images. Int. J. Imaging Syst. Technol. 2021, 31, 28–46. [CrossRef]

116. Zhou, T.; Canu, S.; Ruan, S. Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention
mechanism. Int. J. Imaging Syst. Technol. 2021, 31, 16–27. [CrossRef]

117. Mohammadi, R.; Salehi, M.; Ghaffari, H.; Rohani, A.A.; Reiazi, R. Transfer learning-based automatic detection of coronavirus
disease 2019 (COVID-19) from chest X-ray images. J. Biomed. Phys. Eng. 2020, 10, 559. [CrossRef]

118. Emara, H.M.; Shoaib, M.R.; Elwekeil, M.; El-Shafai, W.; Taha, T.E.; El-Fishawy, A.S.; El-Rabaie, E.S.M.; Alshebeili, S.A.; Dessouky,
M.I.; Abd El-Samie, F.E. Deep convolutional neural networks for COVID-19 automatic diagnosis. Microsc. Res. Technol. 2021, 84,
2504–2516. [CrossRef]

119. Albadr, M.A.A.; Tiun, S.; Ayob, M.; Al-Dhief, F.T.; Omar, K.; Hamzah, F.A. Optimised genetic algorithm-extreme learning machine
approach for automatic COVID-19 detection. PLoS ONE 2020, 15, e0242899. [CrossRef] [PubMed]
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