
Journal of

Imaging

Article

Improved JPEG Coding by Filtering 8 × 8 DCT Blocks

Yasir Iqbal and Oh-Jin Kwon *

����������
�������

Citation: Iqbal, Y.; Kwon, O.-J.

Improved JPEG Coding by Filtering

8 × 8 DCT Blocks. J. Imaging 2021, 7,

117. https://doi.org/10.3390/

jimaging7070117

Academic Editor: Roman Starosolski

Received: 9 June 2021

Accepted: 12 July 2021

Published: 15 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
yasir@sju.ac.kr
* Correspondence: ojkwon@sejong.ac.kr

Abstract: The JPEG format, consisting of a set of image compression techniques, is one of the most
commonly used image coding standards for both lossy and lossless image encoding. In this format,
various techniques are used to improve image transmission and storage. In the final step of lossy
image coding, JPEG uses either arithmetic or Huffman entropy coding modes to further compress
data processed by lossy compression. Both modes encode all the 8 × 8 DCT blocks without filtering
empty ones. An end-of-block marker is coded for empty blocks, and these empty blocks cause
an unnecessary increase in file size when they are stored with the rest of the data. In this paper,
we propose a modified version of the JPEG entropy coding. In the proposed version, instead of
storing an end-of-block code for empty blocks with the rest of the data, we store their location in
a separate buffer and then compress the buffer with an efficient lossless method to achieve a higher
compression ratio. The size of the additional buffer, which keeps the information of location for
the empty and non-empty blocks, was considered during the calculation of bits per pixel for the
test images. In image compression, peak signal-to-noise ratio versus bits per pixel has been a major
measure for evaluating the coding performance. Experimental results indicate that the proposed
modified algorithm achieves lower bits per pixel while retaining quality.

Keywords: JPEG image coding; image compression; JPEG entropy coding

1. Introduction

In parallel with developments in the field of image capture technologies, data storage
is becoming a significant issue encountered by computer and mobile users. Many encoding
methods for image data storage have been developed, which can be divided into lossy
and lossless methods. Approaches using various techniques to compress data for storage
without losing any bits of information in the original image (often captured by a camera
or sensor) are called lossless image encoding methods. Examples [1] of lossless methods
include GIF (graphics interchange format), JBIG, and PNG (portable network graphics).
In contrast, methods using various techniques to store data such that some unimportant
details are lost while retaining visual clarity on users’ displays are called lossy image coding
methods. Examples of lossy methods include JPEG and BPG (better portable graphics).

Each method has its own advantages and disadvantages. In the field of image com-
pression, methods are evaluated by complexity, compression ratio, and quality of the image
obtained. Every method aims to obtain a higher compression ratio, higher quality, and less
complexity. Over the previous decade, many methods have competed to obtain a better
result. Concerning the above factors and associated trade-offs, JPEG has consistently been
the leading image coding standard for lossy compression up to the present day.

Many methods currently provide much better results, but JPEG has been used for the
past two decades and still dominates the market. For example, it has been claimed that BPG
is likely to overcome JPEG, but this does not seem possible soon. BPG is more complex [2]
and thus takes a much longer time to decompile. It was created using high-efficiency
video coding (HEVC), which is patented by a company called MPEG LA. It is commonly

J. Imaging 2021, 7, 117. https://doi.org/10.3390/jimaging7070117 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-5782-695X
https://orcid.org/0000-0002-9877-8982
https://doi.org/10.3390/jimaging7070117
https://doi.org/10.3390/jimaging7070117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7070117
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7070117?type=check_update&version=2

J. Imaging 2021, 7, 117 2 of 15

expected to require considerable time for BPG to be popularly integrated into existing and
future computer systems on the market.

In this study, we propose a method to increase the compression ratio of JPEG images
without affecting their quality.

2. Related Work
2.1. JPEG Image Coding Standard

The JPEG standard was created in 1992. For a detailed study, readers are referred
to [3,4]. Figure 1 shows the basic overview of the conventional JPEG encoder. YCbCr
color components are obtained from the raw input image in the first step. Based on user
choice, chroma components Cb and Cr are downsampled to the 4:2:2 or 4:2:0 type [4]. Each
channel is divided into 8 × 8 blocks. A discrete cosine transform (DCT) is applied on the
8 × 8 blocks in the order from left-to-right and top-to-bottom.

J. Imaging 2021, 7, x FOR PEER REVIEW 2 of 14

complex [2] and thus takes a much longer time to decompile. It was created using high-
efficiency video coding (HEVC), which is patented by a company called MPEG LA. It is
commonly expected to require considerable time for BPG to be popularly integrated into
existing and future computer systems on the market.

In this study, we propose a method to increase the compression ratio of JPEG images
without affecting their quality.

2. Related Work
2.1. JPEG Image Coding Standard

The JPEG standard was created in 1992. For a detailed study, readers are referred to
[3,4]. Figure 1 shows the basic overview of the conventional JPEG encoder. YCbCr color
components are obtained from the raw input image in the first step. Based on user choice,
chroma components Cb and Cr are downsampled to the 4:2:2 or 4:2:0 type [4]. Each chan-
nel is divided into 8 × 8 blocks. A discrete cosine transform (DCT) is applied on the 8 × 8
blocks in the order from left-to-right and top-to-bottom.

Figure 1. Overview of the conventional JPEG encoder.

After the DCT, blocks are forwarded for quantization. Luma and Chroma compo-
nents are quantized using different quantization tables [3]. Quantization tables are gener-
ated based on quality factors (QF). The compression ratio and quality of the image are
controlled by the QF value. To reduce the redundancy of consecutively occurring DC co-
efficients, the differential pulse code modulation (DPCM) method is used. In the end, all
the processed data is forwarded to the entropy coding module.

2.2. Entropy Coding
Data obtained after quantization need to be stored without losing any information.

However, instead of saving the data as-is, JPEG compression performs an additional step
of entropy coding. Entropy coding achieves additional compression by encoding the

Figure 1. Overview of the conventional JPEG encoder.

After the DCT, blocks are forwarded for quantization. Luma and Chroma components
are quantized using different quantization tables [3]. Quantization tables are generated
based on quality factors (QF). The compression ratio and quality of the image are controlled
by the QF value. To reduce the redundancy of consecutively occurring DC coefficients, the
differential pulse code modulation (DPCM) method is used. In the end, all the processed
data is forwarded to the entropy coding module.

2.2. Entropy Coding

Data obtained after quantization need to be stored without losing any information.
However, instead of saving the data as-is, JPEG compression performs an additional step
of entropy coding. Entropy coding achieves additional compression by encoding the
quantized DCT coefficients more efficiently based on their statistical characteristics [1].
An individual JPEG compression process uses one of two available entropy coding algo-
rithms, either Huffman [5] or arithmetic encoding [6].

J. Imaging 2021, 7, 117 3 of 15

2.2.1. Huffman

Huffman coding is an entropy encoding algorithm using a variable-length code table.
This table has been derived based on the estimated probability of occurrence for each
possible value of the source symbol (such as a character in a file) [1]. The principle of Huff-
man coding is to assign lower bits to the more frequently occurring data [7]. A dictionary
associating each data symbol with a codeword has the property that no codeword in the
dictionary is a prefix of any other codeword in the dictionary [8].

In the JPEG encoder, Huffman coding is combined with run-length coding (RLC) and
is called the run-amplitude Huffman code [9]. This code represents the run-length of zeros
before a nonzero coefficient and the size of that coefficient. The code is then followed by
additional bits precisely defining the coefficient amplitude and sign [4,9]. The end-of-block
(EOB) marker is coded when the last nonzero coefficient occurs. This strategy is omitted
in the rare case that the last element of the 8×8 block is nonzero. In the case of an empty
block, i.e., where all AC coefficients are zero, the encoder codes an EOB.

2.2.2. Arithmetic

Compared to Huffman coding, arithmetic coding bypasses the mechanism of assign-
ing a specific code to an input symbol. An interval (0, 1) is divided into several sub-intervals
based on the occurrence probability of the corresponding symbol. The ordering sequence
is known to both the encoder and decoder. In arithmetic coding, unlike Huffman coding,
the number of bits assigned to encode each symbol varies according to their assigned prob-
ability [10]. Symbols with lower probability are assigned higher-bit encodings compared
to symbols with higher probability, and their probability decreases in inverse proportion to
the probability of the occurrence of the character [1]. The key idea of arithmetic encoding is
to assign each symbol an interval. Further, each symbol is divided into subintervals equal
to their probability [11].

Both Huffman and arithmetic encoding are performed on the data without filtering
out empty AC coefficient blocks, which decreases the compression ratio.

3. Proposed Algorithm

Our proposed algorithm is based on the filtration of 8 × 8 blocks. Figure 2 shows
an overview of the proposed JPEG image coding. To maintain equivalent complexity
between the conventional and our proposed entropy coding, we used separate modes for
arithmetic and Huffman coding. Before forwarding the 8 × 8 blocks to the JPEG entropy
encoder, we perform three steps. These three steps are named as (1) filtration of blocks,
(2) changing bits, and (3) replacing values. The third step (Section 3.3) is performed only
in the case of the Huffman encoding mode. It should be noted that the whole process
explained in this section is lossless. During the decoding process, we perform the inverse
of these steps, and at the end of the inverse process, we know about the location of empty
blocks. Moreover, this process has no additional consequences, as we do not change any of
the coefficient values.

3.1. Filtration of Blocks

In our proposed algorithm, instead of allowing the encoder to encode the EOB marker
for the empty blocks along with the array of non-empty blocks, all the empty blocks are
filtered out, and information on the location of empty and non-empty blocks is stored
in a separate binary buffer. In this buffer, we store 0 for empty blocks and 1 for non-
empty blocks. In the JPEG encoder, the Y component is compressed using a different
quantization table compared to the Cb and Cr components. Due to the different nature of
their compression, we use separate buffers for the Y, Cb, and Cr components at this stage.
Finally, all buffers for Y, Cb, and Cr are concatenated.

J. Imaging 2021, 7, 117 4 of 15J. Imaging 2021, 7, x FOR PEER REVIEW 4 of 14

Figure 2. Overview of the proposed JPEG encoder.

3.1. Filtration of Blocks
In our proposed algorithm, instead of allowing the encoder to encode the EOB

marker for the empty blocks along with the array of non-empty blocks, all the empty
blocks are filtered out, and information on the location of empty and non-empty blocks is
stored in a separate binary buffer. In this buffer, we store 0 for empty blocks and 1 for
non-empty blocks. In the JPEG encoder, the Y component is compressed using a different
quantization table compared to the Cb and Cr components. Due to the different nature of
their compression, we use separate buffers for the Y, Cb, and Cr components at this stage.
Finally, all buffers for Y, Cb, and Cr are concatenated.

3.2. Changing Bits
After concatenating Y, Cb, and Cr buffers, we improve the consistency of identical

bit sequence occurrences by replacing all the bit values with 0, except the initial bit 1, only
in the case where the next bit is different from the current. In this process, identical occur-
rences of either 0- or 1-bit values are saved as 0. Thus, we further increase the occurrence
of zero bits. For example, suppose we have a sequence of bits as “000011110111”. We have
four consecutive zeros followed by four consecutive ones, indicating that a change occurs
at the 5th bit in the sequence. Then, we can observe that the next change occurs at the 9th
and 10th bit in the sequence. Hence, the sequence is transformed to “000010001100” with
bit 1 placed where the change in the sequence occurs.

In the case of arithmetic encoding mode, after performing this step, we provide our
buffer to the binary arithmetic encoder [12]. The remaining of the 8 × 8 blocks, where a
nonzero AC coefficient existed, were encoded in a conventional way. After the compres-
sion process was completed, we appended our compressed buffer to the remainder of the
encoded file.

Figure 2. Overview of the proposed JPEG encoder.

3.2. Changing Bits

After concatenating Y, Cb, and Cr buffers, we improve the consistency of identical bit
sequence occurrences by replacing all the bit values with 0, except the initial bit 1, only in the
case where the next bit is different from the current. In this process, identical occurrences
of either 0- or 1-bit values are saved as 0. Thus, we further increase the occurrence of
zero bits. For example, suppose we have a sequence of bits as “000011110111”. We have
four consecutive zeros followed by four consecutive ones, indicating that a change occurs
at the 5th bit in the sequence. Then, we can observe that the next change occurs at the 9th
and 10th bit in the sequence. Hence, the sequence is transformed to “000010001100” with
bit 1 placed where the change in the sequence occurs.

In the case of arithmetic encoding mode, after performing this step, we provide
our buffer to the binary arithmetic encoder [12]. The remaining of the 8 × 8 blocks,
where a nonzero AC coefficient existed, were encoded in a conventional way. After the
compression process was completed, we appended our compressed buffer to the remainder
of the encoded file.

3.3. Replacing Values

This step is performed only when the selected encoding mode is Huffman. By ob-
serving the nature of Huffman encoding, we can save more space if we convert our data,
resulting from Section 3.2, from bits to bytes. Thus, before replacing the values, bits are
converted into bytes. After the conversion, there are still long sequences of consecutive
zero-valued bytes present, and to get rid of those long sequences, we perform the step of
replacing values. Firstly, we calculate the average number of consecutive zero-valued bytes.
The average is used because different types of images have different data. For example,
in the case of homogeneous images, the average number of consecutive zeros should be
higher owing to a larger amount of empty 8 × 8 blocks present consecutively, whereas, in
the case of more detailed images, a smaller number of consecutive empty 8 × 8 blocks are
present. The number of consecutively occurring zero-valued bytes equal to the calculated

J. Imaging 2021, 7, 117 5 of 15

average number is replaced with a less frequently occurring byte value, i.e., 255. In the
example shown in Figure 3, there are two data buffers; input data is the data obtained after
converting the values from bits to bytes, while the other one is the processed data.

J. Imaging 2021, 7, x FOR PEER REVIEW 5 of 14

3.3. Replacing Values
This step is performed only when the selected encoding mode is Huffman. By ob-

serving the nature of Huffman encoding, we can save more space if we convert our data,
resulting from Section 3.2, from bits to bytes. Thus, before replacing the values, bits are
converted into bytes. After the conversion, there are still long sequences of consecutive
zero-valued bytes present, and to get rid of those long sequences, we perform the step of
replacing values. Firstly, we calculate the average number of consecutive zero-valued
bytes. The average is used because different types of images have different data. For ex-
ample, in the case of homogeneous images, the average number of consecutive zeros
should be higher owing to a larger amount of empty 8 × 8 blocks present consecutively,
whereas, in the case of more detailed images, a smaller number of consecutive empty 8 ×
8 blocks are present. The number of consecutively occurring zero-valued bytes equal to
the calculated average number is replaced with a less frequently occurring byte value, i.e.,
255. In the example shown in Figure 3, there are two data buffers; input data is the data
obtained after converting the values from bits to bytes, while the other one is the processed
data.

Figure 3. Replacement of values.

The total number of zeros was equal to 21 in the original data buffer. These 21 zeros
occurred in seven sequences of consecutive zeros. To obtain the average number of con-
secutively occurring zeros, we divided the total number of zeros with the number of con-
secutively occurring sequences. Thus, we obtained an average number of zero-valued
bytes of three and replaced all three consecutively occurring sequences of three zeros with
a constant value of 255.

In the case of floating-point results after division, we round it to the nearest integer.
If a byte value of 255 occurs in the input data, we tail it with an additional byte value, e.g.,
217, in order to differentiate between a replaced value of 255 and an input data value of
255. The example in Figure 3 demonstrates that after replacement, a sequence with a data
size of 29 bytes was reduced to 19 bytes.

As the third step is performed only in the case of JPEG Huffman mode, the processed
data is designated for Huffman encoding. After the compression process was completed,
we appended our compressed buffer to the remainder of the encoded file.

Figure 3. Replacement of values.

The total number of zeros was equal to 21 in the original data buffer. These 21 zeros
occurred in seven sequences of consecutive zeros. To obtain the average number of
consecutively occurring zeros, we divided the total number of zeros with the number of
consecutively occurring sequences. Thus, we obtained an average number of zero-valued
bytes of three and replaced all three consecutively occurring sequences of three zeros with
a constant value of 255.

In the case of floating-point results after division, we round it to the nearest integer. If
a byte value of 255 occurs in the input data, we tail it with an additional byte value, e.g.,
217, in order to differentiate between a replaced value of 255 and an input data value of
255. The example in Figure 3 demonstrates that after replacement, a sequence with a data
size of 29 bytes was reduced to 19 bytes.

As the third step is performed only in the case of JPEG Huffman mode, the processed
data is designated for Huffman encoding. After the compression process was completed,
we appended our compressed buffer to the remainder of the encoded file.

4. Experimental Results

We conducted an experiment on 15 test images using libjpeg-turbo [13] version 2.0.5.
All test images were taken from the JPEG AI dataset [14]. These 15 images, shown in
Figure 4, were selected carefully. They include two screenshots, two homogenous images,
one image of night view, one image of street daytime view, one item close-up, one human
close-up image, and seven additional random images. Thus, in these 15 test images, we
included a broad variety of major types of images to obtain a useful and indicative result.
Figures 5 and 6 describe the graphical results for all the test images shown in Figure 4. The
Y-axis represents the PSNR and SSIM values respectively in Figures 5 and 6, whereas the
X-axis represents the BPP.

J. Imaging 2021, 7, 117 6 of 15

J. Imaging 2021, 7, x FOR PEER REVIEW 6 of 14

4. Experimental Results
We conducted an experiment on 15 test images using libjpeg-turbo [13] version 2.0.5.

All test images were taken from the JPEG AI dataset [14]. These 15 images, shown in Fig-
ure 4, were selected carefully. They include two screenshots, two homogenous images,
one image of night view, one image of street daytime view, one item close-up, one human
close-up image, and seven additional random images. Thus, in these 15 test images, we
included a broad variety of major types of images to obtain a useful and indicative result.
Figures 5 and 6 describe the graphical results for all the test images shown in Figure 4.
The Y-axis represents the PSNR and SSIM values respectively in Figures 5 and 6, whereas
the X-axis represents the BPP.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4. Test images used in experiment: (a) Street View, (b) Woman, (c) Night Scene (d) Jars, (e)
Flowers, (f) Glasses, (g) Screenshot1, (h) Screenshot2, (i) Spoon, (j) Sunset, (k) Paris, (l) Ice Cream,
(m) Air Jet, (n) Statue, (o) Icon.

J. Imaging 2021, 7, 117 7 of 15

1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Cont.

J. Imaging 2021, 7, 117 8 of 15

2

(i) (j)

(k) (l)

(m) (n)

(o)

 Figure 5. PSNR results of test images shown in Figure 4: (a) Street View, (b) Woman, (c) Night Scene (d) Jars, (e) Flowers,
(f) Glasses, (g) Screenshot1, (h) Screenshot2, (i) Spoon, (j) Sunset, (k) Paris, (l) Ice Cream, (m) Air Jet, (n) Statue, (o) Icon.

J. Imaging 2021, 7, 117 9 of 15
J. Imaging 2021, 7, x FOR PEER REVIEW 9 of 14

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6. Cont.

J. Imaging 2021, 7, 117 10 of 15J. Imaging 2021, 7, x FOR PEER REVIEW 10 of 14

(k) (l)

(m) (n)

(o)

Figure 6. SSIM results of test images shown in Figure 4: (a) Street View, (b) Woman, (c) Night Scene (d) Jars, (e) Flowers,
(f) Glasses, (g) Screenshot1, (h) Screenshot2, (i) Spoon, (j) Sunset, (k) Paris, (l) Ice Cream, (m) Air Jet, (n) Statue, (o) Icon.

As discussed in Section 2.1, chroma components Cb and Cr are downsampled to the
4:2:2 or 4:2:0 type in JPEG [4]. In this paper, we targeted the 4:2:0 subsampling at different
QF ranging from low to high to obtain a better and clearer result. The selected QF values
were 30, 50, 70, and 90. Graphs were obtained using MATLAB R2020a. We considered
PSNR (peak signal-to-noise) and BPP (bits per pixel) to evaluate our obtained results.
Compressed buffers after the step detailed in Section 3.2 for arithmetic and after the step
is given in Section 3.3 for Huffman were included in the file size for calculating BPP. All
the images decoded with the modified JPEG decoder had the same PSNR as the images
decoded by the conventional JPEG decoder. This shows the successful implementation of
our modified decoder.

In all images, our proposed approach achieved significant improvements. The
demonstrated improvement in the case of homogeneous images was greater than for com-
plex images. Among the test images used in the experiment, Figure 4f showed the best
result. The proposed algorithm is tested only for high-resolution and original images. The
lowest image resolution was 1980 × 1272 among the test images shown in Figure 5. Due
to the high possibility of consecutive empty DCT 8 × 8 blocks, the proposed algorithm is
considered useful in high-resolution images. To calculate the average gain in BPP for both
Huffman and arithmetic mode, shown in Table 1, we used Bjontegaard’s metric [15–17].

Figure 6. SSIM results of test images shown in Figure 4: (a) Street View, (b) Woman, (c) Night Scene (d) Jars, (e) Flowers,
(f) Glasses, (g) Screenshot1, (h) Screenshot2, (i) Spoon, (j) Sunset, (k) Paris, (l) Ice Cream, (m) Air Jet, (n) Statue, (o) Icon.

As discussed in Section 2.1, chroma components Cb and Cr are downsampled to the
4:2:2 or 4:2:0 type in JPEG [4]. In this paper, we targeted the 4:2:0 subsampling at different
QF ranging from low to high to obtain a better and clearer result. The selected QF values
were 30, 50, 70, and 90. Graphs were obtained using MATLAB R2020a. We considered
PSNR (peak signal-to-noise) and BPP (bits per pixel) to evaluate our obtained results.
Compressed buffers after the step detailed in Section 3.2 for arithmetic and after the step
is given in Section 3.3 for Huffman were included in the file size for calculating BPP. All
the images decoded with the modified JPEG decoder had the same PSNR as the images
decoded by the conventional JPEG decoder. This shows the successful implementation of
our modified decoder.

In all images, our proposed approach achieved significant improvements. The demon-
strated improvement in the case of homogeneous images was greater than for complex
images. Among the test images used in the experiment, Figure 4f showed the best result.
The proposed algorithm is tested only for high-resolution and original images. The lowest
image resolution was 1980 × 1272 among the test images shown in Figure 5. Due to
the high possibility of consecutive empty DCT 8 × 8 blocks, the proposed algorithm is
considered useful in high-resolution images. To calculate the average gain in BPP for both
Huffman and arithmetic mode, shown in Table 1, we used Bjontegaard’s metric [15–17].

J. Imaging 2021, 7, 117 11 of 15

Table 1. Calculated Bjontegraad’s metric for BPP.

Images BPP Gain

Huffman Arithmetic

Street View −0.6182% −0.2383%
Woman −0.7618% −0.2160%

Night Scene −2.0211% −0.4155%
Jars −7.7361% −1.2956%

Flowers −11.1837% −0.3836%
Glasses −28.8517% −1.4458%

Screenshot1 −5.9439% −0.9495%
Screenshot2 −11.0584% −1.0505%

Spoon −25.2422% −0.7571%
Sunset −23.903% −1.0889%
Paris −2.0695% −0.3522%

Ice Cream −10.1344% −1.0378%
Air Jet −4.0339% −0.0535%
Statue −7.1532% −0.2405%
Icon −5.6486% −0.7301%

In Tables 2 and 3, for Huffman and Arithmetic encoding mode, respectively, we
describe the test images actual file size encoded by the conventional JPEG encoder [13],
file size when we filtered out the empty blocks, and the difference between actual file size
and when we excluded the empty blocks from encoding. This difference indicates the size
taken by the empty blocks in encoded images. We added another column of the proposed
method. It shows the additional data required by the proposed method to encode the
empty blocks and their locations. Moreover, the column named “Gain” in Tables 2 and 3
represents the ratio of the size required to encode the empty blocks by the conventional
JPEG encoder to the proposed JPEG encoder. All the sizes in Tables 2 and 3 are calculated
in bytes.

Table 2. Encoded images file size information for Huffman encoding mode.

Images QF Original Encoded
File Size

Excluding Empty
Blocks File Size Difference Proposed Method

Additional Data Size Gain

Street View

30 652,351 615,776 36,575 17,498 2.090239

50 846,993 817,950 29,043 16,467 1.763709

70 1,128,045 1,107,694 20,351 14,813 1.373861

90 2,099,492 2,092,765 6727 9511 0.707286

Woman

30 329,175 306,748 22,427 7399 3.031085

50 449,382 429,713 19,669 6591 2.984221

70 663,933 648,092 15,841 6877 2.303475

90 1,362,884 1,355,040 7844 5076 1.545311

Night Scene

30 195,362 178,543 16,819 5435 3.094572

50 265,854 251,525 14,329 5096 2.811813

70 365,488 353,724 11,764 4814 2.443706

90 767,164 760,531 6633 4609 1.439141

Jars

30 356,342 280,478 75,864 18,054 4.20206

50 449,985 394,850 55,135 20,420 2.700049

70 519,012 469,248 49,764 19,361 2.570322

90 823,986 778,846 45,140 19,835 2.275775

J. Imaging 2021, 7, 117 12 of 15

Table 2. Cont.

Images QF Original Encoded
File Size

Excluding Empty
Blocks File Size Difference Proposed Method

Additional Data Size Gain

Flowers

30 61,583 43,227 18,356 2935 6.254174

50 74,527 57,334 17,193 2683 6.408125

70 98,380 83,120 15,260 3790 4.026385

90 159,443 145,509 13,934 4378 3.182732

Glasses

30 45,330 22,687 22,643 1401 16.16203

50 48,643 26,273 22,370 1507 14.84406

70 54,325 33,165 21,160 3134 6.751755

90 88,663 73,472 15,191 6662 2.280246

Screenshot1

30 226,949 196,064 30,885 3528 8.754252

50 294,786 266,043 28,743 3578 8.033259

70 382,787 356,753 26,034 3716 7.00592

90 680,761 656,794 23,967 3232 7.415532

Screenshot2

30 239,702 191,024 48,678 6270 7.763636

50 295,064 248,080 46,984 5914 7.944538

70 367,033 321,095 45,938 5440 8.444485

90 597,895 554,078 43,817 4646 9.431124

Spoon

30 346,814 185,789 161,025 7512 21.4357

50 385,430 228,140 157,290 8816 17.84142

70 469,380 329,066 140,314 19,385 7.238277

90 1,555,706 1,505,563 50,143 23,760 2.110396

Sunset

30 312,033 169,844 142,189 10,366 13.71686

50 346,847 211,625 135,222 11,532 11.72581

70 404,130 279,721 124,409 16,993 7.321191

90 1,084,243 1,048,243 36,000 34,870 1.032406

Paris

30 436,524 354,182 82,342 6047 13.617

50 552,245 474,902 77,343 10,341 7.479257

70 757,204 705,396 51,808 21,228 2.44055

90 1,798,698 1,786,450 12,248 9927 1.233807

Ice Cream

30 533,325 360,830 172,495 20,457 8.432077

50 642,160 487,456 154,704 24,491 6.316769

70 857,003 740,336 116,667 36,672 3.181365

90 2,230,815 2,189,367 41,448 25,609 1.618493

Air Jet

30 141,347 106,033 35,314 7200 4.904722

50 180,196 149,887 30,309 7892 3.840471

70 251,811 230,912 20,899 10,161 2.056786

90 769,441 765,448 3993 5363 0.744546

Statue

30 227,527 188,009 39,518 5507 7.175958

50 311,663 276,427 35,236 8015 4.396257

70 383,561 349,665 33,896 8227 4.120092

90 541,424 507,625 33,799 8207 4.118314

J. Imaging 2021, 7, 117 13 of 15

Table 2. Cont.

Images QF Original Encoded
File Size

Excluding Empty
Blocks File Size Difference Proposed Method

Additional Data Size Gain

Icon

30 182,986 155,532 27,454 4364 6.291017

50 236,248 210,801 25,447 5169 4.923003

70 307,050 284,759 22,291 5790 3.849914

90 558,022 539,548 18,474 5118 3.609613

Table 3. Encoded images file size information for arithmetic encoding mode.

Images QF Original Encoded
File Size

Excluding Empty
Blocks File Size Difference Proposed Method

Additional Data Size Gain

Street View

30 563,266 543,299 19,967 16,393 1.21802

50 763,834 745,207 18,627 14,969 1.244372

70 1,040,824 1,025,306 15,518 12,733 1.218723

90 1,933,744 1,924,674 9070 7675 1.181759

Woman

30 284,075 274,875 9200 6197 1.484589

50 403,134 394,583 8551 5456 1.567265

70 604,432 596,354 8078 5421 1.490131

90 1,250,988 1,244,910 6078 3931 1.546171

Night Scene

30 158,515 153,073 5442 4233 1.285613

50 229,057 224,093 4964 3864 1.284679

70 326,759 321,955 4804 3531 1.360521

90 699,629 695,412 4217 3321 1.269798

Jars

30 219,022 198,674 20,348 15,047 1.352296

50 324,088 302,158 21,930 17,739 1.236259

70 400,090 378,217 21,873 17,421 1.255554

90 620,514 597,811 22,703 17,940 1.265496

Flowers

30 30,529 27,844 2685 1954 1.374104

50 45,240 42,427 2813 1715 1.640233

70 71,772 68,150 3622 3008 1.204122

90 130,042 126,119 3923 3173 1.236369

Glasses

30 10,348 9045 1303 857 1.52042

50 14,417 12,976 1441 940 1.532979

70 21,065 18,930 2135 1763 1.211004

90 60,880 55,118 5762 5421 1.062904

Screenshot1

30 160,141 154,970 5171 2486 2.080048

50 223,427 217,609 5818 2672 2.177395

70 303,600 297,600 6000 2936 2.043597

90 562,296 556,174 6122 2616 2.340214

Screenshot2

30 156,651 149,460 7191 4979 1.444266

50 211,095 203,824 7271 4675 1.555294

70 280,709 273,525 7184 4176 1.720307

90 497,525 490,238 7287 3554 2.050366

J. Imaging 2021, 7, 117 14 of 15

Table 3. Cont.

Images QF Original Encoded
File Size

Excluding Empty
Blocks File Size Difference Proposed Method

Additional Data Size Gain

Spoon

30 92,496 85,766 6730 4679 1.438342

50 140,408 132,610 7798 5675 1.374097

70 233,964 216,667 17,297 15,780 1.096134

90 1,140,213 1,118,546 21,667 20516 1.056103

Sunset

30 94,009 82,482 11,527 8617 1.337705

50 137,292 124,473 12,819 9588 1.336984

70 206,631 191,088 15,543 12,932 1.201902

90 874,864 842,381 32,483 32,252 1.007162

Paris

30 294,264 285,669 8595 4483 1.917243

50 416,339 405,288 11,051 8001 1.381202

70 625,035 604,641 20,394 18,344 1.111753

90 1,546,620 1,539,256 7364 7196 1.023346

Ice Cream

30 255,679 229,832 25,847 18,736 1.379537

50 380,400 350,686 29,714 22,358 1.32901

70 609,735 570,596 39,139 32,946 1.187974

90 1,810,811 1,785,977 24,834 21,223 1.170146

Air Jet

30 81,376 74,943 6433 5715 1.125634

50 125,116 118,442 6674 6018 1.109006

70 199,974 191,418 8556 8409 1.017481

90 642,349 638,514 3835 3978 0.964052

Statue

30 152,776 146,856 5920 3861 1.533282

50 240,670 233,264 7406 6700 1.105373

70 312,434 305,055 7379 6545 1.127426

90 419,035 411,561 7474 6520 1.146319

Icon

30 136,275 131,194 5081 3421 1.485238

50 192,159 186,262 5897 4094 1.440401

70 267,356 260,925 6431 4484 1.434211

90 517,600 511,519 6081 3752 1.620736

5. Conclusions

In this paper, we have proposed an improved version of the conventional JPEG
algorithm. Based on experimental results, we concluded that the proposed algorithm
increases the compression ratio. In other words, a higher quality image can be obtained at
the same BPP.

A good balance between quality and BPP is always a major concern in the field
of image processing. In the market, almost all social networks use JPEG encoders and
compress images prior to sending. Compression is required due to storage resource
restrictions on local and remote servers. If all users were to send and store images at their
original quality, then storage space resource requirements would become an even more
significant issue.

The conventional JPEG encoder uses both Huffman and arithmetic entropy encoding
modes. Thus, to maintain an equivalent complexity level between the conventional and our
proposed entropy coding, if the arithmetic encoding mode is selected in conventional JPEG,

J. Imaging 2021, 7, 117 15 of 15

we used an arithmetic encoder to compress the additional data; otherwise, the Huffman
encoder was used. Other than Huffman encoding and arithmetic encoding, the remaining
steps are very simple. Thus, the complexity difference is negligible.

Our experimental results demonstrate that at the same PSNR value as the conventional
JPEG encoder, the modified JPEG encoder shows better performance in terms of BPP, as
shown in Figure 5 and Table 1. In the future, we may implement the same scenario in other
image encoding methods.

Author Contributions: Conceptualization, Y.I. and O.-J.K.; methodology, Y.I.; software, Y.I.; valida-
tion, Y.I. and O.-J.K.; formal analysis, O.-J.K.; investigation, O.-J.K.; resources, Y.I.; data curation,
Y.I.; writing—original draft preparation, Y.I.; writing—review and editing, O.-J.K.; visualization, Y.I;
supervision, O.-J.K.; project administration, O.-J.K.; funding acquisition, O.-J.K. Both authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Institute of Information & communications Technology
Planning & Evaluation (IITP), grant number No.2020-0-00347.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. All test images
were obtained from JPEG-AI dataset. They are available at “JPEG AI image coding common test
conditions”, ISO/IEC JTC1/SC29/WG1 N84035, 84th Meeting, Brussels, Belgium (July 2019).

Acknowledgments: This work was supported by the Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2020-0-00347,
Development of JPEG Systems standard for snack culture contents).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, M.; Bourbakis, N. An overview of lossless digital image compression techniques. In Proceedings of the 48th Midwest

Symposium on Circuits and Systems, Covington, KY, USA, 7–10 August 2005; Volume 2, pp. 1099–1102. [CrossRef]
2. Cai, Q.; Song, L.; Li, G.; Ling, N. Lossy and lossless intra coding performance evaluation: HEVC, H.264/AVC, JPEG 2000 and

JPEG LS. In Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference,
Hollywood, CA, USA, 3–6 December 2012; pp. 1–9.

3. Pennebaker, W.B.; Mitchell, J.L. JPEG: Still Image Data Compression Standard; Springer Science & Business Media: Berlin, Germany,
1992.

4. Wallace, G.K. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, xviii–xxxiv. [CrossRef]
5. Huffman, D.A. A method for the construction of minimum-redundancy codes. Proc. IRE 1952, 40, 1098–1101. [CrossRef]
6. Pennebaker, W.B.; Mitchell, J.L. Arithmetic coding articles. IBM J. Res. Dev. 1988, 32, 717–774. [CrossRef]
7. Sharma, M. Compression using huffman coding. Int. J. Comput. Sci. Netw. Secur. 2010, 10, 133–141.
8. Mitzenmacher, M. On the hardness of finding optimal multiple preset dictionaries. IEEE Trans. Inf. Theory 2004, 50, 1536–1539.

[CrossRef]
9. Kingsbury, N. 4F8 Image Coding Course. Lect. Notes. 2016. Available online: http://sigproc.eng.cam.ac.uk/foswiki/pub/Main/

NGK/4F8CODING.pdf (accessed on 15 July 2021).
10. Shahbahrami, A.; Bahrampour, R.; Rostami, M.S.; Mobarhan, M.A. Evaluation of Huffman and arithmetic algorithms for

multimedia compression standards. arXiv 2011, arXiv:1109.0216. [CrossRef]
11. Kavitha, V.; Easwarakumar, K.S. Enhancing privacy in arithmetic coding. ICGST-AIML J. 2008, 8, 1.
12. Mahoney, M. Data Compression Explained. Available online: mattmahoney.net (accessed on 15 July 2021).
13. Independent JPEG Group. Available online: https://libjpeg-turbo.org (accessed on 15 July 2021).
14. Ascenso, J.; Akayzi, P. JPEG AI image coding common test conditions. In Proceedings of the ISO/IEC JTC1/SC29/WG1 N84035,

84th Meeting, Brussels, Belgium, 13–19 July 2019.
15. Bjontegaard, G. Calculation of average PSNR differences between RD-curves. VCEG-M33 2001.
16. Pateux, S.; Joel, J. An excel add-in for computing Bjontegaard metric and its evolution. ITU-T SG16 Q 6 2007, 7.
17. VCEG-M34. Available online: http://wftp3.itu.int/av-arch/video-site/0104_Aus/VCEG-M34.xls (accessed on 15 July 2021).

http://doi.org/10.1109/MWSCAS.2005.1594297
http://doi.org/10.1109/30.125072
http://doi.org/10.1109/JRPROC.1952.273898
http://doi.org/10.1147/rd.326.0717
http://doi.org/10.1109/TIT.2004.830778
http://sigproc.eng.cam.ac.uk/foswiki/pub/Main/NGK/4F8CODING.pdf
http://sigproc.eng.cam.ac.uk/foswiki/pub/Main/NGK/4F8CODING.pdf
http://doi.org/10.5121/ijcsea.2011.1404
mattmahoney.net
https://libjpeg-turbo.org
http://wftp3.itu.int/av-arch/video-site/0104_Aus/VCEG-M34.xls

	Introduction
	Related Work
	JPEG Image Coding Standard
	Entropy Coding
	Huffman
	Arithmetic

	Proposed Algorithm
	Filtration of Blocks
	Changing Bits
	Replacing Values

	Experimental Results
	Conclusions
	References

