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Abstract: Offline handwritten text recognition (HTR) for historical documents aims for effective
transcription by addressing challenges that originate from the low quality of manuscripts under
study as well as from several particularities which are related to the historical period of writing. In
this paper, the challenge in HTR is related to a focused goal of the transcription of Greek historical
manuscripts that contain several particularities. To this end, in this paper, a convolutional recurrent
neural network architecture is proposed that comprises octave convolution and recurrent units which
use effective gated mechanisms. The proposed architecture has been evaluated on three newly created
collections from Greek historical handwritten documents that will be made publicly available for
research purposes as well as on standard datasets like IAM and RIMES. For evaluation we perform a
concise study which shows that compared to state of the art architectures, the proposed one deals
effectively with the challenging Greek historical manuscripts.

Keywords: handwritten text recognition; convolutional neural networks; recurrent neural networks;
gated recurrent unit; document image dataset

1. Introduction

Offline handwritten text recognition (HTR) in historical documents has become an
attractive research field in computer vision, as it enables us to access our written past.
The motivation for this work is the analysis of historical texts from the Greek Byzantine
literature tradition, spanning between the fourth and the fifteenth century. The language
in these texts is not homogeneous throughout the entire period, although an influence
of the classical Greek language is prominent. Additionally, it corresponds neither to the
spoken language of that time nor to the modern version of Greek used nowadays. However,
the study of these sources is important as it provides access to even older texts that were
retained throughout the centuries, being copied by the scribes of the Byzantine empire.

Several challenges are present for HTR systems targeting the specified era, caused by
the age of the historical manuscripts that affects the clarity of the writing and the image
quality in general. The language used in the writing results in increased complexity due to
the multitude of diacritics, punctuation and abbreviating symbols that were used, leading
to an increased character set compared to modern languages. The complexity is further
increased by the fact that the content of such documents is unconstrained and might have
been created by multiple writers.

In this paper, we present an OctCNN-BGRU (Octave Convolutional Neural Network-
Bidirectional Gated Recurrent Units) architecture inspired by [1–3], with a focused goal of
the transcription of Greek historical manuscripts. The contribution of this work is two-fold:
first, a new architecture is proposed that employs Octave convolutions in the encoding
stage to achieve a combination of higher- and lower-scale features in each layer; second,
three newly created collections are presented, providing the means for the evaluation of
our methodology and future research as well. Furthermore, to enable comparison with
state of the art, we extended experimentation to three already available datasets, namely
EPARCHOS [4], IAM [5] and RIMES [6].
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The remainder of this paper is structured as follows: a thorough analysis of the state
of the art is presented in Section 2. In Section 3, the proposed methodology is described in
detail. Section 4 presents the experimental work and Section 5 concludes this research and
outlines future directions.

2. Related Work

In offline HTR, recognition is based upon an input image of text, corresponding to
either a text line or a document. In the latter case, a segmentation stage is also required to
isolate text lines of the document and process them independently. There is a large number
of studies that tackle this problem using deep learning methods, where recurrent neural
networks have become a key component, such as long short-term memory (LSTM) [7] and
gated recurrent unit (GRU) [8] networks.

An early approach in this direction is the work of Voigtlaender et al. [9] who devel-
oped an efficient GPU implementation of multidimensional LSTM [10] network and their
research was focused on the depth and width of the architecture. Additionally, in their
implementation training time is greatly reduced by processing the input in a diagonal-
wise fashion.

The work of Puigcerver [2] introduced the Convolutional Recurrent Neural Network
(CRNN) approach that replaced the two-dimensional recurrent blocks with a feature
extraction CNN stage and a one-dimensional LSTM stage that processes each column of
the image sequentially. This results in a reduced memory footprint while it increases the
amount of calculation that can be parallelized, resulting in an efficient network architecture.
Additionally, dropout and batch normalization were used in both stages, which increased
performance, in accordance with the findings of Phamet al. [11].

Bluche and Messina [12] followed the aforementioned paradigm, with the main con-
tribution being the use of convolutional gates [13] in the encoder part, which enables
hierarchical context-sensitive feature extraction. For the decoding part, bidirectional one-
dimensional LSTMs have been employed, that are being adapted to the different languages
considered for testing. Similarly, de Sousa Neto et al. [14] used a combination of a convo-
lutional encoder, based on Gated-CNN architecture, and a decoder with the addition of
Bidirectional Gated Recurrent Units (BGRU) in the place of LSTMs. They also increased
the number of layers in the encoder and incorporated dropout and the PReLU activation
function. Using a similar network, Retsinas et al. [15] applied a semi-supervised approach
to adapt an already trained network to the style of a specific test set, by formulating a loss
functions that applies a weighting on each sample.

Motivated by transformers’ success in the Natural Language Processing (NLP) domain,
specific efforts have been reported using Visual Transformers. In particular,Kang et al. [16]
presented a new architecture utilizing multihead self-attention layers to handle image
character recognition and decoding of language character sequences. In the same manner,
Wick et al. [17] proposed a two-stage approach using both a CNN and a transformer-based
encoder/decoder along with a voter to combine and extract the two predicted sequences.
Finally, Wick et al. [18] proposed a combination network for HTR with a CNN/LSTM-
encoder and a transformer-decoder with inserted mutual attention layers as a language
model.

3. Methodology

The overall proposed architecture consists of an image preprocessing module that
feeds an OctCNN-BGRU. The proposed architecture, as shown in Figure 1, consists of
a CNN stage for feature extraction and a recurrent stage for feature decoding into a
probability vector corresponding to the different character classes. Each text line of the
document is presegmented and processed separately, in a bidirectional manner. Each of
the stages is presented in detail in the following sections.
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(a) (b)

Figure 1. Schematic diagram of the proposed architecture, consisting of (a) the CNN stage and (b) the
recurrent stage.

3.1. Preprocessing

The preprocessing of the input images utilized in the proposed pipeline aims to
standardize images from different sources and writers. Towards this end, Illumination
Compensation [19] was used to remove shadows and balance brightness/contrast along a
text line image. Firstly, the image undergoes a contrast enhancement followed by an edge
detection method leading to the detection of the text area. Next, the background image is
isolated by subtracting the detected text, and is used to assess the light distribution of the
document. Finally, the initial image is balanced by adjusting each pixel value according to
the light distribution.

As a next step, deslanting is applied, based on the work of Vinciarelli and Luettin [20],
to soften the cursive style that may occur during handwriting, affecting the slope of the
line and the slant of the letters. For the slope removal, the core region of a line is isolated
by calculating a threshold on the horizontal density distribution histogram. Then, the image
is rotated in order to eliminate the angle of the baseline with the x-axis. Slant correction is
based on the hypothesis that the word is deslanted when the number of columns containing
a continuous stroke is maximized. Towards this end, multiple shear transformations are
applied to the image. For each vertical line of the transformed image, a histogram of
the number of pixels belonging to text divided by their maximum distance is calculated.
Finally, the version of the image with the maximum histogram energy is retained.

In Figure 2, the initial and the preprocessed versions of an example text line image
are shown.

Figure 2. An example text line image (a) before and (b) after the preprocessing stage.

3.2. Octave-CNN Architecture

The octave-convolution operation (OctConv), introduced in [3], is a drop-in replace-
ment for the convolution operation in a CNN architecture, which involves processing the
input in two different scales, aiming to capture both high- and low-frequency patterns.
Towards this end, the input feature map X is factorized into two portions along the channel
axis, so that X = {XH , XL}, resulting in two feature maps that capture fine- and low-
detailed information. Subsequently, a new convolution operator is used to operate on this
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representation resulting in the layer output Y = {YH , YL}, as defined in the following
equations:

YH = f
(

XH , WH−→H
)
+ upsample

(
f
(

XL, WL−→H
)

, 2
)

(1)

YL = f
(

XL, WL−→L
)
+ f

(
pool(XH , 2), WH−→L

)
(2)

where f (X, W) denotes convolution of X with the kernel W followed by an activation
function, pool(X, k) denotes average pooling with kernel size k and upsample(X, k) de-
notes upsampling by a factor k. The partitioning of channels into high- and low-frequency
features, that takes place in each OctConv layer, is configured by a hyperparameter α, that
affects the number of convolution kernels for each band.

The proposed Octave-CNN architecture, as shown in Figure 1, is aimed at the ex-
traction of features from the input image in a feed-forward manner. It consists of five
convolutional blocks, each one containing an OctConv layer with kernel size 3× 3 pixels,
stride equal to 1 and batch normalization [21]. The leaky rectified linear (LeakyReLU) [22]
function is used for neuron activation, which provides a small gradient value when the
unit is not active. A maximum pooling layer with kernel size equal to 2× 2 is used after the
first three blocks, to reduce the spatial dimensions of the features. Additionally, a dropout
layer, with probability equal to 0.2 (experimentally defined) is included in the last three
blocks, to assist for better generalization ability and robustness of the features [23]. The
combination of batch normalization and dropout achieved best performance during our ex-
perimentation, which coincides with the findings of several state-of-the-art works [2,4,14].
Finally, the average of each column of the feature maps of the last layer is calculated,
to acquire a feature vector with 80 features for each time step along the width of the image,
as shown in Figure 3.

128 x W
OctConv + LeakyReLU

Max Pooling

Average Pooling

64 x (W / 2) x 32

32 x (W / 4) x 48

16 x (W / 16) x 8016 x (W / 8) x 64 (W / 16) x 80

128 x (W) x 16

Figure 3. Feature maps produced by each layer of the Octave-CNN model.

3.3. Recurrent BGRU Stage

The gated recurrent unit (GRU) [8] is a recurrent network architecture that comprises
two gates, namely the reset gate r and the update gate z, as shown in Figure 4. For each
recurrent unit j at time-step t, the current input xt and the activation ht−1 of the previous
time-step are used to compute both gates as follows:

rj = σ
(
[Wrxt]j + [Urht−1]j

)
(3)

zj = σ
(
[Wzxt]j + [Uzht−1]j

)
(4)
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where σ is the sigmoid activation function and Wr, Ur, Wz, Uz denote trainable weights
of the network. Subsequently, the reset gate z is used to compute a candidate activation,
according to the following equation:

h̃t
j = tanh

(
[Wxt]j + [U

(
r� ht−1

)
]j

)
(5)

where W,U denote trainable weights and � denotes element-wise multiplication. The val-
ues of the reset gate determine the degree that the previous state affects the candidate
output h̃t, allowing the network to choose whether to retain or forget previously seen
inputs. Finally, the update gate zt is used to compute the output ht, as a linear interpolation
between the previous output ht−1 and the candidate output h̃t:

ht
j = zjht−1

j +
(
1− zj

)
h̃t

j (6)

Figure 4. An illustration of the gated recurrent unit (GRU) [8].

In the proposed architecture, as shown in Figure 1, the recurrent stage contains three
BGRUs, with 128 hidden units each, preceded by a dropout layer. Additionally, after each
BGRU a fully connected layer is added to increase the complexity of the network. The first
two fully connected layers comprise 256 neurons each, while the last one contains a number
of neurons equal to the size of the character set of the minuscule writing, plus one for the
blank symbol. The softmax activation function is also used to map neuron activations to
classification probabilities.

4. Experimental Evaluation
4.1. Datasets

For the experimental evaluation of the proposed methodology we have considered
three newly created collections of Greek historical handwritten documents, namely, χφ53,
χφ79 and χφ114, along with the “EPARCHOS” dataset [4,24]. Additionally, to enable
comparison with the state of the art, we have included in our experimentation two public
datasets: IAM [5] and RIMES [6]. Table 1 presents the details of each collection, i.e., the
total number of pages, lines and words contained. A more detailed presentation regarding
the newly created collections is also presented in the following sections.

Table 1. Characteristics of the datasets used for performance evaluation.

Dataset Total Pages Total Lines Total Words Training Validation Test

χφ53 54 1038 5592 622 104 312

χφ79 40 803 4389 481 80 242

χφ114 44 1051 5467 603 100 302

Eparchos 120 2272 18809 1363 227 682

IAM 1539 8922 10,841 6161 900 1861

RIMES 1500 12,104 6358 10,193 1133 778
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4.1.1. Stavronikita Monastery Collection No. 53 (χφ53)

The collection is one of the oldest Stavronikita Monastery on Mount Athos. It is a
parchment four-gospel manuscript which has been written between 1301 and 1350. It
comprises 54 pages with dimensions that are approximately 250 × 185 mm. The script is
elegant minuscule and the use of majuscule letters is rare. Tachygraphical symbols and
abbreviations are encountered in the manuscript as well. Furthermore, the manuscript is
enriched with chrysography, elegant epititles and initials. The dataset of χφ53 consists of
1038 text lines, containing 5592 words (2374 unique words) distributed over 54 scanned
handwritten text pages. An example page is shown in Figure 5, and the collection is
publicly available for research purposes [25].

Figure 5. Example document image from the collection χφ53.

4.1.2. Stavronikita Monastery Collection No. 79 (χφ79)

The collection comprises manuscripts made of paper, written in the 16th century and
its dimensions are 220 × 165 mm. The manuscript is embellished with epititles and red
initials. Tachygraphical symbols and abbreviations are encountered in the manuscript as
well. The dataset of χφ79 consists of 803 text lines containing 4389 words (2069 unique
words) distributed over 40 scanned handwritten text pages. An example page is shown in
Figure 6, and the collection is publicly available for research purposes [26].

4.1.3. Stavronikita Monastery Collection No. 114 (χφ114)

The collection comprises manuscripts made of paper, written at the end of the 15th
century and its dimensions are 218 × 150 mm. In various pages, we find red initials and
epititles which enrich the manuscript’s decoration. The dataset of χφ114 consists of 1051
text lines containing 5467 (2877 unique words) words that are distributed over 44 scanned
handwritten text pages. An example page is shown in Figure 7, and the collection is
publicly available for research purposes [27].
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Figure 6. Example document image from the collection χφ79.

Figure 7. Example document image from the collection χφ114.

4.1.4. Historical Greek ‘EPARCHOS’ Dataset

The dataset is a Greek historical handwritten codex by two writers, Antonius Epar-
chos and Camillos Zanettus. The Historical Greek “EPARCHOS” Dataset [24], which
dates around 1500–1530, includes 120 scanned handwritten text pages and 9285 text lines
containing 18,809 words (6787 unique words).
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4.1.5. IAM

The IAM (Institut für Informatik und Angewandte Mathematik) dataset [5] is an
English written collection from 657 different writers with 1539 handwritten scanned text
pages, consisted of 9000 text lines. Due to the grayscale color, the darkening throughout the
words, and the transparent background of images, this collection offers a line recognition
task independent of the writer, which means that each writer’s handwriting can only be
discovered in a particular subset.

4.1.6. RIMES

A challenging dataset due to numerous accented characters, but with a good quality
background and precise writing is this of the database RIMES (Reconnaissance et Index-
ation de données Manuscrites et de fac similÉS) [6]. The database, written in French,
consisted of over 12,000 text lines, 5600 handwritten mails, and sundry writers.

4.2. Particularities

In this section, we highlight the unique features arising from the minuscule writing,
that are prominent in the Greek historical handwritten document collections. Each remark
is accompanied with corresponding examples.

• Floating characters: This is a common characteristic appearing in the word endings,
where the last characters of the word are written in an abbreviated manner. Floating
characters can appear both in uninflected or inflected words. Two examples of floating
characters are shown in Figure 8.

• Minuscule writing: A notable distinction is the usage of a lowercase letter rather
than an uppercase letter following a ’full stop’ character, as shown in the example of
Figure 9. This is owing to the fact that there were no capital letters in use at the time,
and this style of writing is known as ‘Minuscule’.

• Polytonic orthography: The polytonic system is common in all Byzantine manuscripts,
as illustrated in the example document images shown in Figures 5–7. A particularity
of this polytonic system are the characters ϊ and ϋ, which were used in this form to be
distinguished from the diphthong letters, as shown in Figure 10. The problem with
these characters concerns their transcription, which is not unique but it relies upon
the context. In particular, either the character is transcribed as shown or transcribed
as a character without the specific diacritic marks (diaeresis).

Figure 8. Floating characters appearing at word endings. The floating portion of the word is
represented by a rectangle, while the rest of the word is underlined.

Figure 9. ‘Minuscule’ writing example. Key locations in the text line that correspond to this particu-
larity are underlined.
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Figure 10. Polytonic orthography example.

4.3. Experimental Setup

The four Greek historical handwritten document collections are proportionally parti-
tioned into training, validation and testing sets with ratios 60%, 10% and 30%, respectively.
The specific number of lines assigned to each partition are presented in Table 1. For the
IAM and RIMES datasets we followed the corresponding training–testing partitioning
provided by the creators, to enable comparison with the state of the art. For the experiments
conducted, the Character Error Rate (CER) and the Word Error Rate (WER) are used as
evaluation metrics to assess HTR performance.

For the training process, the RMSProp method [28] was used for gradient-descent
optimization, with a learning rate of 0.001. The mini-batch size was set to 16 images
while the input images were resized to a fixed height of 128 pixels. The training process
was terminated if the progress, in terms of CER, was stalled for 20 consecutive epochs,
when evaluating on the validation set. The values of these hyperparameters have been
defined experimentally and they are kept the same for all the models tested. Decoding was
performed using the ‘greedy’ method: during each time-step the class that corresponds
to the logit with the maximum value is assigned. Subsequently, repeating characters
are eliminated without the use of a language model. This enables comparison of the
performance of the different models tested, minimizing the effect of a decoding scheme or
a language model in performance.

All the experiments were conducted using the Tensorflow framework, running on a
computer with Intel Core i7 4770 K processor, 32 GB memory and an NVidia Titan Xp GPU
with 12 GB of available VRAM.

4.4. Results

As a preliminary step, we intend to evaluate the effect of preprocessing on the per-
formance of the proposed HTR model in the four Greek historical handwritten datasets.
The results presented in Table 2 demonstrate that the preprocessing is beneficial to at least
three out of the four datasets with Greek historical handwritten documents. The similar
performance achieved for the ‘EPARCHOS’ dataset in both cases is attributed to the fact
that the writing in this collection is more clear compared to the other collections.

Table 2. Performance comparison of the proposed architecture operating with and without image
preprocessing on the four Greek Historical collections. The best results for each dataset are indicated
in bold.

Dataset µDoc (Deslanting) µDoc (no Deslanting)

χφ53 6.77/30.09 7.19/31.22

χφ79 6.51/28.51 6.73/28.21

χφ114 7.71/34.30 8.32/36.44

Eparchos 4.53/20.03 4.16/19.67

Next, comparison with state of the art is performed, taking into consideration two
recently proposed methods by Puigcerver [2] and de Sousa Neto et al. [14].

In Table 3, the total number of parameters and the average training time per iteration
are presented for dataset χφ53. In Table 4, the results in terms of CER and WER are pre-
sented, where the numbers in bold represent the best result. It should be noted that the
experimental results reported in Table 4, concerning the approaches of Puigcerver [2] have
been produced using the PyLaia toolkit (available at https://github.com/jpuigcerver/

https://github.com/jpuigcerver/PyLaia
https://github.com/jpuigcerver/PyLaia
https://github.com/jpuigcerver/PyLaia
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PyLaia, accessed on 25 October 2021). Correspondingly, the results reported for the ap-
proach in [14] have been produced using an open-source implementation provided by
the authors (available at https://github.com/arthurflor23/handwritten-text-recognition,
accessed on 25 October 2021).

Table 3. Total parameters and training time per item (ms), measured during experimentation with
the χφ53 collection.

HTR System Parameters Time per Iteration (ms)

Puigcerver 9,982,713 12.8

Flor 994,057 13.7

µDoc 2,246,137 8.0

Table 4. Performance comparison of the proposed architecture with two state of the art approaches
on six datasets.The best results for each dataset are indicated in bold.

Dataset de Sousa Neto et al. [14] Puigcerver [2] Proposed

χφ53 7.85/34.63 10.45/30.20 6.77/30.09

χφ79 7.75/33.13 10.33/28.55 6.51/28.51

χφ114 8.03/36.72 10.19/34.58 7.71/34.30

Eparchos 4.95/21.91 5.18/22.21 4.53/20.03

IAM 7.32/24.19 6.49/20.91 7.30/23.72

RIMES 6.65/28.31 3.76/12.60 6.52/29.49

4.5. Discussion

As it is shown, considering the four collections of Greek historical handwritten doc-
uments, the proposed method outperformed the other two. On average, the difference
between the proposed and the state-of-the-art methods equals to 3.5% and 6.4% for CER
and WER, respectively. This can be attributed to improved feature extraction in the en-
coding part of the network due to the use of Octave convolutions. This becomes sound,
in particular, considering the heavy use of diacritics in the Greek language of that period. It
can be argued that it is beneficial to hierarchically extract and combine features in different
scales via Octave convolutions. This leads to an increased ability of each layer capturing
the subtle differences between the possible versions of the same character included in the
character set.

Figures 11 and 12 show examples of a correctly predicted and a problematic text line
image, respectively, along with the corresponding ground-truth and predicted texts. In the
latter, some of the most frequent prediction errors concern particularities of the language
discussed in Section 4.2 and are pointed out.

Figure 11. An example of a correctly predicted text line image along with the corresponding (a)
groud-truth and (b) predicted texts.

https://github.com/jpuigcerver/PyLaia
https://github.com/jpuigcerver/PyLaia
https://github.com/arthurflor23/handwritten-text-recognition
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Figure 12. An example of a problematic text line image along with the corresponding (a) groud-truth
and (b) predicted texts. The errors concern diacritics (circle), spacing (red line) and abbreviations
(square).

5. Conclusions

In this paper, an OctCNN-BGRU architecture to address the problem of HTR in
historical Greek manuscripts is detailed. Furthermore, a new collection of three historical
Greek datasets for HTR is presented that is made publicly available for research purposes.
The proposed model is shown to be better suited for the language of the specific era,
outperforming the state-of-the-art approaches, on the Greek historical collections.

A limitation of this work lies in the fact that text line detection and segmentation in
the document image is not addressed. It is also worth noting that the reported results have
been achieved without the use of a language model. Future work involves the integration
of the proposed architecture into an end-to-end pipeline for handwritten recognition that
will process the raw manuscript image. Additionally, the construction of a language
model along with a more elaborate decoding scheme will be an important aspect towards
improving transcription performance, as indicated by the state-of-the-art research.
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