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Abstract: To properly contrast the Deepfake phenomenon the need to design new Deepfake detection
algorithms arises; the misuse of this formidable A.I. technology brings serious consequences in
the private life of every involved person. State-of-the-art proliferates with solutions using deep
neural networks to detect a fake multimedia content but unfortunately these algorithms appear to
be neither generalizable nor explainable. However, traces left by Generative Adversarial Network
(GAN) engines during the creation of the Deepfakes can be detected by analyzing ad-hoc frequencies.
For this reason, in this paper we propose a new pipeline able to detect the so-called GAN Specific
Frequencies (GSF) representing a unique fingerprint of the different generative architectures. By
employing Discrete Cosine Transform (DCT), anomalous frequencies were detected. The β statistics
inferred by the AC coefficients distribution have been the key to recognize GAN-engine generated
data. Robustness tests were also carried out in order to demonstrate the effectiveness of the technique
using different attacks on images such as JPEG Compression, mirroring, rotation, scaling, addition of
random sized rectangles. Experiments demonstrated that the method is innovative, exceeds the state
of the art and also give many insights in terms of explainability.

Keywords: deepfake detection; Generative Adversarial Networks; multimedia forensics; image forensics

1. Introduction

Artificial Intelligence (AI) techniques to generate synthetic media and their circulation
on the network led to the birth, in 2017, of the Deepfake phenomenon: altered (or created)
multimedia content by ad-hoc machine learning generative models, e.g., the Generative
Adversarial Network (GAN) [1]. Images and videos of famous people, available on
different media like TV and Web, could appear authentic at first glance, but they may be
the result of an AI process which delivers very realistic results. In this context the 96%
of these media are porn (deep porn) [2]. If we think that anyone could be the subject of
this alteration we can understand how a fast and reliable solution is needed to contrast
the Deepfake phenomenon. Most of the techniques already proposed in literature act as a
“black box” by tuning ad-hoc deep architectures to distinguish “real” from “fake” images
generated by specific GAN machines. It seems not easy to find a robust detection method
capable of working in the wild; even current solutions need a considerable amount of
computing power. Let’s assume that any generative process based on GAN, presents an
automated operating principle, resulting from a learning process. In [3], it has been already
demonstrated that it is possible to attack and retrieve the signature on the network’s de-
convolutional layers; in this paper a method to identify any anomaly of the generated
“fake” signal, only partially highlighted in some preliminary studies [4,5] is presented.
The Fourier domain demonstrated to be prone and robust into understanding semantic
at superordinate level [6]. Spatial domain has been recently further investigated by [7–9]
to gain robustness and exploit related biasness [10]. To improve the efficiency, the 8× 8
DCT has been exploited, by employing similar data analysis made in [11,12] and extracting
simple statistics of the underlying distribution [13]. The final classification engine based
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on gradient boosting, properly manages and isolates the GAN Specific Frequencies (GSF),
of each specific architecture, a sort of fingerprint/pattern, outperforming state-of- the-art
methods. In this paper a new “white box” method of Deepfake detection called CTF-DCT
(Capture the Fake by DCT Fingerprint Extraction) is proposed, based on the analysis of the
Discrete Cosine Transform (DCT) coefficients. Experiments on Deepfake images of human
faces proved that a proper signature of the generative process is embedded on the given
spatial frequencies. In particular we stress the evidence, that such kind of images, have
in common global shape and main structural elements allowing to isolate artefacts that
are not only unperceivable but also capable to discriminate between the different GANs.
Finally, the robust classifier is able to demonstrate its generalizing ability in the wild even
on Deepfakes not generated by GAN-engines demonstrating the ability to catch artefacts
related to reenactment forgeries.

The main contributions of this research are the following:

• A new high-performance Deepfake face detection method based on the analysis of the
AC coefficients calculated through the Discrete Cosine Transform, which delivered
not only great generalization results but also impressive classification results with
respect to previous published works. The method does not require computation via
GPU and “hours” of training to perform Real Vs Deepfake classifications;

• The detection method is “explainable” (white-box method). Through a simple esti-
mation of the characterizing parameters of the Laplacian distribution, we are able to
detect those anomalous frequencies generated by various Deepfake architectures;

• Finally, the detection strategy was attacked to simulated situations in the wild. Mirror-
ing, scaling, rotation, addition of random size rectangles, position and color were ap-
plied to the images, also demonstrating the robustness of the proposed method and the
ability to perform well even on video dataset never taken into account during training.

The paper is organized as follows: Section 2 presents the state-of-the-art of Deepfake
generation and detection methods. The proposed approach is described in Section 3.
Section 5, a discussion of GSF is reported. Experimental results, robustness test and
comparison with competing methods are reported in Section 6. Section 7 concludes the
paper with suggestions for future works.

2. Related Works

AI-synthetic media are generally created by techniques based on GANs, firstly in-
troduced by Goodfellow et al. [1]. GANs train two models simultaneously: a generative
model G, that captures the data distribution, and a discriminative model D, able to estimate
the probability that a sample comes from the training data rather than from G. The training
procedure for G is to maximize the probability of D making a mistake thus resulting to a
min-max two-player game.

An overview on Media forensics with particular focus on Deepfakes has been recently
proposed in [14,15].

Five of the most famous and effective architectures in state-of-the-art for Deepfakes
facial images synthesis were taken into account (StarGAN [16], StyleGAN [17], Style-
GAN2 [18], ATTGAN [19] GDWCT [20]) used in our experiments as detailed below.

2.1. Deepfake Generation Techniques of Faces

StarGAN [16], proposed by Choi et al., is a method capable of performing image-
to-image translations on multiple domains (such as change hair color, change gender,
etc.) using a single model. Trained on two different types of face datasets—CELEBA [21]
containing 40 labels related to facial attributes such as hair color, gender and age, and
RaFD dataset [22] containing 8 labels corresponding to different types of facial expressions
(“happy”, “sad”, etc.)—this architecture, given a random label as input (such as hair color,
facial expression, etc.), is able to perform an image-to-image translation operation with
impressive visual result.



J. Imaging 2021, 7, 128 3 of 17

An interesting study was proposed by He et al. [19] with a framework called
AttGAN in which an attribute classification constraint is applied in the latent representa-
tion to the generated image, in order to guarantee only the correct modifications of the
desired attributes.

Another style transfer approach is the work of Cho et al. [20], proposing a group-
wise deep whitening-and coloring method (GDWCT) for a better styling capacity. They
used CELEBA, Artworks [23], cat2dog [24], Ink pen and watercolor classes from Behance
Artistic Media (BAM) [25], and Yosemite datasets [23] as datasets improving not only
computational efficiency but also quality of generated images.

Finally, one of the most recent and powerful methods regarding the entire-face syn-
thesis is the Style Generative Adversarial Network architecture or commonly called
StyleGAN [17], where, by means of mapping points in latent space to an intermediate
latent space, the framework controls the style output at each point of the generation pro-
cess. Thus, StyleGAN is capable not only of generating impressively photorealistic and
high-quality photos of faces, but also offers control parameters in terms of the overall style
of the generated image at different levels of detail. While being able to create realistic
pseudo-portraits, small details might reveal the fakeness of generated images. To correct
those imperfections, Karras et al. made some improvements to the generator (including
re-designed normalization, multi-resolution, and regularization methods) proposing Style-
GAN2 [18] obtaining extremely realistic faces. Figure 1 shows an example of facial images
created by five different generative architectures.

Figure 1. Example of real (a) and deepfake datasets (b) used in our experiments. The CelebA
dataset was used to generate human face images with the StarGAN, AttGAN and GDWCT ar-
chitectures. The FFHQ dataset was used to generate human face images with the StyleGAN and
StyleGAN2 architectures.

2.2. Deepfake Detection Techniques

Almost all currently available strategies and methods for Deepfake detection are
focused on anomalies detection trying to find artefact and traces of the underlying gener-
ative process. The Deepfake images could contain a pattern pointed out by the analysis
of anomalous peaks appearing in the spectrum in the Fourier domain. Zhang et al. [5]
analyze the artefacts induced by the up-sampler of GAN pipelines in the frequency domain.
The authors proposed to emulate the synthesises of GAN artefacts. Results obtained by
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the spectrum-based classifier greatly improves the generalization ability, achieving very
good performances in terms of binary classification between authentic and fake images.
Also Durall et al. [26] presented a method for Deepfakes detection based on the analysis
in the frequency domain. The authors combined high-resolution authentic face images
from different public datasets (CELEBA-HQ data set [27], Flickr-Faces-HQ data set [17])
with fakes (100K Faces project (https://generated.photos/, accessed on 14 February 2021),
this person does not exist (https://thispersondoesnotexist.com/, accessed on 14 February
2021)), creating a new dataset called Faces-HQ. By means of naive classifiers they obtained
effective results in terms of overall accuracy of detection.

Wang et al. [28] proposed FakeSpotter, a new method based on monitoring single
neuron behaviors to detect faces generate by Deepfake technologies. The authors used
in the experiments CELEBA [21] and FFHQ (https://github.com/NVlabs/ffhq-dataset,
accessed on 14 February 2021) images (real datasets of faces) and compared Fakespotter
with Zhang et al. [5] obtaining an average detection accuracy of more than 90% on the
four types of fake faces: Entire Synthesis [18,27], Attribute Editing [16,29], Expression
Manipulation [17,29], DeepFake [30,31].

The work proposed by Jain et al. [32] consists of a framework called DAD-HCNN
which is able to distinguish unaltered images from those that have been retouched or
generated through different GANs by applying a hierarchical approach formed by three
distinct levels. The last level is able to identify the specific GAN model (STARGAN [16],
SRGAN [33], DCGAN [34], as well as the Context Encoder [35]). Liu et al. [36] proposed
an architecture called Gram-Net, where, through the analysis of a global image texture
representations, they managed to create a robust fake image detection. The results of the
experiments, done both with Deepfake (DCGAN, StarGAN, PGGAN, StyleGAN) and real
images (CelebA, CelebA-HQ, FFHQ), demonstrate that this new type of detector delivers
effective results.

Recently, a study conducted by Hulzebosch [37] describes that the CNN solutions
presented till today for Deepfake detection are limited to lack of robustness, generalization
capability and explainability, because they are extremely specific to the context in which
they were trained and, being very deep, tend to extract the underlying semantics from
images. For this reason, in literature new algorithms capable to find the Deepfake content
without the use of deep architectures were proposed. As described by Guarnera et al. [3,38],
the current GAN architectures leaves a pattern (through convolution layers) that charac-
terizes that specific neural architecture. In order to capture this forensic trace, the authors
used the Expectation-Maximization Algorithm [39] obtaining features able to distinguish
real images from Deepfake ones. Without the use of deep neural networks, the authors
exceeded state-of-the-art in terms of accuracy in the real Vs Deepfake classification test,
using not only Deepfake images generated by common GAN architectures, but also testing
images generated by modern FaceApp mobile application.

Differently from the described approaches, in this paper, the possibility to capture
the underlying pattern of a possible Deepfake is investigated extracting the discriminative
features through the DCT transform.

3. The CTF Approach

In [37], Dutch law enforcement experts were tasked with discriminating between
images from the FFHQ dataset and StyleGAN images, which were created starting from
FFHQ. The results reached only the 63% of accuracy while state-of the-art methods [28,38]
are able to deliver a better outcome. Algorithms were used for extracting black-box fea-
tures that likely are not related to the visible domain but are somehow encoding anomalies
strictly dependent on the way Deepfakes are generated. In particular, a refined evalua-
tion of the StyleGAN images, shows that some abnormal patterns are visible in the most
structured part of the images (e.g., skin, hair, etc.). Given such a repetitive pattern, which
would have to be subsisting on the middle bands of the Deepfake image frequency spec-
trum, a frequency-based approach might be able to detect it and describe it. To this end,

https://generated.photos/
https://thispersondoesnotexist.com/
https://github.com/NVlabs/ffhq-dataset
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the CTF approach will take place by leveraging more than a decade of JPEG compres-
sion pipeline studies employing DCT block-based processing, which is effectively used
for many computer vision and image forensics tasks not strictly related to compression
itself [11,12,40–42].

The CTF approach transform and analyse images on the DCT domain in order to
detect the most discriminant information related to the pattern shown in Figure 2 which is
typical of the employed Generative Model (e.g., GAN).

Figure 2. Example of image generated by StyleGAN properly filtered to highlight patterns resulting
from the generative process.

Let I be a digital image. Following the JPEG pipeline, I is divided into non-overlapping
blocks of size 8 × 8. The Discrete Cosine Transform (DCT) is then applied to each
block, formally:

F[u, v] =
1
4

C(u)C(v)

[
7

∑
x=0

7

∑
y=0

I[x, y]cos(a)cos(b)

]
(1)

where a = (2x+1)uπ
16 , b = (2y+1)vπ

16 , C(u) =
{ 1√

2
u = 0

1 u > 0
and C(v) =

{ 1√
2

v = 0
1 v > 0

.

For each 8× 8 block, the 64 elements F[u, v] form the DCT coefficients. They are sorted
into a zig-zag order starting from the top-left element to the bottom right (Figure 3). The
DCT coefficient at position 0 is called DC and represents the average value of pixels in the
block. All others coefficients namely AC, corresponds to specific bands of frequencies.

Figure 3. GSF that identify the generative architectures. (a) Zig-zag order after DCT transform.
(b) DCT 8× 8 frequencies.

Given all the DCT transformed 8× 8 blocks of I, it is possible to assess some statistics
for each DCT coefficient. By applying evidence reported in [13], the DC coefficient can be
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modelled with a Gaussian distribution while the AC coefficients were demonstrated to
follow a zero-centred Laplacian distribution described by:

P(x) =
1

2β
exp

(
−|x− µ|

β

)
(2)

with µ = 0 and β = σ/
√

2 is the scale parameter where σ corresponds to the standard
deviation of the AC coefficient distributions. The proposed approach is partially inspired
by [11] where a GMM (Gaussian Mixture Model) over different β values has been properly
adopted for scene classification at superordinate level.

An accurate estimation of such β values for each coefficient and involved GAN-engine,
is crucial for the purpose achievement. Figure 4 graphically summarizes the statistical trend
of the β-values of each involved datasets showing empirically the intrinsic discriminative
power devoted to distinguish almost univocally images generated by GAN-engines or
picked-up from real datasets. Let ~β I = {β I1 , β I2 , . . . , β IN} with N = 63 (DC coefficient is
excluded) the corresponding feature vector of the image I. We exploited related statistics on
different image-datasets DTg with g = {StarGAN, AttGAN, GDWCT, StyleGAN, StyleGAN2,
CelebA, FFHQ}.

For the sake of comparisons in our scenario we evaluated pristine images gener-
ated by StarGAN [16], AttGAN [19], GDWCT [20], StyleGAN [17], StyleGAN2 [18], and
genuine images extracted by CelebA [21] and FFHQ. E.g., DTStyleGAN represents all the
available images generated by StyleGAN engine. For each image-set DTg let’s consider the
following representation:

βDTg =


~β1
~β2
...

~β|DTg |

 =


β1,1 β1,2 · · · β1,63
β2,1 β2,2 · · · β2,63

...
...

. . .
...

β|DTg |,1 β|DTg |,2 · · · β|DTg |,63

 (3)

where |.| is the number of images in DTg. For sake of simplicity, in the forthcoming notation
all dataset DTg have been selected to have the same size |DTg| = K. Note that βDTg have
been normalised w.r.t. each column. To extract GSF we first computed the distance among
the involved AC distributions modelled by βDTg for each dataset. We computed a χ2

distance as follows:

χ2(βDTi , βDTj) =
K

∑
r=1

(βDTi [r, c]− βDTj [r, c])2

βDTj [r, c]
with c = 1, . . . , 63 (4)

where i, j ∈ g, i 6= j, c is the column which corresponds to the AC coefficient and r are the
rows in (3) that represents all ~β I features. The distance χ2(βDTi , βDTj) is a vector with size
of 63. Finally, it is possible to define the GAN Specific Frequency (GSF) as follows:

GSFDTi ,DTj = argmax
c

K

∑
r=1

(
βDTi [r, c]− βDTj [r, c]

)2

βDTj [r, c]
(5)

where, i, j ∈ g, i 6= j. GSF allow to realize a one-to-one evaluation between image sets.
Practically, the most discriminative DCT frequency is selected among two datasets in

a greedy fashion and, as proven by experiments, there is no need to add further computa-
tional steps (e.g., frequency ranking/sorting, etc.). In Figure 5c, GSF computed for a set
of pair of image-sets, are highlighted just to provide a first toy example where 200 images
(K = 200) for each set have been employed. Specifically AttGAN, StarGAN and GDWCT
were compared with the originating real image-set (CelebA) and for the same reason
StyleGAN and StyleGAN2 were compared with FFHQ.
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Figure 4. Plot of β statistics of each involved dataset. The average β value for each i-th coefficient is
reported. (a) Shows the average β trend of all datasets (real and deepfake); (b) Shows the average β

trend of StyleGAN and StyleGAN2 compared to the real image dataset used for their creation (FFHQ);
(c) Shows the average β trend of StarGAN, AttGAN and GDWCT compared to the real image dataset
used for their creation (CelebA). For each plot, the abscissa axis represents the 64 coefficients of the
8× 8 block, while the ordinate axis are the respective inferred β values (in our case the average of the
β values computed for all images of the respective datasets).

The β values as described in the experiments, are very discriminative when it comes to
deepfake detection. Figure 4 shows the average trend of β of all images from the respective
Real and Deepfake datasets. It is interesting to analyze the trend of β of the Deepfake
images compared to the statistics of the Real dataset used for the generation task. Figure 4c
shows StarGAN, AttGAN, and GDWCT Vs CelebA. All DCT coefficients are sorted in
terms of JPEG zigzag order as shown in Figure 3a. It is worth noting that if we consider
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even only one of the β values we can roughly establish if an image is a deepfake simply by
properly thresholding specific frequencies according to the definition of GSF (Equation (5)).
Please note that the discriminative power of the GSFs, even if in some sense they bring
energies due to the involved DCT frequencies as demonstrated by the detection results, are
not fully dependent by the involved resolution.

Figure 5. CTF-DCT approach: (a) Dataset used for our experiments; (b) Discrete Cosine Transform
(DCT) of a given image at each 8 × 8 blocks; (c) GAN Specific Frequencies (GSF) that identify
involved GAN architectures.

4. Datasets Details

Two datasets of real face images were used for the employed experimental phase:
CelebA and FFHQ. Different Deepfake images were generated considering StarGAN,
GDWCT, AttGAN, StyleGAN and StyleGAN2 architectures. In particular, CelebA images
were manipulated using pre-trained models available on Github, taking into account
StarGAN, GDWCT and AttGAN. Images of StyleGAN and StyleGAN2 created through
FFHQ were downloaded ad detaled in the following:

• CelebA (CelebFaces Attributes Dataset): a large-scale face attributes dataset with more
than 200 K celebrity images, containing 40 labels related to facial attributes such as
hair color, gender and age. The images in this dataset cover large pose variations and
background clutter. The dataset is composed by 178× 218 JPEG images.

• FFHQ (Flickr-Faces-HQ): is a high-quality image dataset of human faces with vari-
ations in terms of age, ethnicity and image background. The images were crawled
from Flickr and automatically aligned and cropped using dlib [43]. The dataset is
composed by high-quality 1024× 1024 PNG images.

• StarGAN is able to perform Image-to-image translations on multiple domains using a
single model. Using CelebA as real images dataset, every image was manipulated by
means of a pre-trained model (https://github.com/yunjey/stargan, accessed on 14
February 2021) obtaining a final resolution equal to 256× 256.

• GDWCT is able to improve the styling capability. Using CelebA as real images dataset,
every image was manipulated by means of a pre-trained model (https://github.com/
WonwoongCho/GDWCT, accessed on 14 February 2021) obtaining a final resolution
equal to 216× 216.

• AttGAN is able to transfers facial attributes with constraints. Using CelebA as real
images dataset, every image was manipulated by means of a pre-trained model
(https://github.com/LynnHo/AttGAN-Tensorflow, accessed on 14 February 2021)
obtaining a final resolution equal to 256× 256.

• StyleGAN is able to transfers semantic content from a source domain to a target domain
characterized by a different style. Images have been generated considering FFHQ as
dataset in input with 1024× 1024 resolution (https://drive.google.com/drive/folders/
1uka3a1noXHAydRPRbknqwKVGODvnmUBX, accessed on 14 February 2021).

• StyleGAN2 improves STYLEGAN quality with the same task. Images have been
generated considering FFHQ as dataset in input with 1024× 1024 resolution (https:

https://github.com/yunjey/stargan
https://github.com/WonwoongCho/GDWCT
https://github.com/WonwoongCho/GDWCT
https://github.com/LynnHo/AttGAN-Tensorflow
https://drive.google.com/drive/folders/1uka3a1noXHAydRPRbknqwKVGODvnmUBX
https://drive.google.com/drive/folders/1uka3a1noXHAydRPRbknqwKVGODvnmUBX
https://drive.google.com/drive/folders/1QHc-yF5C3DChRwSdZKcx1w6K8JvSxQi7
https://drive.google.com/drive/folders/1QHc-yF5C3DChRwSdZKcx1w6K8JvSxQi7
https://drive.google.com/drive/folders/1QHc-yF5C3DChRwSdZKcx1w6K8JvSxQi7
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//drive.google.com/drive/folders/1QHc-yF5C3DChRwSdZKcx1w6K8JvSxQi7, ac-
cessed on 14 February 2021).

For all the carried out experiments, 3000 Deepfake images for each GAN architecture
and 3000 from CelebA and FFHQ were collected and divided into training and test set as
will be reported in experimental dedicated Sections. Figure 1 shows some examples of the
employed real and Deepfake images.

5. Discussion on GSF

Although differentiating between a Deepfake and a real image could be easy, given
the high accuracy values demonstrated by state-of-the-art methods [44], it becomes difficult
when the test is carried out on fake images obtained from a specific set of real images: for
instance differentiating between FFHQ images and StyleGAN ones, which are generated
from FFHQ images, is more difficult than differentiating StyleGAN vs. CelebA images.
As a matter of fact, state-of-the-art methods like Fakespotter [28] employs for training,
mixed sets of Deepfake and real images. Results are then unbalanced by the extremely-
easy-to-spot-difference like CelebA vs. StyleGAN. This can be demonstrated by means of
GSF analysis.

Through GSF it is possible to perform a one-to-one test between sets of images. This
was carried out specifically for the harder case as described before: taking 200 images
for each set, GSF was calculated for each pair of image sets, whose values obtained are
shown in Figure 3b. In particular, AttGAN, StarGAN and GDWCT were compared with
the starting real images (CelebA) and for the same reason StyleGAN and StyleGAN2 were
compared with FFHQ.

Torralba et al. [45] demonstrated that scenes semantic-visual components are captured
precisely with analogous statistics on spectral domain used also to build fast classifiers
of scenes [11]. In this sense, the comparison between images that represent close-ups
of faces showing the some overall visual structure raising extremely similar statistical
characteristics of AC coefficients and their β values. This allows the GSF analysis to focus
on the unnatural anomalies introduced by the convolutional generative process typical of
Deepfakes. To demonstrate the discriminative power of the GSF a simple binary classifier
(logistic regression) was trained using the β (e.g., that corresponds the set of values of a
given column/coefficient in Equation (3)) of the corresponding GSF as unique feature.

For all the experiments carried out, the number of collected images has been equally
set considering K = 3000. In particular the classifier was trained using only the 10% of the
entire dataset, while the remaining part was used as test set. For each binary classification
test, the simple classification solution obtained the results shown in Figure 6. Results
demonstrated that Deepfakes are easily detectable by just looking at the β value of the GSF
for that specific binary test. This is empirically found to be discriminative (wider range of
values) than expected on natural images, given the semantic context of facial images. This
finding is what state-of-the-art is exploiting with much more complex and computational
intensive solutions. For instance, Fakespotter [28], at a first step compares real against fake
images and finds these unnatural frequencies with an ad-hoc trained CNN. As a matter of
fact, frequencies found are different for forgeries made with Photoshop which certainly do
not bear traces of convolution and for this reason they are easily discriminated from the
Deepfake images.

As already stated, the combination of different resolution and frequency bands image-
sets is the major problem encountered in the state of the art methods, while the most
problematic issue is differentiating the original images from the transformed Deepfake.
Let’s take into account FFHQ vs. STYLEGAN: a task in which even the human being had
difficulties [37]. Applying GSF analysis among all involved proper datasets, we obtain
impressive generalization results as reported in Figure 7. Further demonstration of the
importance of the GSF will be visual. In addition to the anomalies visually identified in
Figure 8, in Guarnera et al. [4] the authors already identified some strange components in
the Fourier spectrum. Given an image from a specific image-set, after having computed the

https://drive.google.com/drive/folders/1QHc-yF5C3DChRwSdZKcx1w6K8JvSxQi7
https://drive.google.com/drive/folders/1QHc-yF5C3DChRwSdZKcx1w6K8JvSxQi7
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GSF (Figure 5), it is possible for sake of explainability, to apply the following amplification
process: to multiply in the DCT domain each DCT coefficient different from the GSF by
a value k1 (with 0 < k1 ≤ 1) while the coefficient corresponding to the GSF by a value k2
(with k2 > 1). Figure 8 shows an example of such amplification procedure with k1 = 0.1
and k2 = 100. This operation will create an image where the GSF is amplified. Figure 8
shows that the original Fourier Spectrum and the amplified one share the same abnormal
frequency appearance. Thus, GSF becomes an explanation of those anomalies with a clear
boost of forensics analysis.

Figure 6. Average Accuracy results (%) obtained for the binary classification task employing only the
GSF. 700 images were employed for testing, 200 images for training, 5-fold cross validated, classes
are balanced.

Figure 7. GSF and classification accuracy results (%) obtained for each binary classification task.

It has to be noted that the GSF approach described in this section is a great instrument
to white-box GAN-generated image processing. A GSF is able to identify a set of GAN-
generated images. On the other hand, it is not enough to properly being employed in the
wild or against fakes not generated by neural approaches. For this reason, in the following
section, we “finalize” the approach by presenting a more robust and complete feature
vector but, on the other hand, we will lose explainability.

Finalizing the CTF Approach

Given the ability of the GSF to make one-to-one comparisons even between image-sets
of GANs it is possible to use it to resolve further discrimination issues. Figure 5 shows that
the two StyleGANs actually have the same GSFStyleGAN,FFHQ = GSFStyleGAN2,FFHQ = 63,
while GSFStyleGAN,StyleGAN2 = 54 was obtained (Figure 7). Also upon this GSF it is possible
to train a classifier that quickly obtains an accuracy value in the binary test between
StyleGAN and StyleGAN2 close to 99%.

The GSF analysis can be exploited to give explainability to unusual artifacts and
behaviors that appear in the Fourier domain of Deepfakes. Obviously, using only the
corresponding β to GSF can be reductive for a scenario in the wild and this is the reason
why the CTF approach will be completed by means of a robust classifier which will be
outlined in the next section. Instead of using only the corresponding β to the GSF, it will
employ a feature vector with all 63 β, consequently used as input to a Gradient Boosting
classifier [46] and tested in a noisy context that includes a number of plausible attacks on
the images under analysis. Gradient Boosting was selected as the best classifier for data and
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the following hyper-parameters were selected by means of a 10% of the dataset employed
as validation set. We selected the following hyper parameters: number-of-estimators = 100,
learning-rate = 0.6, maxdepth = 2.

The robust classifier thus created, fairly identify the most probable GAN from which
the image has been generated, providing hints for “visual explainability”. By considering
the growing availability of Deepfakes to attack people reputation such aspects become
fundamental to assess and validate forensics evidence. All the employed data and code
will be publicly available after the review process at a public link.

(a) (b) (c)

Figure 8. Abnormal frequencies inspection. (a) Image example from the StarGAN dataset; (b) Fourier
Spectra of the input image (a); (c) Abnormal frequency shown by means of GSF amplification.

6. Experimental Results

In this section experimental results are presented. Primarily, to finalize the CTF
approach, a robust classifier was trained and tested by means of several attacks on images
and consequently tested in a different scenario, namely the FaceForensics++ dataset of
Deepfake videos [30]. The above-mentioned deepfake dataset is used only during the
testing phase to classify real Vs deepfake. 3000 real and fake images were collected to
train the “robust classifier” for the validation, employing only the 10% of the entire dataset
while the remaining part was used as test set. Multiple attack types augmented the dataset;
Figure 9 provides examples of images after each attack. Cross-validation was carried out.

6.1. Testing with Noise

All the images collected in the corresponding DT have been put through different
kinds of attacks as addition of a random size rectangle, position and color, Gaussian blur,
rotation and mirroring, scaling and various JPEG Quality Factor compression (QF), in order
to demonstrate the robustness of the CTF approach.

As shown in Table 1 this type of attacks do not destroy the GSF obtaining high
accuracy values.

Gaussian Blur applied with different kernel sizes (3× 3, 9× 9, 15× 15) could destroy
different main frequencies in the images. This filtering preserves low frequencies by almost
totally deleting the high frequencies, as the kernel size increases. It is possible to see in
Table 1, that the accuracy decreases at increasing of the kernel size. This phenomenon, is
particularly visible for images generated by AttGAN, GDWCT and StarGAN which have
the lowest resolution.
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Figure 9. Examples of ATTGAN, GDWCT, STARGAN, STYLEGAN, STYLEGAN2 images in which
we applied different attacks: Random Square, Gaussian Blur, Rotation, Mirror, Scaling and JPEG
Compression. They were also applied in the real dataset (CelebA and FFHQ).

Several degrees of rotation (45, 90, 135, 180, 255) were considered since they can modify
the frequency components of the images. Rotations with angles of 90, 180, and 270 do
not alter the frequencies because the [x,y] pixels are simply moved to the new [x′,y′]
coordinates without performing any interpolation function, obtaining high values of
detection accuracy. On the other hand, when considering different degrees of rotation, it is
necessary to interpolate the neighboring pixels to get the missing ones. In this latter case,
new information is added to the image that can affect the frequency information. In fact,
considering rotations of 45, 135, 225 degree, the classification accuracy values decrease;
except for the two StyleGANs for the same reason described for the Gaussian filter (i.e.,
high resolution).

The mirror attack reflects the image pixels along one axis (horizontal, vertical and both).
This does not alter image frequencies, obtaining extremely high accuracy detection values.

The resizing attacks equal to −50% of resolution causes a loss of information, hence,
already small images tend to totally lose high-frequency components presenting a behavior
similar to low-pass filtering; in this case accuracy values are inclined to be low. Vice versa,
a resizing of +50% doesn’t destroy the main frequencies obtaining a high classification
accuracy values.
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Table 1. Percentage of Precision, Recall, F1-score and accuracy obtained in the robustness test. “Raw Images” shows the results without the attack process. For the “Real” column
the CelebA and FFHQ datasets were considered. Different attacks were carried out in the datasets: Random square; Gaussian filter with different kernel size (3× 3, 9× 9, 15× 15);
Rotations with degree = {45, 90, 135, 180, 225}; Mirror with Horizontal (H), Vertical (V) and Both (B) ways; Scaling (+50%,−50%); JPEG Compression with different Quality Factor
(QF = {1, 50, 100}).

Real AttGAN GDWCT StarGAN StyleGAN StyleGAN2 Overall

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Accuracy

Raw Images 99 97 98 99 100 99 98 98 98 99 100 100 99 98 99 98 100 99 99

Random Square 98 94 96 90 96 93 92 89 91 100 98 99 98 99 98 99 99 99 96

Gaussian
Filter

3 × 3 98 95 96 83 88 86 89 92 91 92 86 89 97 98 98 99 99 99 93
9 × 9 98 99 98 62 59 60 70 79 74 59 53 56 99 98 99 98 99 98 81

15 × 15 100 97 98 58 64 61 72 64 68 55 53 54 98 99 98 95 100 97 80

Rotation

45◦ 97 93 95 85 82 83 92 98 95 84 84 84 97 99 98 99 98 98 92
90◦ 98 99 98 95 99 97 98 93 95 100 99 99 99 98 98 99 99 99 98

135◦ 95 96 96 85 83 84 97 94 96 83 86 85 96 95 96 96 97 97 92
180◦ 98 94 96 95 100 97 97 95 96 99 100 99 98 99 99 100 99 99 98
225◦ 96 95 95 88 85 87 96 96 96 86 89 88 96 97 97 97 97 97 93

Mirror
H 99 96 98 99 100 99 98 99 98 99 100 99 99 99 99 100 100 100 99
V 99 96 98 99 100 99 97 99 98 99 100 100 99 99 99 100 100 100 99
B 99 94 97 98 100 99 97 99 98 99 100 100 99 99 99 100 100 100 99

Scaling +50% 99 98 99 94 95 95 95 93 94 98 99 99 99 99 99 99 100 99 97
−50% 74 95 84 77 66 71 74 72 73 81 77 79 82 85 84 90 81 85 80

JPEG
1 78 69 73 63 65 64 59 67 63 59 57 58 78 83 80 84 80 82 70
50 93 95 94 98 99 98 87 80 83 84 89 86 88 88 88 90 89 89 90

100 99 99 99 100 99 99 98 98 98 99 100 99 99 99 99 99 99 99 99



J. Imaging 2021, 7, 128 14 of 17

Finally, different JPEG compression quality factors were applied (QF = 1, 50, 100). As
expected in Table 1, a compression with QF = 100 does not affect the results. The overall
accuracy begins to be affected as the QF decreases, among other things, destroying the DCT
coefficients. However, at QF = 50 the mid-level frequencies are still preserved and the
results maintain a high level of accuracy. This is extremely important given that this level
of QF is employed by the most common social platforms such as Whatsapp or Facebook,
thus demonstrating that the CTF approach is extremely efficient in real-world scenarios.

6.2. Comparison and Generalization Tests

The CTF approach is extremely simple, fast, and demonstrates a high level of accu-
racy even in real-world scenarios. In order to better understand the effectiveness of the
technique, a comparison with state-of-the-art methods was performed and reported in
this section. The trained robust classifier was compared to the most recent work in the
literature and in particular Zhang et al. [5] (AutoGAN), Wang et al. [28] (FakeSpotter) and
Guarnera et al. [38] (Expectation-Maximization) were considered for the use of a few GAN
architectures in common with the analysis performed in this paper: StyleGAN, StyleGAN2,
StarGAN. Table 2 shows that the CTF approach achieves the best results with an unbeatable
accuracy of 99.9%.

Table 2. Comparison with state-of-the-art methods [5,28,38]. Classification of Real images (CelebA
and FFHQ) vs. Deepfake images. Accuracy values (%) of each classification task are reported.

StarGAN StyleGAN StyleGAN2

AutoGAN [5] 65.6 79.5 72.5
FakeSpotter [28] 88 99.1 91.9

EM [38] 90.55 99.48 99.64
CTF (our) 99.9 100 100

Another comparison was made on the detection of StyleGAN and StarGAN with
respect to [38,44]. The obtained results are shown in the Table 3 in which the average
classification values of each classification task are reported.

A specific discussion is needed for testing the FaceForensics++ dataset [30] which is a
challenging dataset of fake videos of people speaking and acting in several contexts. The
fake videos were created by means of four different techniques (Face2Face [47] among
them) on videos taken from YouTube. By means of OpenCV’s face detectors, cropped
images of faces were taken from fake videos of FF++ (with samples from all four categories,
at different compression levels) and a dataset of 3000 images with different resolutions
(minresolution = 162× 162 px, maxresolution = 895× 895 px). The CTF approach was em-
ployed to construct the β feature vector computed on the DCT coefficients and the robust
classifier (trained in the Section 6.1), was used for binary classification in order to perform
this “in the wild” test. We emphasize that the latter datasets were only used in the testing
phase with the robust classifier. Since the classifier detected FaceForensics++ images as
well as StyleGAN images, we also tried to calculate the GSF by comparing FaceForensics++
images with FFHQ obtaining a value of 61 which is extremely close to the GSF of Style-
GANs. This leads to the explanation that the GSFs are also dependent not only on the
generative process but also to the reenactment phase done on images. The reenactment is
done analytically in Face2Face and trained in StyleGANs as a part of the model (similarly
to Face2face but as a cost function).

The results obtained on FaceForensics++ are reported in Table 3 showing how the
CTF approach is an extremely simple and fast method capable of beating the state-of-the-
art even on datasets on which it has not been trained and being able to catch not only
convolutional artefacts but also those created by reenactment phase which is an important
part for the most advanced Deepfake techniques.
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Table 3. Comparison with state-of-the-art methods [38,44]. Classification of Real images (CelebA
and FFHQ) vs. Deepfake images. The CTF approach was tested and compared also considering
the dataset of Deepfake video’s FaceForensics++ (FF++). Average Precision values (%) of each
classification task are reported.

StyleGAN StarGAN FF++

Wang [44] 96.3 100 98.2
EM [38] 99 93 98.8

CTF (our) 99.9 99.9 99.9

7. Conclusions

In this paper, the CTF approach was presented as a detection method for Deepfake im-
ages. The approach is extremely fast, explainable, and does not need intense computational
power for training. By exploiting and analyzing the overall statistics of the DCT coefficients
it is possible to discriminate among all known GAN’s by means of the GAN Specific
Frequency band (GSF). The GSF has many interesting properties demonstrated through
empirical and visual analysis; among others it is possible to give some explainability to the
underlying generation process, especially for forensics purposes. In order to achieve higher
accuracy values, all frequency bands must be taken into account and the CTF approach is
finalized by means of a G-boost classifier which demonstrated to be robust to attacks and
able to generalize even in a dataset of Deepfake videos (FaceForensics++) not used during
training. Further investigation could be carried out on GSF frequencies in order to detect
not only GAN artefacts but also information coming from the reenactment phase. Finally,
the CTF approach could give useful suggestions for the GSF analysis (explainability, etc.)
in new scenarios with more challenging modalities (attribute manipulation, expression
swap, etc.) and media (audio,video).
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