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Abstract: Visual-semantic embedding (VSE) networks create joint image–text representations to map
images and texts in a shared embedding space to enable various information retrieval-related tasks,
such as image–text retrieval, image captioning, and visual question answering. The most recent
state-of-the-art VSE-based networks are: VSE++, SCAN, VSRN, and UNITER. This study evaluates
the performance of those VSE networks for the task of image-to-text retrieval and identifies and
analyses their strengths and limitations to guide future research on the topic. The experimental
results on Flickr30K revealed that the pre-trained network, UNITER, achieved 61.5% on average
Recall@5 for the task of retrieving all relevant descriptions. The traditional networks, VSRN, SCAN,
and VSE++, achieved 50.3%, 47.1%, and 29.4% on average Recall@5, respectively, for the same task.
An additional analysis was performed on image–text pairs from the top 25 worst-performing classes
using a subset of the Flickr30K-based dataset to identify the limitations of the performance of the
best-performing models, VSRN and UNITER. These limitations are discussed from the perspective of
image scenes, image objects, image semantics, and basic functions of neural networks. This paper
discusses the strengths and limitations of VSE networks to guide further research into the topic of
using VSE networks for cross-modal information retrieval tasks.

Keywords: visual-semantic embedding network; multi-modal deep learning; cross-modal; informa-
tion retrieval

1. Introduction

Visual-semantic embedding (VSE) networks jointly learn representations of images
and texts to enable various cross-modal information retrieval-related tasks, such as image–
text retrieval [1–4], image captioning [5–8], and visual question answering (VQA) [4,9,10].
Although great progress has been made in the field of VSE networks for information
retrieval, cross-modal information retrieval remains a challenging problem because of the
abundant information contained in visual semantics [3].

The state-of-the-art VSE networks are: VSE++ [1], SCAN [2], VSRN [3], and UNITER [4].
To tackle cross-modal information retrieval using VSE-based networks, Faghri et al. [1] pro-
posed a hard negative loss function as part of VSE++, for the network to learn to make the
relevant target closer to the query than other items in the corpus. Lee et al. [2] applied the
stacked cross attention (SCAN) mechanism to align image regions and words for improving
VSE networks. Li et al. [3] proposed the visual semantic reasoning network (VSRN) for ex-
tracting high-level visual semantics with the aid of the graph convolution network (GCN) [11].
Chen et al. [4] introduced a pre-trained network with the transformer [12], namely the univer-
sal image-text representation (UNITER), to unify various cross-modal tasks such as VQA and
image–text matching.

Existing literature on VSE networks provides an evaluation of the performance of
these networks on benchmark datasets such as MSCOCO [13] and Flickr30K [14], but to the
best of the authors’ knowledge, there are no papers that provide an in-depth investigation
of the performance of the methods and their limitations. Some of the known limitations

J. Imaging 2021, 7, 125. https://doi.org/10.3390/jimaging7080125 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-2853-2108
https://doi.org/10.3390/jimaging7080125
https://doi.org/10.3390/jimaging7080125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7080125
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7080125?type=check_update&version=1


J. Imaging 2021, 7, 125 2 of 15

are that the network architectures of VSE++ and SCAN have not been specifically designed
to extract high-level visual semantics [3]. Additionally, VSRN lacks a suitable attention
mechanism [4] to align the image and text in the same latent space, and UNITER requires
large amounts of data for pre-training [15]. However, it is important to understand the
limitations of these networks in order to devise strategies for mitigating these limitations
when developing new and improved VSE networks and/or when extending the capabil-
ities of existing ones. Therefore, this study aims to identify, investigate, and classify the
limitations of state-of-the-art VSE networks (VSE++, SCAN, VSRN, and UNITER) when
they are applied to information retrieval tasks.

This paper is organised as follows. Section 2 provides an overview of VSE networks.
Section 3 discusses the dataset, evaluation measures, and experiment methodologies.
Section 4 presents the results of VSE++, SCAN, VSRN, and UNITER, summarises the
limitations of VSE networks, and discusses their strengths and limitations to guide further
research. Section 5 provides a conclusion and future work.

2. Related Methods

VSE networks aim to align representations of relevant images and descriptions in the
same latent space for cross-modal information retrieval. As shown in Figure 1, a typical
VSE network embeds features of image regions of interest (ROIs) and word vectors of de-
scriptions. Where ROIs are analysed by object detection models [16–18], faster R-CNN [16]
is commonly used by VSE networks, including VSE++, SCAN, VSRN, and UNITER.

For image-to-text retrieval, the VSE network finds the most relevant descriptions to
the image query by ranking the similarity scores between the image query’s embedding
and a set of description embeddings. For text-to-image retrieval, the VSE network finds
the most relevant images to the description query by ranking the similarity scores between
the description query’s embedding with a set of image embeddings.

Figure 1. Flowchart illustrating the two-stage process of VSE networks (VSE++, SCAN, PFAN++,
VSRN, and UNITER) when applied to the task of information retrieval.

In the literature, VSE++ [1] was a milestone for VSE networks. It deployed a fully
connected neural network to extract image features of ROIs obtained by a faster R-CNN [16]
and a gated recurrent unit (GRU) network [19] to embed textual features. In addition,
online hard-negative mining was proposed to improve the network’s convergence of this
joint-embedding space [1]. In particular, the hardest negative triplet loss (MH) function
defined in Formula (1) was used in the network training phase.

lMH(i, d) = max
d̂

[α + s(i, d̂)− s(i, d)]+ + max
î

[α + s(d, î)− s(i, d)]+ (1)

where α is a constant parameter of margin, and [x]+ ≡ max(x, 0). Let i and d denote
an image and its relevant (i.e., corresponding) description, respectively. Let d

′
denote a

description irrelevant to image i, and i
′

denote an image irrelevant to description d. Let
s(i, d) be the similarity score between a relevant image i and description d; s(i, d̂) be the
similarity score of an image i and an irrelevant description d

′
; and s(d, î) be the similarity

score of a description d and an irrelevant image i
′
. Given a relevant image–description pair
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(i, d), the result of the function only takes the maximum values of irrelevant pairs s(i, d
′
)

and s(d, î). MH loss avoids local minima because it mainly focuses on the hardest negative,
the winner takes all gradients [1].

Attention-based models have been exploited to improve the performance of VSE++.
SCAN [2] was proposed to emphasise salient regions and keywords for the alignment when
building the embedding space. The importance of each image region is learned based on the
similarity between individual attended sentence word vectors and image region features.
Wang et al. [15] proposed the position attention network (PFAN++) that utilises the position-
focused attention module to enhance image feature representations of visual semantics.
Recently, the GCN has also been utilised in VSE networks by VSRN [3]. VSRN [3] was
proposed to explore object spatial relationships in an image to strengthen image feature
representations. After identifying ROIs in the image, the relationship between each region
is learned using (2) for feature enhancement.

R = ϕ(V)Tφ(V) (2)

where R represents the correlation between a set of image features denoted as a matrix V,
the weight parameters ϕ and φ can be learnt through back propagation. Then, the residual
connection to the GCN is added for enhancement based on Formula (3).

V∗ = Wr(RVWg) + V (3)

where Wg is the weight matrix of the GCN layer, Wr is the weight matrix of the residual
structure, and R is the affinity matrix from Formula (2), so the output V∗ is the relation-
enhanced representation of image regions. In addition, VSRN further connected the output
of GCN with a GRU [19] for global visual semantic reasoning.

The transformer architecture is emerging in VSE networks since it has achieved great
success in natural language processing [12]. UNITER [4] adopts a transformer model for
joint multi-modal embedding learning. The model of UNITER was pre-trained with four
tasks, including masked language modeling (MLM), masked region modeling (MRM),
image–text matching (ITM), and word–region alignment (WRA), on large amounts of data.
These tasks facilitate the creation of a generalisable embedding space with contextual
attention on both image and textual features as well as modeling their joint distribution.

3. Materials and Methods

Image-to-text retrieval refers to the task of retrieving relevant image descriptions when
given an image as a query. This section describes two experiments. Experiment 1 evalu-
ates the performance of state-of-the-art VSE networks (VSE++ [1], SCAN [2], VSRN [3],
and UNITER [4]) for the task of image-to-text retrieval using the Flickr30k dataset. Experi-
ment 2 provides a limitation analysis of the performance of two networks, VSRN [3] and
UNITER [4]. Note that for experiment 2, VSRN and UNITER were selected because they
outperformed other networks based on the results of experiment 1 (Section 4.1) and because
recent comparisons found in the literature [3,4] also show those to be the best-performing
VSE networks.

3.1. Dataset and VSE Network Preparation

Flickr30K [14], a benchmark dataset that is typically used for evaluating the perfor-
mance of deep learning models, was utilised for the experiments. Every image in the
Flickr30K dataset is associated with five relevant textual descriptions, as shown in Figure 2.
Flickr30K was split into training, validation, and test sets containing 29,000, 1014, and 1000
images, respectively [7].
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Figure 2. Image example of Flickr30K. One image has five relevant textual descriptions.

For a fair comparison of VSE++, SCAN, VSRN, and UNITER, the following adapta-
tions were made. For VSE++ [1], the backbone of the faster R-CNN object detection method
was changed from VGG19 [20] to ResNet-101 [21] to be consistent with SCAN, VSRN,
and UNITER. For SCAN [2], image-to-text LogSumExp (i-t LSE) pooling was adopted
because it was found to be the most suitable model setting for image-to-text attention
models when tested on Flickr30K [2]. UNITER’s image–text matching (ITM) model was
selected for the task. No adaptations were made to VSRN [3], or to UNITER’s ITM model.
Note that UNITER’s [4] ITM model has been pre-trained on four large datasets, namely,
MS COCO [13], Visual Genome [22], Conceptual description [23], and SBU captions [24].
VSE++, SCAN, and VSRN have not been pre-trained on other datasets.

3.2. Performance Evaluation Measures

The measures adopted for evaluating the image–text retrieval performance of the
VSE networks are Recall, Precision, F1-score, and interpolated Precision–Recall PR curves.
These are described below.

Recall is the percentage of relevant textual descriptions retrieved over the total number
of textual descriptions relevant to the query. Recall is computed using (4).

Recall =
Total number o f relevant textual descriptions retrieved

Total number o f relevant textual descriptions
(4)

Precision is a percentage of relevant textual descriptions retrieved over the total
number of textual descriptions retrieved. Precision is computed using (5).

Precision =
Total number o f relevant textual descriptions retrieved

Total number o f textual descriptions retrieved
(5)

Fβ-score combines the results of Recall and Precision using (6):

Fβ =
(β2 + 1)P ∗ R

β2(P + R)
(6)

The Fβ-score can be adjusted to allow for weighting Precision or Recall more highly.
As the importance of Recall and Precision is equal in the image–text retrieval task, the ex-
periment sets the parameter β = 1 as shown in (7):

F1 =
2 ∗ P ∗ R

P + R
(7)
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A PR curve is a plot of the Precision (y-axis) and the Recall (x-axis) for different
thresholds. An interpolated PR curve [25] shows Precision (P) interpolated for each
standard Recall (R) level as shown in (8).

R ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. (8)

Specifically, P(Rj), the maximum Precision at any Recall between the jth and (j + 1)th
level is taken to interpolate for Rj, shown in (9).

P(Rj) = max
Rj<R<Rj+1

P(R). (9)

3.3. Experiment 1 Methodology for the Comparison of VSE Networks for Image-to-Text Retrieval

Experiment 1 compares the image-to-text retrieval performance of VSE++, SCAN,
VSRN, and UNITER for 1000 image queries from Flickr30K’s test set. As previously
mentioned, every Flickr30K image has five textual descriptions, and therefore there are
5000 descriptions in the query set (1000 images × 5 descriptions per image = 5000 descrip-
tions).

Given a query, the top n image descriptions that are relevant to a query are retrieved.
Then, the retrieval performance of each model is evaluated based on three strategies: the rel-
evance of the first retrieved description (i.e., Recall@1); whether any 1 of the 5 descriptions
are retrieved in the top n results (i.e., Recall@5, @10, @20), which is the same evaluation
strategy followed by [1–4]; and the retrieval performance of the model with regard to
retrieving all 5 relevant descriptions when looking at the top n retrieved descriptions (i.e.,
Recall, Precision, F1-score @5, @10, @20, @50, @100), which is a tougher strategy than the
one followed by [1–4].

Furthermore, the performance of the algorithms in retrieving all 5 descriptions is
evaluated for two main reasons: (1) because the ability to retrieve all relevant descriptions
is important for information retrieval (IR) systems [26] and (2) given that the study focuses
on the analysis of limitations of VSE networks, evaluating the performance of VSE networks
using the more challenging criteria of retrieving the 5 descriptions can be more beneficial
for the task of discovering the limitations of VSE networks when they are used for IR tasks.

3.4. Experiment 2 Methodology for Finding the Limitations of VSE Networks

Experiment 2 analyses the performance of the two VSE networks, i.e., VSRN and
UNITER, that performed best in experiment 1, in order to identify their limitations. Figure 3
illustrates the methodology for experiment 2.

Figure 3. Flow chart illustrating the methodology for experiment 2.

A description of each step is provided below:
Step 1: The query set comprises images and their corresponding relevant descriptions

from the test (n = 1000 queries) and validation (n = 1014 queries) sets of Flickr30K combined
into a single set containing 2014 queries.

Step 2: For the purposes of evaluating the performance of VSRN and UNITER across
the different image classes, the images found in the query set were grouped into classes.
Therefore, the query images were classified into 453 classes using the ImageNet [27] class
labels (up to 1000) with the aid of a trained Resnet [21] model. Table 1 shows the labels of
the 40 largest classes (i.e., they contain the largest number of images).

Step 3: VSRN and UNITER were evaluated on different image classes from Step 2 using
the evaluation measures of average Recall@5 and average Precision@1 (see Section 3.2).
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Step 4: The top 25 worst-performing classes (and their images), based on average
Recall@5 results, were extracted to be used for the task of identifying the limitations of the
models. Classes with fewer than 10 images were removed.

Step 5: All images with irrelevant retrieved descriptions when using the Precision@1
evaluation measure were taken and analysed manually to identify reasons that the models
did not retrieve those descriptions, and to further summarise those reasons into a set
of limitations.

Table 1. Forty classes with the largest number of images in the query set.

Forty Classes with the Largest Number of Images

Descriptions No. of
Images Descriptions No. of

Images Descriptions No. of
Images

unicycle, monocycle 53 ballplayer, baseball player 21 swimming trunks, bathing trunks 15
stage 50 crutch 19 racket, racquet 14
mountain bike, all-terrain bike
off-roader 43 miniskirt, mini 19 sarong 14

restaurant, eating house, eating
place, eatery 40 rugby ball 19 volleyball 14

soccer ball 29 library 18 lakeside, lakeshore 14
swing, 27 stretcher 18 sandbar, sand bar 14
ski 26 maypole 17 barbershop 13
jinrikisha, ricksha, rickshaw 23 umbrella 17 prison, prison house 13

cliff, drop, drop-off 22 grocery store, grocery
food market, market 16 accordion, piano accordion

squeeze box 12

horizontal bar, high bar 21 jean, blue jean, denim 16 croquet ball 12

4. Results

This section describes the results of experiments 1 and 2. The experimental methodol-
ogy of each experiment is presented in Sections 3.3 and 3.4, respectively.

4.1. Results of Experiment 1: Comparison of VSE++, SCAN, VSRN, and UNITER for
Image-to-Text Retrieval

Initially, VSE++, SCAN, VSRN, and UNITER were evaluated in terms of their per-
formance in retrieving any one of the five relevant textual descriptions for each query.
Performance was averaged across all n = 1000 queries to obtain the average Recall@1, @5,
@10, and @20 values, as shown in Table 2. UNITER achieved the highest average Recall
(i.e., average Recall@1 = 80.8%), VSRN, SCAN, and VSE++ achieved 69.3%, 67.5%, and
40.0% on average Recall@1, respectively. These results are consistent with those reported
in [1–4].

Table 2. Average Recall values for retrieving any 1 of 5 relevant descriptions. The results were
computed by averaging the performance of each model across 1000 queries.

Performance Evaluation of Networks:
Retrieving any 1 of 5 Relevant Textual Descriptions

Network Average
Recall@1

(%)

Average
Recall@5

(%)

Average
Recall@10

(%)

Average
Recall@20

(%)

VSE++ 40.0 70.4 80.6 87.3
SCAN 67.5 90.2 94.1 97.1
VSRN 69.3 90.2 94.2 97.1

UNITER 80.8 95.7 98.0 99.0

Next, VSE++, SCAN, VSRN, and UNITER were evaluated in terms of their perfor-
mance in retrieving all five of the relevant textual descriptions for each query. Table 3
compares the performance of the models when considering the top K results, where K is a
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predefined number of descriptions retrieved. The results show that UNITER consistently
achieved the best performance across all evaluation measures and for all K values.

Table 3. Comparison of average Recall, average Precision, and average F1-score between VSE++,
SCAN, VSRN, and UNITER for retrieving 5 of 5 relevant textual descriptions. The results were
computed by averaging values from all 1000 queries.

Performance Evaluation of Networks: Retrieving
5 of 5 Relevant Textual Descriptions

@K Network Average
Recall (%)

Average
Precision (%)

Average
F1-Score (%)

5

VSE++ 29.4 29.4 29.4
SCAN 47.1 47.1 47.1
VSRN 50.3 50.3 50.3

UNITER 61.5 61.5 61.5

10

VSE++ 41.9 21.0 27.9
SCAN 62.1 31.1 41.4
VSRN 64.5 32.3 43.0

UNITER 76.4 38.2 50.9

20

VSE++ 54.7 13.7 21.9
SCAN 73.9 18.5 29.5
VSRN 76.0 19.0 30.4

UNITER 85.5 21.4 34.2

50

VSE++ 70.6 7.1 12.8
SCAN 85.1 8.5 15.5
VSRN 86.5 8.7 15.7

UNITER 93.2 9.3 17.0

100

VSE++ 80.1 4.0 7.6
SCAN 90.8 4.5 8.6
VSRN 92.0 4.6 8.8

UNITER 96.0 4.8 9.2

Figure 4 presents the interpolated PR curves of each image–text retrieval model.
UNITER outperformed all other three networks, followed by VSRN. Figure 4 highlights
that UNITER and VSRN are more effective models when considering both the Recall and
Precision evaluation measures. In conclusion, the results of experiment 1 demonstrate that
the best-performing image-to-text retrieval model is UNITER, followed by VSRN.

Figure 5 shows the computation time of VSE++, SCAN, and VSRN against the number
of training samples from Flickr30K [14] for one epoch. The running time of each epoch
was the same for each individual algorithm, and therefore for ease of comparison the
computation time was calculated for one epoch for each training sample. The number of
training samples increased from 2900 to 29,000 in steps of 2900. The three lines that fit the
data points of VSE++, SCAN, and VSRN follow the equations of TVSE++(n) = 0.0018n−
0.2173, TSCAN(n) = 0.0119n + 0.5239, and TVSRN(n) = 0.0159n + 0.0365, respectively.
UNITER has not been included in the comparison because it was pre-trained on four other
datasets [13,22–24], whereas the other three models, VSE++, SCAN, and VSRN, were only
trained on Flickr30K. Hence, for a consistent comparison of the performance of the models,
UNITER was excluded from the comparison.
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Figure 4. Average PR curves of VSE networks for image-to-text retrieval.

0.29 0.58 0.87 1.16 1.45 1.74 2.03 2.32 2.61 2.90
Number of Training Samples (×104) 

0

50
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200
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400

450

500

Ti
m
e 
(s
)

VSRN
SCAN
VSE++

Figure 5. Computation time of VSE networks when using various training samples. Three lines
fit the data points which are shown by the triangle, diamond, and pentagon for VSE++, SCAN,
and VSRN, respectively.

4.2. Results of Experiment 2: Limitations of VSE Networks

This experiment concerns an analysis of the limitations of VSE networks. Only the
UNITER and VSRN models were utilised for this experiment since the experiment 1 results
and the literature agreed that these are the best-performing VSE models. Table 4 shows
the 25 worst-performing classes for the query set using the methodology described in
Section 3.4.

The results of VSRN and UNITER contain 16 identical classes, and this suggests that
they share some common limitations. Focusing on these worst-performing classes, an in-
depth analysis of the retrieved descriptions that are irrelevant to the image queries in these
classes has revealed 10 limitations of VSE networks they and are summarised in Table 5.
These limitations were generalised into four groups.
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Table 4. The 25 worst-performing classes of ImageNet classes by VSRN and UNITER for image-to-text retrieval. Class
names are aligned to ease interpretation of results.

Performance on ImageNet Classes Using the Experiment 2 Query Set

VSRN UNITER

Topic
(Keyword)

Average
Precision@1

(%)

Average
Recall@5

(%)

Topic
(keyword)

Average
Precision@1

(%)

Average
Recall@5

(%)

butcher shop, meat market 20.0 14.0 butcher shop, meat market 60.0 32.0
torch 27.3 21.8 torch 45.5 32.7
prison, prison house 53.9 35.4 prison, prison house 61.5 47.7
cowboy hat, ten-gallon hat 54.6 36.4 cowboy hat, ten-gallon hat 72.7 58.2
accordion, piano accordion,
squeeze box

33.3 36.7 accordion, piano accordion,
squeeze box

75.0 51.7

stretcher 88.9 38.9 stretcher 55.6 43.3
stage 58.0 40.0 stage 76.0 53.2
crutch 63.2 42.1 crutch 84.2 46.3
jean, blue jean, denim 50.0 42.5 jean, blue jean, denim 81.3 57.5
grocery store, grocery,
food market, market

43.8 42.5 grocery store, grocery,
food market, market

68.8 52.5

volleyball 50.0 44.3 volleyball 85.7 60.0
restaurant, eating house,
eating place, eatery

65.0 44.5 restaurant, eating house,
eating place, eatery

80.0 57.0

barbershop 53.9 44.6 barbershop 92.3 53.9
maypole 64.7 45.9 maypole 82.4 54.1
jinrikisha, ricksha, rickshaw 69.6 47.8 jinrikisha, ricksha, rickshaw 82.6 60.9
rugby ball 89.5 48.4 rugby ball 79.0 56.8

military uniform 41.7 35.0 football helmet 80.0 46.0
miniskirt, mini 52.6 43.2 basketball 72.7 49.1
pole 83.3 46.7 soccer ball 89.7 55.2
umbrella 82.4 47.1 horizontal bar, high bar 71.4 57.1
unicycle, monocycle 71.7 47.2 moped 80.0 58.0

paddle, boat paddle 70.0 48.0 cinema, movie theater, movie
theatre, movie house, picture
palace

70.0 58.0

lakeside, lakeshore 71.4 48.6 swing 81.5 59.3
ballplayer, baseball player 81.0 49.5 library 77.8 60.0

fountain 70.0 50.0 swimming trunks, bathing
trunks 86.7 61.3

The first part of the table shows the class names found in both the results of VSRN and UNITER, and these are arranged from smallest to largest
according to the average Precision@1 values of VSRN. The bottom part of the table shows the rest of the classes arranged in order of smallest to
largest according to the average Precision@1 values of VSRN and UNITER, respectively.

The discussion that follows refers to the limitations provided in Table 5. The limitations
of group 1 occur when a VSE network does not globally understand the image scene.
Limitation 1 shows that VSRN cannot specifically distinguish the importance between
foreground and background information in an image. For example, in Figure 6a, people
and room facilities in the background caused VSRN to misinterpret the image as ‘mopping
in a subway station’ rather than ‘counting change in a store’. However, UNITER overcomes
this limitation by using the self-attention mechanism of the multi-layer transformer to learn
the relations between image objects. Furthermore, limitation 2 reveals an issue of VSRN
and UNITER with missing key image objects in understanding the image. For example,
the retrieved textual description from VSRN and UNITER for Figure 6b does not mention
that a person is standing in front of the restaurant. Therefore, the background and object
information in an image needs to be considered from a global angle in VSE networks.
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Table 5. Summary of 10 limitations of VSE networks. This table is based on the analysis of irrelevant cases from the 25
worst-performing classes of VSRN and UNITER.

Summary of Limitations of VSE Networks

No. Limitation Title Limitation Description

Group 1: The VSE networks do not globally reason with the image scene (limitation 1 only applies to VSRN,
limitation 2 applies to VSRN and UNITER)

1 Background issue The VSE networks cannot accurately recognise the content of the image’s
foreground based on its background.

2 Missing key objects Key objects, which are important to the image content, are ignored.

Group 2: The VSE networks do not give enough attention to the detailed visual information (all limitations
apply to VSRN and UNITER)

3 Errors in retrieved descriptions Details of objects from the retrieved textual descriptions do not match
the details of the image.

4 Partially redundant descriptions Only part of the retrieved textual description is relevant to the image.
5 Object counting error The networks cannot correctly count objects in an image.

Group 3: The VSE networks’ capability in extracting the higher-level visual semantics needs to be improved (all
limitations apply to VSRN and UNITER)

6 Visual reasoning error The capability for extracting the higher-level semantics for visual rea-
soning of the VSE networks is inadequate.

7 Imprecise descriptions Retrieved descriptions do not provide enough detail to describe the rich
content of images.

8 Action recognition issue Actions and postures of objects in retrieved textual descriptions some-
times do not match the image content.

Group 4: The basic functions, i.e., object detection and recognition, of neural networks need to be improved (all
limitations apply to VSRN and UNITER)

9 Detection error Some key objects are missed at the object detection stage.
10 Recognition error Image object attributes are recognised incorrectly.

Limitations in group 2 revealed that the VSE network does not give enough attention
to the details of image objects, and hence the detailed descriptions in the retrieved textual
descriptions cannot match image object features correctly. For example, with regard to
limitation 3, Figure 6c shows that the retrieved result from VSRN and UNITER both
mistakenly described too many details about the woman. Limitation 4 is when one part of
the textual description relates to the image, but the other part does not match the image.
For example, Figure 6d is a result of VSRN with no text in the description for this image
about the wedding. Figure 6e shows that UNITER missed ‘people are controlled by officers’
in its textual description. Limitation 5 reveals the VSE network has no accurate concept
of the number of main objects in an image. There are two people in Figure 6f, but the
results of VSRN and UNITER described three people and one person, respectively. These
limitations suggest that learning image details is currently a challenge for VSE networks.

Group 3 generalises that limitations 6, 7, and 8 are related to a network’s ability to
extract higher-level visual semantics. For Figure 6g, VSRN and UNITER retrieved the
description related to ‘rhythmic gymnasts’ and ‘clutching yellow ski handles by a man’,
respectively, an error related to limitation 6. Limitation 7 was derived after observing many
irrelevant cases where the retrieved textual descriptions are too simple to describe the rich
contents of the image. Taking Figure 6h as an example, the retrieved result by VSRN and
UNITER did not describe the man’s smile and his exact action. Limitation 8 shows that
VSRN and UNITER did not perform well in retrieving the descriptions of the images which
contained human postures and actions. For example, in Figure 6i, the action of ‘roping
animal’ is recognised as ‘laying’ by VSRN and UNITER. These limitations suggest that VSE
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networks are limited in their ability to extract higher and more complex visual semantic
information at present.

Group 4 shows the basic functions of neural networks, with object detection (lim-
itation 9) and recognition (limitation 10) also influencing the performance of networks.
The small ‘monk’ objects in Figure 6j, an example of limitation 9, were not detected and
neither VSRN nor UNITER could give correct descriptions. ‘The man being shaved’ in
Figure 6k, an example of limitation 10, was mistakenly recognised as a ‘child’ and ‘woman’
by VSRN and UNITER, respectively.

4.3. Discussion on the Strengths and Limitations of VSE Networks

This subsection summarises the strengths and limitations of the VSE++, SCAN, VSRN,
and UNITER networks. Figure 7 shows that for 60% of the 2014 image queries, VSRN
and UNITER both retrieved the same relevant descriptions at first rank for those queries;
and also shows that for 10% of the image queries, VSRN and UNITER retrieved irrelevant
descriptions at first rank. However, for 30% of the queries there was no agreement between
VSRN and UNITER in the retrieved descriptions.

In the discussion that follows focuses on comparing the attention mechanisms of VSE
networks as a strategy for understanding how the attention mechanisms impact their image-
to-text retrieval performance. Five attention mechanisms are utilised by the networks for
giving attention to important information across images and text. These mechanisms
are: (1) Image–text attention aligns image regions and words with crossing modalities; (2)
Image–self attention weights the relations between image regions; (3) Text–self attention
weights the relations between words; (4) Detailed visual attention weights the detail
features in the image object; (5) Global visual reasoning attends to the relations between a
group rather than a pair of image objects for reasoning the visual semantics globally.

Table 6 is used for indicating how the attention mechanisms impact the performance
(i.e., average Precision@1) for VSE++, SCAN, VSRN, and UNITER. The joint analysis of
Tables 5 and 6 reveals the strengths and limitations of VSE++, SCAN, VSRN, and UNITER.
They are described below:

1. VSRN applies a GRU for global visual reasoning based on the pairwise relations
between image regions extracted by GCN. The limitations in group 1 indicate that
the performance of global visual reasoning for VSRN still needs to be improved.
Compared to VSRN, UNITER benefits from the multi-layers of the transformer, and
it has overcome limitation 1. However, the limitation of missing key image objects
by VSRN and UNITER indicates that global visual reasoning is still a challenging
problem for VSE networks.

2. Table 6 shows that none of the networks has the attention mechanisms to achieve
detailed visual attention. Misclassified cases of VSRN and UNITER from group 2
limitations reveal that the current VSE networks are not using detailed information
for cross-modal information retrieval. However, the matched details between image
and text should play a positive role in retrieval, while the unmatched parts should
make a negative contribution to matching in further research.

3. VSRN performs image–self attention by using GCN to compute the relations between
image regions, so the average Precision@1 of VSRN is 1.8% higher than that of SCAN,
as shown in Table 6. UNITER applies transformers to achieve image–self, text–self,
and image–text attentions, and it outperformed other networks by more than 11% in
average Precision@1. Therefore, this progress shows that the extraction of high-level
visual semantics can improve the VSE networks. According to the limitations of
group 3, as described in Table 5, there is still a need to improve the extraction of visual
semantics for VSRN and UNITER, so higher-level visual semantics are necessary to
VSE networks. In addition, SCAN outperformed VSE++ by using the stacked cross
attention on image–text, where the average Precision@1 was improved by almost
27.5%. UNITER also uses the transformer for image–text attention, thus cross-modal
attention is effective in VSE networks. However, cross-modal attention requires the
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network to iteratively process image and text pairs, and the retrieval time for 1000
queries of SCAN and UNITER is 187.3 seconds and 4379 seconds, respectively, which
is too slow for practice.

4. Group 4 limitations illustrate that VSE networks still need to perfect the basic func-
tions, such as object detection and recognition, of neural networks. At present,
the two-stage VSE networks rely on the reliability of the object detection stage.

Figure 6. A set of images relevant to the limitations provided in Table 5. One image contains
5 relevant descriptions, and the first retrieved description by VSRN and UNITER is denoted as
retrieved result at rank 1 (i.e., Result@1).
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Table 6. Comparison of attention mechanisms among VSE networks. The values of average Precision@1 is from experiment
1, average Precision@1 is equal to average Recall@1 of retrieving any 1 of 5 relevant textual descriptions. Retrieval time is
the time taken to retrieve 1000 queries in Flickr30K’s test set by the networks when working on the hardware of an NVIDIA
GEFORCE RTX 2070 graphics card.

Comparison of Attention Mechanisms Amongst VSE Networks

Network Image–Text
Attention

Image–Self
Attention

Text–Self
Attention

Global Visual
Reasoning

Detailed Visual
Attention

Average Precision@1
(Image-to-Text)

Retrieval
Time

VSE++ None None None None None 40.0% 4.4s
SCAN Stacked Cross None None None None 67.5% 187.3s
VSRN None GCN None GRU None 69.3% 13.6s

UNITER Transformer Transformer Transformer Transformer None 80.8% 4379s

Figure 7. Percentage of relevant and irrelevant descriptions retrieved at rank 1 for 2014 image queries
from the Flickr30K dataset.

5. Conclusions and Future Work

This study evaluates and compares the performance of four VSE networks, namely
VSE++, SCAN, VSRN, and UNITER, for the task of image-to-text retrieval using the
Flickr30k dataset. Two experiments were carried out. The first experiment evaluated
the retrieval performance of the VSE networks and the second experiment analysed the
performance of two of the best-performing VSE networks (i.e., VSRN and UNITER) to
determine their limitations. The results of the first experiment revealed that the pre-
trained UNITER network achieved the highest retrieval performance across all evaluation
measures, followed by the VSRN network. The results of experiment 2 revealed that VSE
networks suffer from various limitations which are mainly related to global reasoning,
background confusion, attention to detail, and extraction of higher-level visual semantics.
Furthermore, the overall retrieval efficiency of the networks needs to be improved for them
to be adopted for cross-modal information retrieval tasks, and hence to be embedded in
search engines. Understanding the limitations can help researchers advance the area of
VSE networks by utilising that knowledge to build future VSE networks that overcome
these limitations.

Images can contain various objects and interactions between objects, relative positions
of objects, and other high-level semantic concepts, and therefore understanding image
content is important in VSE networks for information retrieval [3]. The progress of VSE
networks for image–text retrieval is currently determined by comparing the Recall of
networks on the Flickr30k public dataset [1–4]. Most of the work about VSE networks thus
far has focused on certain challenges such as image–text alignment [2,4], visual position
attention [15], and visual reasoning [3]. To the best of the authors’ knowledge, there is
no comprehensive analysis of the limitations of state-of-the-art VSE networks. This study
experimentally analyses the performance of VSE algorithms and provides a summary of
their limitations from the perspective of image content understanding. Most limitations
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discussed in this paper can be independently extended to a research direction. The analysis
of these limitations will benefit the cross-modal research community and guide future
research directions for VSE networks.

Future work includes developing methods for the extraction of higher-level visual
semantics based on in-depth relations between image regions, and also developing suit-
able attention mechanisms that will enable networks to attend to the details of image
objects. Future work also includes developing algorithms for improving the efficiency of
the pre-trained network which uses the cross-modal attention mechanism and evaluating
these networks in real practice. Importantly, there is a lack of research and evaluations of
VSE networks when using adversarial data samples. Hence, future work can also include
comparing the performance of VSE networks when adopting various perturbation ap-
proaches to generate adversarial images and descriptions. Such an analysis can provide an
understanding of how adversarial samples can affect the retrieval results of VSE networks,
which can aid the development of algorithms and solutions for overcoming the limitations
of VSE networks on adversarial samples.
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VQA Visual Question Answering
VSE Visual-Semantic Embedding
VSE++ Visual-Semantic Embedding Network ++
SCAN Stacked Cross-Attention Network
PFAN++ Position-Focused Attention Network
VSRN Visual-Semantic Reasoning Network
UNITER Universal Image–Text Representation
GRU Gated Recurrent Unit
GCN Graph Convolution Network

References
1. Faghri, F.; Fleet, D.J.; Kiros, J.R.; Fidler, S. VSE++: Improving visual-semantic embeddings with hard negatives. In Proceedings of

the British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; pp. 12.
2. Lee, K.H.; Chen, X.; Hua, G.; Hu, H.; He, X. Stacked cross attention for image-text matching. In Proceedings of the European

Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 201–216.
3. Li, K.; Zhang, Y.; Li, K.; Li, Y.; Fu, Y. Visual semantic reasoning for image-text matching. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4654–4662.
4. Chen, Y.C.; Li, L.; Yu, L.; El Kholy, A.; Ahmed, F.; Gan, Z.; Cheng, Y.; Liu, J. UNITER: Universal image-text representation learning.

In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 104–120.

5. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3156–3164.

https://github.com/yangong23/VSEnetworksIR


J. Imaging 2021, 7, 125 15 of 15

6. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption
generation with visual attention. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11
July 2015; pp. 2048–2057.

7. Karpathy, A.; Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3128–3137.

8. Bai, S.; An, S. A survey on automatic image caption generation. Neurocomputing 2018, 311, 291–304. [CrossRef]
9. Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zitnick, C.L.; Parikh, D. VQA: Visual question answering. In Proceedings of

the IEEE International Conference on Computer Vision, Santiago, Chile , 7–13 December 2015; pp. 2425–2433.
10. Goyal, Y.; Khot, T.; Summers-Stay, D.; Batra, D.; Parikh, D. Making the V in VQA matter: Elevating the role of image understanding

in visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 6904–6913.

11. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the 5th International
Conference on Learning Representations, Conference Track Proceedings (2017), Toulon, France, 24–26 April 2017.

12. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics (Volume 1: Long
and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

13. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in
context. In Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755.

14. Young, P.; Lai, A.; Hodosh, M.; Hockenmaier, J. From image descriptions to visual denotations: New similarity metrics for
semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. 2014, 2, 67–78. [CrossRef]

15. Wang, Y.; Yang, H.; Bai, X.; Qian, X.; Ma, L.; Lu, J.; Li, B.; Fan, X. PFAN++: Bi-Directional Image-Text retrieval with position
focused attention network. IEEE Trans. Multimed. 2020. [CrossRef]

16. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef]

17. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

18. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

19. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

20. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations, Conference Track Proceedings (2015), San Diego, CA, USA, 7–9 May 2015.

21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

22. Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.J.; Shamma, D.A.; et al. Visual
genome: Connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 2017, 123, 32–73.
[CrossRef]

23. Sharma, P.; Ding, N.; Goodman, S.; Soricut, R. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic
image captioning. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Melbourne, Australia, 15–20 July 2018; pp. 2556–2565.

24. Ordonez, V.; Kulkarni, G.; Berg, T. Im2text: Describing images using 1 million captioned photographs. Adv. Neural Inf. Process.
Syst. 2011, 24, 1143–1151.

25. Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK,
2008; Volume 39, pp. 234–265.

26. Zuva, K.; Zuva, T. Evaluation of information retrieval systems. Int. J. Comput. Sci. Inf. Technol. 2012, 4, 35. [CrossRef]
27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]

http://doi.org/10.1016/j.neucom.2018.05.080
http://dx.doi.org/10.1162/tacl_a_00166
http://dx.doi.org/10.1109/TMM.2020.3024822
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1007/s11263-016-0981-7
http://dx.doi.org/10.5121/ijcsit.2012.4304
http://dx.doi.org/10.1145/3065386

	Introduction
	Related Methods
	Materials and Methods
	Dataset and VSE Network Preparation
	Performance Evaluation Measures
	Experiment 1 Methodology for the Comparison of VSE Networks for Image-to-Text Retrieval
	Experiment 2 Methodology for Finding the Limitations of VSE Networks

	Results
	Results of Experiment 1: Comparison of VSE++, SCAN, VSRN, and UNITER for Image-to-Text Retrieval
	Results of Experiment 2: Limitations of VSE Networks
	Discussion on the Strengths and Limitations of VSE Networks 

	Conclusions and Future Work
	References

