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Abstract: In the current work, a pix2pix conditional generative adversarial network has been
evaluated as a potential solution for generating adequately accurate synthesized morphologi-
cal X-ray images by translating standard photographic images of mice. Such an approach will
benefit 2D functional molecular imaging techniques, such as planar radioisotope and/or fluores-
cence/bioluminescence imaging, by providing high-resolution information for anatomical mapping,
but not for diagnosis, using conventional photographic sensors. Planar functional imaging offers an
efficient alternative to biodistribution ex vivo studies and/or 3D high-end molecular imaging systems
since it can be effectively used to track new tracers and study the accumulation from zero point in
time post-injection. The superimposition of functional information with an artificially produced
X-ray image may enhance overall image information in such systems without added complexity and
cost. The network has been trained in 700 input (photography)/ground truth (X-ray) paired mouse
images and evaluated using a test dataset composed of 80 photographic images and 80 ground truth
X-ray images. Performance metrics such as peak signal-to-noise ratio (PSNR), structural similarity
index measure (SSIM) and Fréchet inception distance (FID) were used to quantitatively evaluate the
proposed approach in the acquired dataset.

Keywords: molecular preclinical imaging; image-to-image translation; PET; SPECT; deep learning;
pix2pix; cGAN; X-ray

1. Introduction

Drug discovery aims in identifying novel candidate treatments against diseases. It is a
lengthy (it takes about 15 years) and costly (about 1–1.5 billion euros) process involving a
laborious series of different stages, including preclinical studies [1,2].

A crucial part in the preclinical evaluation of drug discovery is performed on the basis
of biodistribution ex vivo studies that aim in monitoring the interaction of radioisotope- or
fluorescence-labeled candidate drugs on animal subjects invasively. However, this invasive
method, although a gold standard, raises economical and ethical issues due to the large
number of required animals [3]. Non-invasive methods, such as molecular imaging, have
been proposed, aiming in improving animal handling and catalyzing the necessary time
required for biodistribution ex vivo studies. Such methods include imaging using Positron
Emission Tomography (PET), Single Photon Emission Tomography (SPECT), Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI), similar to those used in clinical
practice. It is well proven that small animal imaging speeds up the whole process, increases
accuracy and decreases cost [4–6].

Planar molecular imaging is another alternative since it can effectively be used to
track a new tracer and study the accumulation from zero point in time post-injection. Two-
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dimensional fluorescence/bioluminescence optical imaging is a well-established method
for this purpose [7,8], offering high sensitivity, simplicity and decreased cost while having
low depth penetration, limited clinical translation and being nonquantitative [1,2]. On
the other hand, both SPECT and PET radioisotopes planar imaging provide quantitative
information of high spatial resolution while also retaining simplicity, low cost and high
throughput properties at the expense of access to radioactivity [9,10]. In order to pro-
vide simultaneous anatomic information, both techniques have been used, along with
X-ray imaging, in commercial systems (In-Vivo MS FX PRO, Bruker) and prototypes [11],
although increasing the cost and complexity, including radiation protection.

The aim of this work is to explore a potential solution for generating adequately
accurate synthetic morphological X-ray images by translating standard photographic
images of mice using deep learning. Such an approach would benefit planar molecular
imaging studies since the acquired photographic images have poor resolution in terms
of anatomical information. By superimposing adequately high-resolution synthesized
anatomical images on real functional mouse images, it would be possible to generate
a preliminary estimation of the drug distribution within the body of the animal using
conventional photographic sensors, thus reducing cost and complexity by eliminating the
need for X-ray imaging of the animal.

For this purpose, we trained and tested a well-known conditional generative adversar-
ial network for image-to-image translation (pix2pix cGAN) [12,13] in a dataset of 780 paired
photographic/X-ray mice images. Conditional generative adversarial networks (cGANs)
have been used previously for image synthesis in molecular imaging applications [14–17].
The preliminary results of the current study have been presented by our group elsewhere
[18]. Compared to our previous study, we have properly balanced, extended and finalized
the dataset in order to optimize the prediction in different potential inputs. Moreover,
the achieved performance of the pix2pix network using different loss functions in the
current dataset is presented. Finally, two commercial planar nuclear medicine preclinical
scanners with a pre-installed photographic sensor have been used for further evaluation by
superimposing the acquired 2D nuclear images with the corresponding trained network
outputs in real-time during in vivo experiments.

2. Methodology

A pix2pix cGAN was trained to map conventional photographic mouse images to
X-ray scans [12]. Pix2pix is a common framework based on conditional Generative Adver-
sarial Networks (cGANs), which predict pixels from pixels in any dataset, in which the
aligned image pairs vary in the visual representation, but the renderings for, e.g., edges,
stay the same (Figure 1). The above concept fits well to the presented dataset, as the field
of view is clearly defined and the dimensions and weight of the mice usually involved in
preclinical studies are similar. The methodology of the current work consists of 2 stages:
(a) Data collection and preprocessing; (b) Modeling and performance evaluation.

2.1. Data Collection and Preprocessing

A dataset of 780 input/ground truth images has been acquired in order to train and
test the pix2pix network. A photographic mouse image and the corresponding X-ray scan
of the same anesthetized animal are referred to as input/ground truth images, respectively.
The input images have been acquired using two commercial planar scanners for SPECT and
PET radioisotope imaging, which contain a standard photographic sensor that provides an
optical image of the animal as an anatomical mapping solution (eye’s series, BIOEMTECH,
Greece) (Figure 1a). The X-ray images have been acquired with an X-ray tube (Source-Ray
Inc, US) and a CMOS detector (C10900D, Hamamatsu, Japan), both mounted on a prototype
PET/SPECT/X-ray system (Figure 1c) [11]. Both systems are adequate for mice imaging
providing a useful field of view (FOV) of 50 mm × 100 mm.
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Figure 1. Indicative optical image acquired using a conventional photographic sensor located in
BIOEMTECH eye’s series radioisotope screening tools (a); Indicative X-ray image acquired in a
prototype PET/SPECT X-ray system (c) used as ground truth; Aligned pair (b).

We acquired 5 input/ground truth images of each animal in different poses upon the
hosting bed. Given that small mice used in preclinical studies have similar dimensions and
weight (∼20–40 g), we assume that the aforementioned methodology does not affect the
training procedure and minimizes the number of laboratory animals used in the study. In
all cases, animals were anesthetized with isoflurane and kept warmed during the scans.
All animal procedures were approved by the General Directorate of Veterinary Services
(Attica Prefecture, Athens, Greece) and the Bioethical Committee of the Institution (Permit
number: EL 25 BIOexp 04).

The study involved 78 white and 78 black Swiss albino mice, leading to a total number
of 780 input/ground truth images. The mice were classified into two groups: (i) a group
of 70 white and 70 black mice in order to collect the 700 paired images for training; (ii) a
group of 8 white and 8 black mice in order to collect the 80 paired images for test and
validation. Except mouse color, the method was evaluated against different animal hosting
beds (plastic bed with white color; plastic bed with black color), which leads to different
backgrounds in the input image. Four indicative input/ground truth pairs used for training
and/or testing are illustrated in Figure 2. The paired images have been properly aligned
prior to the training procedure, having 512 × 1024 pixels resolution, corresponding to the
50 mm × 100 mm field of view (Figure 1b). The detailed characteristics of the dataset are
summarized in Table 1. The ratio between the test and train images was kept higher than
10% in each occasion, and the individual mice of the training set are separate from the
individual mice of the test set.

Table 1. Train and test dataset detailed characteristics.

Mouse Color Bed Color Train Test Test/Train (%)

White Black 260 30 11.5
White White 90 10 11.1
Black White 260 30 11.5
Black Black 90 10 11.1

Total 700 80
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Figure 2. Aligned image pairs used for training. Photographic input image (left); Corresponding
X-ray scan used as ground truth (right).

2.2. Modeling and Performance Evaluation

Pix2pix is a cGAN (conditional Generative Adversarial Network) deep learning net-
work that can be used for image-to-image translation. A cGAN is designed to create
synthetic images y from a set of known images x and a randomly created noise vector z
as follows:

G : [x, z]→ y (1)

It consists of two main sub-networks, the generator (G) and the discriminator (D). The
generator (Figure 3) is designed to create real-like, fake images, whereas the discriminator
(Figure 4) is designed to classify images as real or fake. During training, the generator
tries to improve its performance by updating its parameters based on input from the
discriminator. This enables the generator to create better, more realistic fake images. The
discriminator, on the other hand, improves its performance as a stand-alone network by
learning to separate fake images from their real counterparts. The above ideas can be
expressed mathematically in terms of a loss function as follows:

LOSScGAN(G, D) = Ex,y[logD(x, y)] + Ex,z[log(1− D(x, G(x, z)))] (2)
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Figure 3. The pix2pix Generator’s training layout. The generator creates output image (y) from input
image (x) and random noise vector (z) and improves its performance by receiving feedback from the
discriminator, as well as regarding the degree of fakeness of the synthetic image (y) compared to the
ground truth (r).

Figure 4. The cGAN discriminator’s training layout. The discriminator compares the input(x)/ground
truth(r) pair of images and the input(x)/output(y) pair of images and outputs its guess about how
realistic they look. The weights vector of the discriminator is then updated based on the classification
error of the input/output pair (D fake Loss) and the input/target pair (D real Loss).

The discriminator and the generator are adversaries in the sense that the generator
attempts to minimize the Loss function, i.e., to fool the discriminator by producing real-like
synthetic images, whereas the discriminator attempts to maximize the Loss function, i.e.,
expose imposter images. Training is complete when the generator is able to create fake,
synthesized images, which are very difficult to be identified as fake by the discriminator.
The pix2pix cGAN is further evolution of the above idea. Pix2pix is an implementation of
the cGAN where the generation of an image is conditional on a specific target image instead
of a set of target images. This way, a pix2pix generator (Figure 3) is not only trained to fool
the discriminator but also to synthesize images that are as close as possible to the ground
truth pair of each input image. This can be expressed mathematically by incorporating
the idea of L1 distance between the paired generated image of the known input and the
specific paired target image into Equation (2), as follows:

LOSSpix2pix = LOSScGAN(G, D) + λ× LL1(G) (3)

where λ is a regularization parameter.
In this study, we have utilized the PyTorch implementation [13] of the pix2pix al-

gorithm as presented in [12]. In that implementation, the discriminator is designed as a
PatchGAN, whereas the generator is designed as a U-Net. During the training process
of all the models presented in this work, we used the default parameter and hyperpa-
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rameter values of the PyTorch pix2pix implementation [13]. A list of values of important
adjustable parameters for the training of the pix2pix models is illustrated in Table 2. In
the present dataset, the cross entropy, which was used as the default cGan loss function in
the pix2pix implementation of Isola et al. [12], was evaluated against the mean squared
error (MSE) (squared L2 norm) loss used in LSGANs [19], the Wasserstein distance loss
and wGANs [20]. The loss curves of the presented models’ training process are illustrated
on Figure 5.

Table 2. Values of important adjustable training parameters and hyperparameters.

Parameter Value

Learning rate 0.0002
Beta 1 parameter for the optimizer (adam) 0.5
Beta 2 parameter for the optimizer (adam) 0.999

Maximum epochs 200
Lambda (λ) weight for the L1 loss 100

Generator layers 8
Discriminator layers 3

Load size 512
Mini batch size 1

Figure 5. Training loss curves of the cross entropy, M.S.E. and Wasserstein distance loss function models.

The performance evaluation of the pix2pix models in the present dataset has been
performed using three image quality metrics: (a) peak signal-to-noise ratio (PSNR), (b) struc-
tural similarity index measure (SSIM) and (c) Fréchet inception distance (FID). PSNR is an
expression for the ratio between the maximum possible signal power value and the power
of distorting noise that affects the quality of its representation [21]; SSIM compares local
patterns of pixel intensities that have been normalized for luminance and contrast [22];
FID is a metric focused on assessing the quality of images created by generative models
and is considered one of the most widely accepted image quality metrics for image genera-
tion [23,24]. FID compares the distribution of the generated images with the distribution of
the set of the target images and captures the similarity between the two sets. The afore-
mentioned metrics have been used previously to assess the quality of cGAN-generated
images quantitatively in comparison to other metrics, such as mean absolute error (MAE)
and mean square error (MSE), which, in some cases, are not appropriate for evaluating the
results of the cGAN approach [25–28].

3. Results
3.1. Quantitative Evaluation

Figure 6 illustrates indicative optical to X-ray translations in the test dataset for the
four distinct combinations of mouse and bed color that the pix2pix network has been
trained on. The input optical image and the ground truth are presented alongside synthetic
X-ray images generated by the pix2pix network that was trained using three different loss
functions: (a) Cross Entropy; (b) MSE; (c) Wasserstein distance. The results demonstrate the
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ability of the trained networks to efficiently map the photographic mouse image to an X-ray
scan in terms of animal mapping, but not for diagnosis, as the information of the actual
structure of mouse cannot be generated. However, the renderings and the morphological
characteristics are reproduced in an adequate manner compared to the ground truth X-ray
images, demonstrating the feasibility of the proposed approach for animal mapping.

Figure 6. Indicative “fake” X-ray images from the pix2pix trained network using different loss
functions: Cross Entropy (3rd column); MSE (4th column); Wasserstein distance (5th column). The
input photographic images and the corresponding ground truth images are presented in the first
two columns.
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Quantitative evaluation of network outputs compared to ground truth images has
been performed using three performance metrics: (a) PSNR; (b) SSIM; (c) FID in the test
dataset. According to the calculated values presented in Table 3, the pix2pix network
trained using Cross Entropy as the cGan loss function is able to generate X-ray images that
are more accurate translations of the photographic image to the real X-ray scan compared
to MSE and/or Wasserstein distance loss functions.

Table 3. Metrics of the different cGAN loss functions tested.

cGAN Loss Function PSNR ↑ SSIM ↑ FID ↓
Cross entropy 21.923 0.771 85.428

MSE 21.954 0.770 90.824
Wasserstein distance 17.952 0.682 162.015

Table 4 presents the calculated metrics of the pix2pix Cross Entropy model on the
different combinations of mouse and bed color. According to the FID values, the photo-
graphic images that have different colors of bed than the colors of the mouse are translated
into images that resemble the ground truth better. This can be explained by (a) the greater
percentage of such cases within the dataset, meaning the network is better trained on such
cases, and (b) the greater contrast of the mouse against the background, which makes it
easier for the network to distinguish the different subjects.

Table 4. Metrics of the pix2pix Cross Entropy model on the different combinations of mouse and
bed color.

Mouse Color Bed Color PSNR ↑ SSIM ↑ FID ↓
black white 22.808 0.791 112.948
black black 22.894 0.794 151.006
white black 21.196 0.750 109.116
white white 20.270 0.743 163.056

3.2. Animal Mapping during In Vivo Molecular Imaging Experiments

The proposed trained network was used for anatomical mouse mapping in two, proof
of concept, nuclear molecular imaging experiments. Two planar preclinical scanners for
SPECT and PET isotopes imaging have been used (eye’s series, BIOEMTECH, Greece). The
scanners come with a pre-installed photographic sensor, which is used to superimpose
standard photography of the mouse with the acquired nuclear image for anatomical
mapping purposes. The trained with the Cross Entropy loss function pix2pix network
was used to generate an X-ray scan from the acquired photographic image in real-time
during in vivo experiments. The output was then superimposed in real-time with the
corresponding functional (PET or SPECT) image to provide high-resolution information
for anatomical mapping.

Two healthy mice were administered through tail vein injection with 286 uCi/50 uL of
technetium-99m (99mTc) and 30 uCi/100 uL of 2-deoxy-2-[18F]fluoro-D-glucose ([18F] FDG)
to study the kinetics of these widely used tracers in BIOEMTECH’s γ-eye scintigraphic
system and β-eye planar coincidence imaging system, respectively. Figure 7 shows the
99mTc nuclear image fused with the optical one provided in the γ-eye system and with the
predicted X-ray image produced from the pix2pix network. The nuclear image shows the
clear targeting of the tracer and the biodistribution in the liver, spleen and bladder, as the
main organs of accumulation. Figure 8 shows the [18F]FDG nuclear image fused with the
optical one provided in the β-eye system and with the predicted X-ray image produced
from the pix2pix network. The nuclear image shows the accumulation of the compound
in the brain, heart, liver, intestines and bladder, as expected. In both cases, the produced
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X-ray superimposed with the corresponding nuclear image provides an anatomical map of
the small animal that enhances the overall image information.

Figure 7. 99mTc-MDP-labelled nuclear image of a healthy mouse fused with the optical image
provided in the γ-eye scintigraphic system (left) and the X-ray produced from the pix2pix trained
network (right).

Figure 8. 18F-FDG nuclear image of a healthy mouse fused with the optical image provided in the
β-eye planar coincidence imaging system (left) and the X-ray produced from the pix2pix trained
network (right).

4. Discussion and Conclusions

Image-to-image translation techniques have been used in medical imaging for several
tasks, including segmentation, denoising, super-resolution, modality conversion and re-
construction [27]. In the current work, we present an off-the-shelf approach for generating
adequately accurate synthetic morphological X-ray images by translating standard photo-
graphic mice images. Artificially produced X-ray mouse images can be superimposed with
functional radioisotope or fluorescence/bioluminescence 2D images to enhance overall
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anatomical information. Although not suitable for diagnosis, such information can be
used for animal mapping in preclinical planar molecular imaging systems without adding
the costs and complexity of radiation sources, radiation protection and animal irradiation
during repeated scans.

A well-known cGAN network (pix2pix) that learns a mapping from the input image
to the output image has been trained in a 700 input (mouse photography)/ground truth
(mouse X-ray scan) dataset and evaluated in a 80 input/ground truth dataset. The pix2pix
network has been evaluated against three different loss functions: (a) Cross Entropy,
(b) MSE and (c) Wasserstein distance, with the first two achieving similar performance
superior to the Wasserstein distance. However, the results in all cases show that the
network predicts an X-ray image with sufficient accuracy and that the calculated metrics
are comparable with those presented in other studies that have evaluated pix2pix networks.
In [28], four approaches including the pix2pix network, which was used as a baseline,
were evaluated on a well-known dataset primarily presented in [29]. The SSIM and PSNR
values of the pix2pix model on that dataset were calculated equal to 0.286 and 12.868,
respectively. In [30], a pix2pix network was used as a baseline and was evaluated on
datasets presented in [31,32]. The SSIM and FID values of the pix2pix model on the [31]
dataset were calculated equal to 0.770 and 66.752, respectively, while FID values on three
datasets presented in [32] were 96.31 (handbag dataset), 197.492 (shoes dataset) and 190.161
(clothes dataset). In [33], four pix2pix variations were evaluated on two datasets presented
in the same study and the original pix2pix network was used as a baseline. The FID scores
of pix2pix on MR-to-CT scan and CT-to-MR scan translation tasks were 122.6 and 90.8,
respectively. Although different problems are presented in the aforementioned studies,
achieved metrics (Table 3) are indicative of the success of the approach in our dataset.

Two proof-of-concept nuclear molecular imaging in vivo experiments have been con-
ducted in order to demonstrate the efficacy of the method in terms of enhancing anatomical
information in functional imaging preclinical studies. For that purpose, two commercial
planar radioisotope imaging systems with a pre-installed conventional photographic sensor
have been used (eye’s series, BIOEMTECH, Greece). The produced X-ray superimposed
with the corresponding nuclear image provides an accurate morphological map of the
small animal that is used to better identify the organs that the studied compound has
accumulated.

Future work is oriented in expanding our dataset with data augmentation techniques
in order to improve the generalization of our method and hyperparameter tuning in order
to further tailor the behavior of the pix2pix network to the final dataset. Taking into
account that the primary information comes from photographic sensors and given that
small mice used in preclinical studies have similar dimensions and weight (∼20–40 g),
geometric and/or photometric transformations may expand the dataset without losing the
generalization of the approach, thus providing better performance metrics.
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