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Abstract: We consider Wilson-Cowan-type models for the mathematical description of orientation-
dependent Poggendorff-like illusions. Our modelling improves two previously proposed cortical-
inspired approaches, embedding the sub-Riemannian heat kernel into the neuronal interaction term,
in agreement with the intrinsically anisotropic functional architecture of V1 based on both local and
lateral connections. For the numerical realisation of both models, we consider standard gradient
descent algorithms combined with Fourier-based approaches for the efficient computation of the
sub-Laplacian evolution. Our numerical results show that the use of the sub-Riemannian kernel
allows us to reproduce numerically visual misperceptions and inpainting-type biases in a stronger
way in comparison with the previous approaches.

Keywords: Wilson-Cowan modelling; visual illusions; cortical-inspired imaging; local histogram
equalisation; sub-Riemannian heat kernel

1. Introduction

The question of how we perceive the world around us has been an intriguing topic
since ancient times. For example, we can consider the philosophical debate around the
concept of entelechy, which started with the early studies of the Aristotelian school, in order
to answer this question while, on the side of phenomenology and its relation to natural
sciences, we can think of the theory started by Husserl. A well-known and accepted theory
of perception is that formulated within Gestalt psychology [1,2].

Gestalt psychology is a theory for understanding the principles underlying the con-
figuration of local forms giving rise to a meaningful global perception. The main idea of
Gestalt psychology is that the mind constructs the whole by grouping similar fragments
rather than simply summing the fragments as if they were all different. In terms of visual
perception, such similar fragments correspond to point stimuli with the same (or very close)
valued features of the same type. As an enlightening example from vision science, we
tend to group the same coloured objects in an image and to perceive them as an ensemble
rather than as objects with different colours. There have been many psychophysical studies
which have attempted to provide quantitative parameters describing the tendencies of the
mind in visual perception based on Gestalt psychology. A particularly important one is the
pioneering work of Field et al. [3], where the authors proposed a representation, called the
association field, that modelled specific Gestalt principles. Furthermore, they also showed
that it is more likely that the brain perceives fragments together that are similarly oriented
and aligned along a curvilinear path than the ones that are rapidly changing orientations.

J. Imaging 2021, 7, 41. https://doi.org/10.3390/jimaging7030041 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-8156-5526
https://doi.org/10.3390/jimaging7030041
https://doi.org/10.3390/jimaging7030041
https://doi.org/10.3390/jimaging7030041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7030041
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/2313-433X/7/3/41?type=check_update&version=3


J. Imaging 2021, 7, 41 2 of 18

The presented model for neural activity is a geometrical abstraction of the orientation-
sensitive V1 hypercolumnar architecture observed by Hubel and Wiesel [4–6]. This ab-
straction generates a good phenomenological approximation of the V1 neuronal connections
existing in the hypercolumnar architecture, as reported by Bosking et al. [7]. In this frame-
work, the corresponding projections of the neuronal connections in V1 onto a 2D image
plane are considered to be the association fields described above and the neuronal connec-
tions are modeled as the horizontal integral curves generated by the model geometry. The
projections of such horizontal integral curves were shown to produce a close approximation
of the association fields, see Figure 1. For this reason, the approach considered by Citti,
Petitot and Sarti and used in this work is referred to as cortically-inspired.

(a) Association fields (b) Projected horizontal integral curves

Figure 1. Projections of horizontal integral curves approximate the association fields from the experiment of Field, Hayes
and Hess [3]. They are generated by the sub-Riemannian model geometry proposed by Citti and Sarti [8]. Figures are
adapted from [3,8].

We remark that the presented model for neural activity is a phenomenological model
that provides a mathematical understanding of early perceptual mechanisms at the cortical
level by starting from very structure of receptive profiles. Nevertheless, it has been very
useful for many image-processing applications, see, for example, [9,10].

In this work, we follow this approach for a better understanding of the visual percep-
tion biases due to visual distortions often referred to as visual illusions. Visual illusions are
described as the mismatches between reality and its visual perception. They result either
from a neural conditioning introduced by external agents such as drugs, microorganisms
and tumours [11,12], or from self-inducing mechanisms evoking visual distortions via
proper neural functionality applied to a specific stimulus [13,14]. The latter type of illusion
is due to the effects of neurological and biological constraints on the visual system [15].

In this work, we focus on illusions induced by contrast induction and orientation
misalignments, with a particular focus on the well-known Poggendorff illusion and its
variations, see Figure 2. This is a geometrical optical illusion [16,17] in which a misaligned
oblique perception is induced by the presence of a central bar [18].
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Figure 2. The original Poggendorff illusion: the red colored line is aligned with the black line
although the blue one is falsely perceived as its continuation. Source: Wikipedia.

1.1. The Functional Architecture of the Primary Visual Cortex

It has been known since the celebrated experiments of Hubel and Wiesel [4–6] that
neurons (simple cells) in the primary visual cortex (V1) perform boundary (hence orienta-
tion) detection and propagate their activations through cortical connectivity, in accordance
with the psychophysical results of Fields and Hayes [3]. Hubel and Wiesel showed that
simple cells have a spatial arrangement based on the so-called hypercolumns in V1. In this
arrangement, simple cells that are sensitive to different orientations at the same retinal
location are found in the same vertical column constructed on the cortical surface. Adjacent
columns contain simple cells, which are sensitive to close positions.

Several models have been proposed to describe the functional architecture of V1
and the neural connectivity within it. Koenderink et al. [19,20] focused on differential
geometric approaches to study the visual space where they modelled the invariance of
simple cells with respect to suitable symmetries in terms of a family of Gaussian functions.
Hoffman [21,22] provided the basic framework of vision models by interpreting the hy-
percolumn architecture of V1 as a fibre bundle. Following a similar reasoning, Petitot and
Tondut [23] further developed this modelling, providing a new model, coherent both with
the structure of orientation sensitive simple cells and the long range neural connectivity
between V1 simple cells. In their model, they first observed that the simple cell orientation
selectivity induces a contact geometry (associated with the first Heisenberg group) rendered
by the fibres of orientations. Moreover, they showed that a specific family of curves found
via a constrained minimisation approach in the contact geometry fits the aforementioned
association fields reported by Field et al. [3]. In [8,24], Citti and Sarti further developed
the model of Petitot and Tondut, by introducing a group based approach, which was then
refined by Boscain, Gauthier et al. [25,26], see also the monograph in [27]. The so-called
Citti-Petitot-Sarti (CPS) model exploits the natural sub-Riemannian (sR) structure of the
group of rotations and translations SE(2) as the V1 model geometry.

In this framework, simple cells are modelled as points of the three-dimensional group
M = R2 × P1. Here, P1 is the projective line, obtained by identifying antipodal points in
S1. The response of simple cells to the two-dimensional visual stimuli is identified by lifting
them toM via a Gabor wavelet transform. Neural connectivity is then modelled in terms
of horizontal integral curves given by the natural sub-Riemannian structure ofM. Activity
propagation along neural connections can further be modelled in terms of diffusion and
transport processes along the horizontal integral curves.

In recent years, the CPS model has been exploited as a framework for several cortical-
inspired image processing problems by various researchers. We mention the large corpus of
literature by Duits et al., see, for example, [28–30] and the state-of-the-art image inpainting
and image recognition algorithms developed by Boscain, Gauthier, et al. [9,31]. Some
extensions of the CPS model geometry and its applications to other image processing
problems can be found in [32–39].
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1.2. Mean-Field Neural Dynamics & Visual Illusions

Understanding neural behaviors is in general a very challenging task. Reliable re-
sponses to stimuli are typically measured at the level of population assemblies comprised
by a large number of coupled cells. This motivates the reduction, whenever possible, of
the dynamics of a neuronal population to a neuronal mean-field model, which describes
large-scale dynamics of the population as the number of neurons goes to infinity. These
mean-field models, inspired by the pioneering work of Wilson and Cowan [40,41] and
Amari [42], are low dimensional in comparison with their corresponding ones based on
large-scale population networks. Yet, they capture the same dynamics underlying the
population behaviours.

In the framework of the CPS model for V1 discussed above, several mathematical
models were proposed to describe the neural activity propagation favouring the creation
of visual illusions, including Poggendorff type illusions. In [37], for instance, illusions are
identified with suitable strain tensors, responsible for the perceived displacement from
the grey levels of the original image. In [43], illusory patterns are identified by a suitable
modulation of the geometry of SE(2) = R2 × S1 and are computed as the associated
geodesics via the fast-marching algorithm.

In [44–46], a variant of the Wilson-Cowan (WC) model based on a variational principle
and adapted to the M geometry of V1 was employed to model the neuronal activity
and generate illusory patterns for different illusion types. The modelling considered in
these works is strongly inspired by the integro-differential model firstly studied in [47]
for perception-inspired Local Histogram Equalisation (LHE) techniques and later applied
in a series of work, see, for example, [48,49] for the study of contrast and assimilation
phenomena. By further incorporating a cortical-inspired modelling, the authors showed
in [44–46] that cortical Local Histogram Equalisation (LHE) models are able to replicate
visual misperceptions induced not only by local contrast changes, but also by orientation-
induced biases similar to the ones in Figure 2. Interestingly, the cortical LHE model [44–46]
was further shown to outperform both standard and cortical-inspired WC models and was
rigorously shown to correspond to the minimisation of a variational energy, which suggests
more efficient representation properties [50,51]. One major limitation in the modelling
considered in these works is the use of neuronal interaction kernels (essentially, isotropic
3D Gaussian), which are not compatible with the natural sub-Riemannian structure of V1
proposed in the CPS model.

1.3. Main Contributions

In this work, we encode the sub-Riemannian structure of V1 into both WC and LHE
models by using a sub-Laplacian procedure associated with the geometry of the spaceM
described in Section 1.1. Similar to [44–46], with the lifting procedure associated with a
given two dimensional image, the corresponding neuronal response inM is performed
by means of all-scale cake wavelets, introduced in [52,53]. A suitable gradient-descent
algorithm is applied to compute the stationary states of the neural models.

Within this framework, we study the family of Poggendorf visual illusions induced
by local contrast and orientation alignment of the objects in the input image. In particular,
we aim to reproduce such illusions by the proposed models in a way that is qualitatively
consistent with the psychophysical experience.

Our findings show that it is possible to reproduce Poggendorff-type illusions by both
the sR cortical-inspired WC and LHE models. This, compared with the results in [44,45]
where the cortical WC model is endowed with a Riemannian (isotropic) 3D kernel was
shown to fail to reproduce Poggendoff-type illusions, shows that adding the natural sub-
Laplacian procedure to the computation of the flows improves the capability of those
cortical-inspired models in terms of reproducing orientation-dependent visual illusions.
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2. Cortical-Inspired Modelling

In this section we recall the fundamental features of CPS models. The theoretical crite-
rion underpinning the model relies on the so-called neurogeometrical approach introduced
in [8,23,54]. According to this model, the functional architecture of V1 is based on the
geometrical structure inspired by the neural connectivity in V1.

2.1. Receptive Profiles

A simple cell is characterised by its receptive field, which is defined as the domain of
the retina to which the simple cell is sensitive. Once a receptive field is stimulated, the
corresponding retinal cells generate spikes which are transmitted to V1 simple cells via
retino-geniculo-cortical paths.

The response function of each simple cell to a spike is called the receptive profile (RP),
and is denoted by ψ(ζ,θ) : Q → C. It is basically the impulse response function of a V1
simple cell. Conceptually it is the measurement of the response of the corresponding V1
simple cell to a stimulus at a point (Note that we omit the coordinate maps between the
image plane and retina surface, and the retinocortical map from the retina surface to the
cortical surface. In other words, we assume that the image plane and the retinal surface are
identical and denote both by Q ⊂ R2.) ζ = (x, y) ∈ Q.

In this study, we assume the response of simple cells to be linear. That is, for a given
visual stimulus f : Q → R we assume the response of the simple cell at V1 coordinates
(ζ, θ) to be

a0(ζ, θ) = 〈 f , ψ(ζ,θ)〉L2(Q) =
∫

Q
ψ(ζ,θ)(u) f (u) du. (1)

This procedure defines the cortical stimulus a0 :M→ C associated with the image
f . We note that receptive field models consisting of cascades of linear filters and static
non-linearities, although not perfect, may be more adequate to account for responses to
stimuli [20,55,56]. Several mechanisms such as, for example, response normalisation, gain
controls, cross-orientation suppression or intra-cortical modulation, might intervene to
radically change the shape of the profile. Therefore, the above static and linear model
for the receptive profiles should be considered as a first approximation of the complex
behaviour of a real dynamic receptive profile, which cannot be perfectly described by static
wavelet frames.

Regarding the form of the RP, in [8], a simplified basis of Gabor functions was proposed
as good candidates for modelling the position-orientation sensitive receptive profiles for
neuro-physiological reasons [57,58]. This basis has then been extended to take into account
additional features such as scale [54], velocity [33] and frequency-phase [39]. On the
other hand, Duits et al. [53] proposed so-called cake kernels as a good alternative to Gabor
functions, and showed that cake kernels were adequate for obtaining simple cell output
responses which were used to perform certain image processing tasks such as image
enhancement and completion based on sR diffusion processes .

In this study, we employed cake kernels as the models of position-orientation RPs
obtaining the initial simple cell output responses to an input image, and we used the
V1 model geometry M to represent the output responses. We modelled the activity
propagation along the neural connectivity by using the combination of a diffusion process
based on the natural sub-Laplacian and a Wilson-Cowan type integro-differential system.

2.2. Horizontal Connectivity and Sub-Riemannian Diffusion

Neurons in V1 present two type of connections—local and lateral. Local connections
connect neurons belonging to the same hypercolumn. On the other hand, lateral connec-
tions account for the connectivity between neurons belonging to different hypercolums,
but along a specific direction. In the CPS model these are represented (This expression
does not yield smooth vector fields on M. Indeed, e.g., X1(ζ, 0) = −X1(ζ, π) despite
that 0 and π are identified in P1. Although in the present application such difference is
inconsequential, since we are only interested in the direction (which is smooth) and not
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in the orientation, this problem can be solved by defining X1 in an appropriate atlas for
M [25].) by the vector fields

X1 = cos θ∂x + sin θ∂y, X2 = ∂θ . (2)

The above observation yields to the modelling of the dynamic of the neuronal excita-
tion {Zt}t≥0 starting from a neuron (ζ, θ) via the following stochastic differential equation

dZt = X1dut + X2dvt, Z0 = (ζ, θ), (3)

where ut and vt are two one-dimensional independent Wiener processes. As a consequence,
in [25] the cortical stimulus a0 induced by a visual stimulus f0 is assumed to evolve
according to the Fokker-Planck equation

∂tψ = Lψ, L = X2
1 + β2X2

2 . (4)

Here, β > 0 is a constant encoding the unit coherency between the spatial and orientation
dimensions.

The operator L is the sub-Laplacian associated with the sub-Riemannian structure
on M with orthonormal frame {X1, X2}, as presented in [8,25]. It is worth mention-
ing that this operator is not elliptic, since {X1, X2} is not a basis for TM. However,
span{X1, X2, [X1, X2]} = TM. Hence, {X1, X2} satisfies the Hörmander condition and L
is a hypoelliptic operator [59] which models the activity propagation between neurons in
V1 as the diffusion concentrated to a neighborhood along the (horizontal) integral curves
of X1 and X2.

A direct consequence of hypoellipticity is the existence of a smooth kernel for (4). That
is, there exists a function (t, ξ, ν) ∈ R+ ×M×M 7→ kt(ξ, ν) such that the solution of (4)
with initial datum a0 reads

ψ(t, ξ) = etLa0(ξ) =
∫
M

kt(ξ, ν)a0(ν) dν. (5)

An analytic expression for kt can be derived in terms of Mathieu functions [10,29]. This
expression is however cumbersome to manipulate, and it is usually more efficient to resort
to different schemes for the numerical implementation of (4), see, for example, Section 4.

2.3. Reconstruction on the Retinal Plane

Activity propagation evolves the lifted visual stimulus in time. In order to obtain a
meaningful result, which is represented on a 2-dim image plane, we have to transform the
evolved lifted image back to the 2-dim image plane. We achieve this by using the projection
given by

f (ζ, T) =
∫ π

0
a(ζ, θ, T) dθ, (6)

where f : R2 × (0, T]→ R and 0 < T < ∞ denote the processed image and the final time
of the evolution, respectively. One easily checks that this formula yields f (·, 0) = f0 under
the assumption ∫ π

0
ψξ,θ(u) dθ = 1. (7)

3. Describing Neuronal Activity via Wilson-Cowan-Type Models

In neurophysiological experiments, reliable neural responses to visual stimuli are
generally observed at the neuronal population level—the information processing and the
response produced are obtained by integrating the individual dynamics of the neurons
interacting within the population. Modelling neuronal populations can be done via coupled
differential systems (networks) consisting of a large number of equations, and the average
behaviour can in principle be used to represent population behaviour. This requires high
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computational power and the use of challenging analytical approaches due to the high
dimension of the network. A different mesoscopic approach consists in considering the
average network behaviour as the number of neurons in the network is let to infinity. The
asymptotic limit of the network can thus be written in terms of the probability distribution
(density) of the state variables. This asymptotic limit is the so-called mean-field limit. It
has been successfully used as a reference framework in several papers, see, for example,
Refs. [60–62] and will also be the approach considered in this work.

3.1. Wilson-Cowan (WC) Model

Let a(ζ, θ, t) denote the evolving activity of the neuronal population located at ζ ∈ R2

and sensitive to the orientation θ ∈ P1 at time t ∈ (0, T]. By using the shorthand notation
ξ = (ζ, θ), η = (ν, φ) ∈ M, the Wilson-Cowan (WC) model on Q ⊂ R2 can be written
as follows:

∂ta(ξ, t) = −(1 + λ)a(ξ, t) +
1

2M

∫
Q×[0,π)

ωξ(η)σ
(

a(η, t)
)

dη + λa0(ξ) + µ(ξ). (8)

Here, µ : Q→ R is a smoothed version of the simple cell output response a0 via a Gaussian
filtering, while parameters λ > and M > 0 are fixed positive constants. Following the
standard formulation of WC models studied, for example, in [60,63] we have that the
role of the time-independent external stimulus h : Q × [0, π) → R is played here by
h(ξ) := λa0(ξ) + µ(ξ) while model parameters can be set as β := 1 + λ and ν := 1/2M.
The function σ : R→ [−1, 1] stands for a nonlinear saturation function, which we choose
as the sigmoid:

σ(r) := −min
(

1, max(α(r− 1/2), −1)
)

, α > 1. (9)

The connectivity kernel ωξ models the interaction between neurons inM. Its defini-
tion should thus take into account the different type of interactions happening between
connected neurons in V1, for example, it should model at the same time both local and
lateral connections via the sub-Riemannian diffusion described in Section 2.2.

In [44,45] the authors showed that (8) does not arise from a variational principle.
That is, it there exists no energy function E : L2(M) → R such that (8) can be recast as
the problem

∂ta(ξ, t) = −∇E(a(ξ, t)), a(ξ, 0) = a0 = L f0. (10)

Under this formulation, stationary states a∗ of (8) are (local) minima of E.
The interest of considering an evolution model following a variational principle in the

sense (10) is given by its connection with the optimisation-based approaches considered
in [64] to describe the efficient coding problem as an energy minimisation problem, which
involves natural image statistics and biological constraints which force the final solution to
show the least possible redundancy. Under this interpretation, the non-variational model
(8) is suboptimal in reducing redundant information in visual stimuli, see Section 2.1 in [44]
for more details.

3.2. Local Histogram Equalisation (LHE) Model

In order to build a model, which complies with the efficient neural coding described
above, in [44,45], the authors showed that (8) can be transformed into a variational problem
by replacing the term σ(a(η, t)) with σ̂(a(ξ, t)− a(η, t)) for a suitable choice of the nonlinear
sigmoid function σ̂, thus enforcing non-linear activations on local contrast rather than on
local activity. The corresponding model reads:

∂ta(ξ, t) = −(1 + λ)a(ξ, t) +
1

2M

∫
Q×[0,π)

ωξ(η)σ̂
(

a(ξ, t)− a(η, t)
)

dη + λa0(ξ) + µ(ξ), (11)
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where σ̂(r) := −σ(r + 1/2), and σ as in (9). This model has been first introduced in [47] as
a variational reformulation of the Local Histogram Equalization (LHE) procedure for RGB
images. The corresponding energy E : L2(M)→ R for which (10) holds is:

E(a) =
λ

2

∫
Q×[0,π)

|a(ξ)− a0(ξ)|2 dξ +
1
2

∫
Q×[0,π)

|a(ξ)− µ(ξ)|2 dξ

+
1

2M

∫
Q×[0,π)

∫
Q×[0,π)

ωξ(η)Σ(a(ξ)− a(η)) dξ dη, (12)

where Σ : R→ R is any (even) primitive function for σ̂.
As it is clear from (12), the local histogram equalisation properties of the model are

due here to the activation averaging, which is localised by the kernel ωξ , which should thus
be adapted to the natural geometry ofM (see Section 3.3 for a more detailed discussion).

3.3. A Sub-Riemannian Choice of the Interaction Kernel ωξ

In (8) and (11), the geometric structure of the underlying space M is captured by
the connectivity kernel ωξ , which characterises the activity propagation along neural
connections in V1. In [44,45], simple 3-dimensional Gaussian-type kernels were considered.
This choice was shown to be good enough in these works to reproduce a large number of
contrast- and orientation-dependent Poggendorff-like illusions via the LHE model in (11),
but not by the WC one (8).

Here, motivated by the discussion in Section 2.2, we study the effect of a more natural
choice for the interaction kernel ωξ , which we set as ωξ(η) = kτ(ξ, η), where kτ : M×
M→ R is the sub-Riemannian heat kernel evaluated at time τ > 0. Indeed, 3-dimensional
isotropic Gaussian kernels are obtained via the Euclidean heat equation are not coherent
with the intrinsically anisotropic neuronal connectivity structure of V1. Recalling (5), this
choice of ωξ allows us to rewrite the WC Equation (8) as

∂ta(ξ, t) = −(1 + λ)a(ξ, t) +
1

2M
eτL[σ(a(·, t))](ξ) + λa0(ξ) + µ(ξ). (13)

We will call (13) from now on model (sR-WC) throughout the paper.
Using this formulation, the evaluation of the interaction term at point (ξ, t) ∈ M×

(0, T] can be done by solving the sub-Riemannian heat equation and let it evolve for a
certain inner-time τ > 0. This avoids to deal directly with the explicit expression of kτ

whose numerical implementation is very delicate, as explained, for example, in [10].
A similar simplification is not readily available for the LHE Equation (11), due to the

dependence on ξ of the integrand function. In this setting, we follow the discussion in [47]
and replace the non-linearity σ̂ by a polynomial approximation of sufficiently large order n.
Namely, we look for a polynomial approximation of σ̂ of the form σ̂(r) = c0 + . . . + cnrn,
which allows us to write

σ̂
(

a(ξ, t)− a(η, t)
)
≈

n

∑
i=0

[ i

∑
j=0

(−1)j−i+1cj

(
j
i

)
aj−i(ξ, t)

]
︸ ︷︷ ︸

Ci(ξ,t):=

ai(η, t)

=
n

∑
i=0

Ci(ξ, t)ai(η, t).

(14)

This allows us to approximate the interaction term in (11) as

∫
Q×[0,π)

kτ(ξ, η)σ̂
(

a(ξ, t)− a(η, t)
)

dη ≈
n

∑
i=0

Ci(ξ, t)
∫

Q×[0,π)
kτ(ξ, η)ai(η, t) dη

=
n

∑
i=0

Ci(ξ, t) eτL
[

ai(·, t)
]
(ξ).

(15)



J. Imaging 2021, 7, 41 9 of 18

Finally, the resulting (approximated) sub-Riemannian LHE equation reads:

∂ta(ξ, t) = −(1 + λ)a(ξ, t) +
1

2M

n

∑
i=0

Ci(ξ, t) eτL
[

ai(·, t)
]
(ξ) + λa0(ξ) + µ(ξ). (16)

We will call (16) from now on model (sR-LHE) throughout the paper.

4. Discrete Modelling and Numerical Realisation

In this Section, we report a detailed description of how models (sR-WC) and (sR-LHE)
can be formulated in a complete discrete setting, providing, in particular, some insights on
how the sub-Riemannian evolution can be realised. We further add a self-contained section
regarding the gradient-descent algorithm used to perform the numerical experiments
reported in Section 5, for more details see [44,46].

4.1. Discrete Modelling and Lifting Procedure via Cake Wavelets

First, the sub-Riemannian diffusion eτL is discretised by a final time τ = m∆τ, where
m and ∆τ denote the number of iterations and the time-step, respectively. For N ∈ N+ and
∆x, ∆y ∈ R+ denoting the spatial sampling size, we then discretise the given grey-scale
image function f0 associated with the retinal stimulus on a uniform square spatial grid
Q := {(xi, yj) = (i∆x, j∆y) : i, j = 1, 2, . . . , N} ⊂ R2 and denote, for each i, j = 1, 2, . . . , N,
the brightness value at point ζi,j := (xi, yj) ∈ Q by

F0[i, j] = f0(xi, yj) = f0(ζi,j). (17)

As far as the orientation sampling is concerned, we used a uniform orientation grid with
points Θ := {θk := k∆θ, k = 1, . . . , K}, K ∈ N+ and ∆θ = π/K . We can then define the
discrete version of the simple cell response a0(xi, yj, θk) to the visual stimulus located at
ζi,j ∈ Q with local orientation θk ∈ Θ at time t = 0 of the evolution as

A0[i, j, k] = a(xi, yj, θk, 0) = a(ζi,j, θk, 0) = (L f0)i,j,k, (18)

where L : Q→ Q×Θ is the lifting operation to be defined.
To do so, we consider in the following the image lifting procedure based on cake

kernels introduced in [53] and used, for example, in [32,44,46]. We write the cake kernel
centered at ζi,j and rotated by θk as

Ψ[i,j,k][`, m] = ψ(ζi,j ,θk)
(x`, xm), (19)

where `, m ∈ {1, 2, . . . , N}. We can then write the lifting operation applied to the initial
image f0 for all ζi,j ∈ Q and θk ∈ Θ as:

(L f0)i,j,k = A0[i, j, k] = ∑
l,m

Ψ[i,j,k][`, m] f0[`, m]. (20)

Finally, for P ∈ N+ we consider a time-discretisation of the interval (0, T] at time
nodes T := {tp := p∆t, p = 1, . . . P}, P ∈ N+ with ∆t := T/P.

The resulting fully-discretised neuronal activation at ζi,j = (xi, yj) ∈ Q, θk ∈ Θ and
tp ∈ T will be thus denoted by:

Ap[i, j, k] = a(ζi,j, θk, tp). (21)

4.2. Sub-Riemannian Heat Diffusion

Let g :M→ R be a given cortical stimulus, and denote and set G[i, j, k] = g(ξi,j, θk).
In this section we describe how to compute

expτ G[i, j, k] ≈ eτLg(ζi,j, θk). (22)
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The main difficulty here is due the degeneracy arising from the anisotropy of the
sub-Laplacian. Indeed, developing the computations in (4), we have

L = DT`D, D =

 ∂x
∂y
∂θ

, ` =

 cos2 θ cos θ sin θ 0
cos θ sin θ sin2 θ 0

0 0 β2

. (23)

In particular, it is straightforward to deduce that the eigenvalues of ` are (0, β2, 1).
The discretisation of such anisotropic operators can be done in several ways, see for

example [29,30,39,65]. In our implementation, we follow the method presented in [26],
which is tailored around the group structure of SE(2), the universal cover ofM, and based
on the non-commutative Fourier transform, see also [9].

It is convenient to assume for the following discussion ∆x = ∆y =
√

N and ∆θ = π/K.
The “semi-discretised” sub-Laplacian LK can be defined by

Lg ≈ LKG := D2G + ΛKG, (24)

where by ΛK we denote the central difference operator discretising the derivatives along
the θ direction, that is, the operator

∂2
θG[i, j, k] ≈ ΛKG[i, j, k] =

g(ξi,j, θk−1)− 2g(ξij, θk) + g(ξi,j, θk+1)

2
. (25)

The operator D is the diagonal operator defined by

DG[i, j, k] =
(
cos(k∆θ)∂x + sin(k∆θ)∂y

)
g(ξi,j, θk). (26)

The full discretisation is then achieved by discretising the spatial derivatives as

∂xG[i, j, k] ≈
√

N
2
(

g(ξi+1,j, θk)− g(ξi−1,j, θk−1)
)
, (27)

∂yG[i, j, k] ≈
√

N
2
(

g(ξi,j+1, θk)− g(ξi,j−1, θk−1)
)
. (28)

Under the discretisation LK of L defined in (24), we now resort to Fourier methods to
compute efficiently the solution of the sub-Riemannian heat equation

∂tψ = Lgψ, ψ|t=0 = g. (29)

In particular, let Ĝ[r, s, k] be the discrete Fourier transform (DFT) of G w.r.t. the
variables i, j, i.e.,

Ĝ[r, s, k] =
1
N

N

∑
r,s=1

G[i, j, k]e
ι2π
N ((r−1)(i−1)+(s−1)(j−1)). (30)

A straightforward computation shows that

D̂G[r, s, k] =ι
√

Nd[r, s, k]Ĝ[r, s, k],

d[r, s, k] := cos(k∆θ) sin
(

2πr
N

)
+ sin(k∆θ) sin

(
2πs
N

)
.

(31)

Hence, (29) is mapped by the discrete Fourier transform (DFT) to the following
completely decoupled system of N2 ordinary linear differential equations on CK:{

d
dt Ψt[r, s, ·] =

(
ΛN − N

2 diagk d[r, s, k]2
)

Ψt[r, s, ·],
Ψ0[r, s, k] = Ĝ[r, s, k]

r, s ∈ {1, . . . , N}, (32)
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which can be solved efficiently through a variety of standard numerical schemes. We
chose the semi-implicit Crank-Nicolson method [66] for its good stability properties. Let
us remark that the operator at the r.h.s. of the above equations are periodic tridiagonal
matrices, that is, tridiagonal matrices with additional non-zero values at positions (1, K)
and (K, 1). Thus, the linear system appearing at each step of the Crank-Nicolson method
can be solved in linear time w.r.t. K via a variation of the Thomas algorithm.

The desired solution expτ G can be then be simply recovered by applying the inverse
DFT to the solution of (32) at time τ.

4.3. Discretisation via Gradient Descent

We follow [44,45,47] and discretise both models (sR-WC) and (sR-LHE) via a simple
explicit gradient descent scheme. Denoting the discretised version of the local mean
average µ(ξ) appearing in the models by U[i, j, k] = µ(i∆x, y∆j, k∆θ), we have that the the
time stepping reads for all p ≥ 1

Ap[i, j, k] = Ap−1[i, j, k] + ∆t
(
− (1 + λ)Ap−1[i, j, k] + A0[i, j, k] + λU[i, j, k] + SAp−1[i, j, k]

)
, (33)

where SAp−1 is defined depending on the model by:

SAp−1[i, j, k] = expτ σ(Ap−1)[i, j, k] or SAp−1[i, j, k] =
n

∑
`=0

C`,p−1[i, j, k] expτ Ap−1[i, j, k], (34)

with C`,p−1 being the discretised version of the coefficient C` in (14) at time tp−1.
A sufficient condition on the time-step ∆t guaranteeing the convergence of the numer-

ical scheme (33) is ∆t ≤ 1/(1 + λ) (see [47]).

4.4. Pseudocode

Our algorithmic procedure consists of three main numerical sub-steps. The first one is
the lifting of the two dimensional input image f0 to the spaceM via (20). The second one
is the Fourier-based procedure described in Section 4.2 to compute the sub-Riemannian
diffusion (22), which can be used as kernel to describe the neuronal interactions along the
horizontal connection. This step is intrinsically linked to the last iterative procedure, based
on computing the gradient descent update (33)–(34) describing the evolution of neuronal
activity in the cortical framework both for (sR-WC) and (16).

We report the simplified pseudo-code in Algorithm 1 below. The detailed Julia package
used to produce the following examples is freely available at the following webpage
https://github.com/dprn/srLHE (Accessible starting from 28 December 2020).

Algorithm 1: sR-WC and sr-LHE pseudocode.

Data: Initial image f0[i, j]
Parameters: λ, α, σµ, α, K, β, ∆t, T, M, tol
Result: Processed image F[i, j]
Compute lift A0[i, j, k]← L f0[i, j, k] via (18);
Initialize iteration index p← 0;
repeat

p← p + 1;
Compute interaction term SAp−1 via (34);
Compute Ap via GD update (33);

until ‖Ap − Ap−1‖/‖Ap‖ < tol;
Projection on retinal plane F[i, j]← ∑K

k=1 Ap[i, j, k];

5. Numerical Experiments

In this section we present the results obtained by applying models (13), (sR-LHE)
via Algorithm 1 to two Poggendorf-type illusions reported in Figure 3. Our results are

https://github.com/dprn/srLHE
https://github.com/dprn/srLHE
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compared to the ones obtained by applying the corresponding WC and LHE 3-dimensional
models with a 3D-Gaussian kernel as described in [44,45]. The objective of the following
experiments is to understand whether the output produced by applying (sR-WC) and
(sR-LHE) to the images in Figure 3 agrees with the illusory effects perceived. Since the
quantitative assessment of the strength of these effects is a challenging problem, the outputs
of Algorithm 1 have to be evaluated by visual inspection. Namely, for each output, we
consider whether the continuation of a fixed black stripe on one side of a central bar
connects with a segment on the other side. Differently from inpainting-type problems, we
stress that for these problems the objective is to replicate the perceived wrong alignments
due to contrast and orientation effects rather than its collinear prosecution and/or to
investigate when both types of completions can be reproduced.

(a) Testing data: Poggendorff-type illusions. We test the (sR-WC) and (sR-LHE) models
on a greyscale version of the Poggendorff illusion in Figure 2 and on its modification
reported in Figure 3b where the background is constituted by a grating pattern—in this
case, the perceived bias also depends on the contrast between the central surface and the
background lines.

(a) Poggendorf illusion. (b) Poggendorff gratings.

Figure 3. Greyscale Poggendorff-type illusions. (a) is the standard 200× 200 Poggendorff illusion with a 30 pixel-wide
central and an incidence angle of π/3 drawn by the black lines with the central bar . (b) is a variation of the classical
Poggendorff illusion where a further background grating is present.

(b) Parameters. Images in Figure 3 have size N × N pixels, with N = 200. The lifting
procedure to the space of positions and orientations is obtained by discretising [0, π) into
K = 16 orientations (this is in agreement with the standard range of 12–18 orientations
typically considered to be relevant in the literature [67,68]). The relevant cake wavelets are
then computed following [32], setting the frequency band bw = 5 for all experiments. The
scaling parameter β appearing in (4) is set (Such parameter adjusts the different spatial
and orientation sampling. A single spatial unit is equal to

√
2 pixel edge whereas a single

orientation unit is 1 pixel edge.) to β = K/(N2
√

2), and the parameter M appearing in (13),
(sR-LHE) is set to M = 1.

Parameters varying from test to test are: the slope α > 0 of the sigmoid functions
σ in (9) and σ̂, the fidelity weight λ > 0, the variance of the 2D Gaussian filtering σµ

use to compute the local mean average µ in (sR-WC) and (16), the gradient descent time-
step ∆t, the time step ∆τ and the final time τ used to compute the sub-Riemannian heat
diffusion eτL.

5.1. Poggendorff Gratings

In Figure 4, we report the results obtained by applying (sR-WC) to the Poggendorff
grating image in Figure 3b. We compare them with the ones obtained by the cortical-
inspired WC model considered [44,45], where the sR heat-kernel is an isotropic 3D Gaussian,
which are reported in Figure 4a. In Figure 4b, we observe that the sR diffusion encoded
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in (sR-WC) favours the propagation of the grating throughout the central grey bar so that
the resultant image agrees with our perception of misalignment. We stress that such an
illusion could not be reproduced via the cortical-inspired isotropic WC model proposed
in [44,45]. The use of the appropriate sub-Laplacian diffusion is thus crucial in this example
to replicate the illusion.

We further report in Figure 5 the result obtained by applying (sR-LHE) on the same
image. We observe that in this case both the (sR-LHE) model and the LHE cortical model
introduced in [44,45] reproduce the illusion.

Note that both (sR-WC) and (sR-LHE) further preserve fidelity w.r.t. the given image
outside the target region, which is not the case in the LHE cortical model presented
in [44,45].

(a) (WC) (b) (sR-WC)

Figure 4. Model output for Poggendorff gratings in Figure 3b via WC models. (a) result of the WC model proposed
in [44,45]. (b) result of (sR-WC) with parameters λ = 0.01, α = 20, σµ = 6.5, ∆t = 0.1, ∆τ = 0.01, τ = 5.

(a) (Local Histogram Equalisation (LHE) ) (b) (sR-LHE)

Figure 5. Model output for Poggendorff gratings in Figure 3b via LHE models. (a) result of the LHE model proposed
in [44,45]. (b) result of (sR-LHE) with parameters α = 8, τ = 5, λ = 2, σµ = 1, ∆t = 0.15, ∆τ = 0.01.

5.2. Dependence on Parameters: Inpainting vs. Perceptual Completion

The capability of the (sR-LHE) model to reproduce visual misperceptions depends on
the chosen parameters. This fact was already observed in [45] for the cortical-inspired LHE
model proposed therein endowed by a standard Gaussian filtering. There, LHE was shown
to reproduce illusory phenomena only in the case where the chosen standard deviation
of the Gaussian filter was set to be large enough (w.r.t. the overall size of the image). On
the contrary, the LHE model was shown to perform geometrical completion (inpainting)
for small values of the standard deviation. Roughly speaking, this corresponds to the fact
that perceptual phenomena—such as geometrical optical illusions—can be modelled only
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when the interaction kernel is wide enough for the information to cross the central grey
line. This is in agreement with psycho-physical experiences in [17], where the width of the
central missing part of the Poggendorff illusion is shown to be directly correlated with the
intensity of the illusion.

In the case under consideration here, the parameter encoding the width of the in-
teraction kernel is the final time τ of the sub-Riemannian diffusion used to model the
activity propagation along neural connections. To support this observation, in Figure 6, we
show that the completion obtained via (sR-LHE) shifts from a geometrical one (inpainting),
where τ is small, to a perceptual one, where τ is sufficiently big.

As far as the (sR-WC) model is concerned, we observed that, despite the improved
capability of replicating the Poggendorf gratings, the transition from perceptual completion
to inpainting could not be reproduced. In agreement with the efficient representation
principle, this supports the idea that visual perceptual phenomena are better encoded by
variational models as (sR-LHE) than by non-variational ones as (13).

(a) (τ = 0.1) (b) (τ = 0.5) (c) (τ = 2.5)

Figure 6. Sensitivity to the parameter τ for (sR-LHE) model for the visual perception of Figure 3b. The completion inside
the central grey bar changes from geometrical (inpainting type) to illusory (perception type). Parameters: τ varies from 0.1
to 5, α = 6, λ = 2, σµ = 1, ∆t = 0.15, ∆τ = 0.01.

5.3. Poggendorff Illusion

In Figure 7 we report the results obtained by applying LHE methods to the standard
Poggendorff illusion in Figure 3a. In particular, in Figure 7a we show the result obtained
via the LHE method of [44,45], while in Figure 7b we show the result obtained via (16),
with two close-ups in Figure 7c,d showing a normalized detail of the central region onto the
set of values [0, 1]. As shown by these preliminary examples, the prosecutions computed
by both (LHE) models agree with our perception as the reconstructed connection in the
target region links the two misaligned segments, while somehow ’stopping’ the connection
of the collinear one.

This phenomenon, as well as a more detailed study on how the choice of the parame-
ters used to generate Figure 3a (such as the incidence angle, the width of the central gray
bar, the distance between lines) in a similar spirit to [69] where psysho-physicis experiments
were performed on analogous images, is an interesting topic for future research.
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(a) (LHE) (b) (sR-LHE)

(c) (LHE), zoomed (d) (sR-LHE), zoomed

Figure 7. Model output for Poggendorff illusion in Figure 3a via LHE models. (a) result of the LHE model proposed in [44,45]
(with parameters σµ = 2, σω = 12, λ = 0.7, α = 5). (b) result of (sR-LHE) with parameters α = 8, τ = 2.5, λ = 0.5,
σµ = 2.5, ∆t = 0.15, ∆τ = 0.1. (d) (resp. Figure 7c): zoom and renormalization on [0, 1] of the central region of the result in (b)
(resp. Figure 7a).

6. Conclusions

In this work we presented the sub-Riemannian version (16) of the Local Histogram
Equalisation mean-field model previously studied in [44,45] and here denoted by (sR-LHE).
The model considered is a natural extension of existing ones where the kernel used to
model neural interactions was simply chosen to be a 3D Gaussian kernel, while in (sR-LHE)
this is chosen as the sub-Riemannian kernel of the heat equation formulated in the space of
positions and orientations given by the primary visual cortex (V1). A numerical procedure
based on Fourier expansions is described to compute such evolution efficiently and in a
stable way and a gradient-descent algorithm is used for the numerical discretisation of
the model.

We tested the (sR-LHE) model on orientation-dependent Poggendorff-type illusions
and showed that (i) in presence of a sufficiently wide interaction kernel, model (sR-LHE) is
capable to reproduce the perceptual misalignments perceived, in agreement with previous
work (see Figures 5 and 7); (ii) when the interaction kernel is too narrow, (sr-LHE) favours
a geometric-type completion (inpainting) of the illusion (see Figure 6) due to the limited
amount of diffusion considered.

We also considered the sub-Riemannian version (13) of the standard orientation-
dependent Wilson-Cowan equations previously studied in [44,45] and denoted here by (sR-
WC). We obtained (sR-WC) by using the sub-Riemannian interaction kernel in the standard
orientation-dependent Wilson-Cowan equations. We showed that the introduction of
such cortical-based kernel improves the capability of WC-type models of reproducing
Poggendorff-type illusions, in comparison to the analogous results reported [44,45], where
the cortical version of WC with a standard 3D Gaussian kernel was shown to fail to replicate
the illusion.
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Finally, we stress that, in agreement with the standard range of 12–18 orientations typ-
ically considered to be relevant in the literature [67,68], all the aforementioned results have
been obtained by considering K = 16 orientations. The LHE and WC models previously
proposed were unable to obtain meaningful results with less than K = 30 orientations.
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