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Abstract: JPEG is the most commonly utilized image coding standard for storage and transmission
purposes. It achieves a good rate–distortion trade-off, and it has been adopted by many, if not all,
handheld devices. However, often information loss occurs due to transmission error or damage to the
storage device. To address this problem, various coefficient recovery methods have been proposed in
the past, including a divide-and-conquer approach to speed up the recovery process. However, the
segmentation technique considered in the existing method operates with the assumption of a bi-modal
distribution for the pixel values, but most images do not satisfy this condition. Therefore, in this work,
an adaptive method was employed to perform more accurate segmentation, so that the real potential
of the previous coefficient recovery methods can be unleashed. In addition, an improved rewritable
adaptive data embedding method is also proposed that exploits the recoverability of coefficients.
Discrete cosine transformation (DCT) patches and blocks for data hiding are judiciously selected
based on the predetermined precision to control the embedding capacity and image distortion. Our
results suggest that the adaptive coefficient recovery method is able to improve on the conventional
method up to 27% in terms of CPU time, and it also achieved better image quality with most
considered images. Furthermore, the proposed rewritable data embedding method is able to embed
20,146 bits into an image of dimensions 512× 512.

Keywords: coefficient recovery; segmentation; adaptive; rewritable; DCT

1. Introduction

Despite the emerging technologies, such as 3D video and augmented reality, the still
image remains one of the most popular forms of media in use. Most, if not all, smart
devices are equipped with a camera, hence making images easily accessible to everyone. In
addition to the simple capturing process, digital images can also be edited and transmitted
by using any network-enabled smart device. For storing and representing an image, some
chose to store the continuous sensed data (produced by the light sensitive sensors in a
camera) in the raw format to preserve all detail that can be captured by the sensor. However,
in most cases, the image data are encapsulated by using some image formats for storage
and transmission purposes. Some of the popular formats include JPEG (Joint Photographic
Expert Group), GIF (Graphics Interchange Format), PNG (Portable Network Graphics),
and TIFF (Tag Image File Format).

JPEG is the arguably the most commonly utilized image file standard due to its good
rate–distortion trade-off. It is also compatible with most browsers, image viewers, and
handheld devices. Therefore, research revolving around the JPEG standard has been
receiving much attention since its inception in 1995 [1]. Discrete cosine transformation
(DCT), which converts a block of pixel values into a weighted linear combination of basis
patterns, is one of the main processes in JPEG. DCT produces two types of coefficient
(weight), the DC and AC coefficients. In order to further reduce redundancy, quantization

J. Imaging 2021, 7, 244. https://doi.org/10.3390/jimaging7110244 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-6876-3050
https://orcid.org/0000-0002-4893-2291
https://doi.org/10.3390/jimaging7110244
https://doi.org/10.3390/jimaging7110244
https://doi.org/10.3390/jimaging7110244
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7110244
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7110244?type=check_update&version=1


J. Imaging 2021, 7, 244 2 of 14

is applied to these coefficients, and the quantized coefficients are re-arranged into a more
compact representation using the zig-zag scanning method then encoded by using zero
run length coding. The output is eventually coded by using entropy coding, i.e., Huffman
coding, to produce the JPEG compliant image.

These encoded JPEG images are then stored or transmitted for their intended us-
age. However, from time to time, the JPEG images might have encountered information
loss [2] due to transmission error or information loss in the storage device (e.g., due to
a bad sector in a hard disk [3]). Among the information available in a JPEG file, the DC
coefficients are particularly important because they carry the overall intensity of the DCT
blocks of the image. Therefore, in 2006, Uehara et al. [4] proposed a coefficient recovery
method to recover the DC coefficients using their identified compressed image properties.
Although Uehara et al.’s method successfully recovers the DC coefficients under various
JPEG compression factors, it is suffering from the overflow and underflow problems [5].

Later, Li et al. [6] improved Uehara et al.’s method by using linear optimization
approach and further extended its application to recover both DC and AC coefficients.
This method can recover the overall structure and intensities when DC and AC coefficients
are missing, and the recovered output images attain high SSIM values. Using subjective
evaluations, Li et al.’s method often produced output images with narrow ranges of
contrast. However, the computational complexity of the proposed linear optimization
approach is high because a large number of equations and inequalities are taken into
consideration during the recovery process.

Therefore, Ong et al. [7] proposed to divide the full-size image optimization problem
into multiple scaled down problems. Specifically, from the image of interest (where some
of its coefficients are missing), a sketch [8] of the image is produced. Otsu’s segmentation is
then applied on the sketch to divide the image into smaller segments, where the pixels with
similar intensities are grouped. Each segment is then an independent problem, and the
missing coefficients in a segment are recovered by using the linear optimization approach
put forward by Li et al. [6]. This segmentation process not only helps to reduce the number
of constraints, but also restricts the solution space to a smaller region. Hence, the processing
duration for Ong et al.’s method is 3–4 times faster than [6].

Interestingly, the possible applications of all the aforementioned works [4,5,7] are
not limited to coefficient recovery only. These recovery/prediction works can be further
extended to the cryptography/steganography algorithm attack [4,9], data embedding in
encrypted images [10,11], forgery detection [12], and others. Among them, data embedding
can be deployed to manage images, for example, hyperlinking related media to the image,
fingerprinting, or enabling extra features for premium users, to name a few options.
Specifically, data embedding is a process that modifies the carrier medium (e.g., image),
aiming to encode as much data as possible while maintaining the fidelity of the original
carrier. Depending on the application, the embedded data serves different purposes.

The conventional data embedding methods aim to maintain the quality of the carrier
image. Most methods achieve their goals by making small changes to the image. However,
when data can be recovered with a certain level of accuracy, why not just replace the
recoverable data with the data to be embedded? In addition, if an image of higher quality
is required, the embedded data can be scrapped, and data removed earlier (to make
room for data embedding) can be recovered. Therefore, in this work, we will first revisit
Ong et al.’s method [7] and Tan et al.’s method [10] to solve two problems. Although
Ong et al.’s method improves Li et al.’s [6] method in terms of CPU time, the true capability
of divide-and-conquer has not been harvested due to the low performance in Otsu’s method
(adopted in Ong et al.’s method) in image segmentation. On the other hand, although Tan
et al.’s method is designed to embed data into an encrypted JPEG image, the quality of the
decrypted-recovered image is low, because it simply removes all the relevant coefficient(s)
in every region for data embedding without considering the distortion caused.

The rest of this paper is structured as follows: Section 2 reviews the coefficient recovery
methods proposed by Li et al. and Ong et al., followed by the rewritable data embedding
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method by Tan et al. The proposed improvement and rewritable data embedding methods
are detailed in Section 3. Experiment results are then presented in Section 4, and Section 5
concludes this article.

2. Related Work

In the JPEG image encoding process, an input image will first be divided into 8× 8
non-overlapping pixels blocks. These blocks are known as Minimum Coded Units (MCUs).
For each MCU, DCT is applied to produce 8× 8 coefficient blocks, where the top-left
coefficient is the DC coefficient, and the rest are the AC coefficients. The DC coefficient
carries the overall intensity of the MCU, and AC coefficients are used to store the weights
of the 63 DCT basis vectors (i.e., block patterns).

To the best of our knowledge, the earliest work on coefficient recovery was proposed
by Uehara et al. [4]. In particular, Uehara et al.’s method utilizes the remaining AC
coefficients to recover the missing DC coefficient because the range of the DC coefficient
in a block is constrained by the pixel values generated by the AC coefficients (viz., the
mean-removed pixels). In addition, to ensure the global feature of the image, Uehara et
al.’s method also considers the close relationship between vertical and horizontal pixels
while recovering the DC coefficients. In their work, Uehara et al. successfully performed
an attack on DC-encrypted images by revealing (recovering) the DC coefficients.

Later, Li et al. extended Uehara et al.’s method in new directions, i.e., recovering both
the DC and AC coefficients, by using linear optimization. Li et al. treated the missing
coefficients problem as a minimization problem:

minimize ∑ hx,y,x′ ,y′

subject to I(x, y)− I(x′, y′) ≤ hx,y,x′ ,y′ ,

I(x′, y′)− I(x, y) ≤ hx,y,x′ ,y′ ,

I = A.J,

Imin ≤ I(x, y) ≤ Imax,

J(u, v) = J ∗ (u, v),

where I(x, y) denotes the pixel value at (x, y), I(x′, y′) is the neighboring pixel value of
I(x, y), hx,y,x′ ,y′ is the difference for a pair of neighboring pixels, A is the DCT transfor-
mation matrix, J(u, v) is DCT coefficient value at (u, v), and J ∗ (u, v) is the known DCT
coefficient value. The generalization using linear optimization in [5] is more flexible and
convenient, as it can recover more coefficients and reduces the implementation complexity.

However, using Li et al.’s approach to solve a full-image recovery of coefficients
problem produces many constraints, and the solution space is wide. In other words, it
incurs high computational complexity. Therefore, Ong et al. [7] proposed to divide the full-
image problem into multiple smaller and independent optimization problems to reduce the
computational cost. An intuitive segmentation technique, i.e., Otsu’s method, was utilized
in [7] to divide an image into segments. In each segment, the same objective function
was utilized but with a smaller number of constraints. Within the segment, it was also
found that the solution space for the linear optimization algorithm is relatively smaller than
that of [5] because the pixels values are very similar. Based on the results reported in [7],
this divide-and-conquer approach is able to reduce the computational cost by 3∼4 times
compared to that of [5].

Besides using the recovery approach to break the encryption technique, as demon-
strated in [4], this approach has been utilized to embed data. Tan et al.’s method [10]
removes chosen group of coefficients and shifts the remaining coefficients to the upper
part of the MCU, to vacate the space in storing external data. This shifting process also
contributes to their goal of degrading the image quality, which eventually leads to perceptual
encryption. The external data are then represented by using the Huffman codewords, and
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these codewords corresponding to the external data are placed in the vacated spaces in the
MCUs. On the receiver side, the inserted external data are extracted, and the shifted coeffi-
cients are put back to the same positions, along with other decryption operations. Finally, the
removed coefficients can be approximated using the recovery algorithm as in [7].

3. Proposed method

In this work, we improve Ong et al.’s image coefficient recovery method [7], and then
propose a rewritable data hiding method which exploits the fact that the removed coefficients
can be recovered with high accuracy. The details are presented in the following subsections.

3.1. Improved Coefficient Recovery

As reported by Ong et al. in [7], an improvement of 3∼4 times over Li et al.’s
method [6] in terms of CPU time has been attained. The main ingredient behind Ong
et al.’s method is the divide-and-conquer strategy. Specifically, the image of interest is
divided into non-overlapping patches, and the missing coefficients within a patch are
recovered independently from other patches.

In Ong et al.’s method, the patches are defined based on the remaining coefficients in
the image. Specifically, the energy induced by the remaining coefficient in each 8× 8 block
plays the role of a pixel [8], and the resulting matrix (which is 1/8× 1/8 of the original
size in each dimension) of values is linearly scaled to put them in the range of [0, 1] to form
the energy image E. Otsu’s method is then applied to divide the energy image into the
background and foreground regions.

However, there is an issue, because Otsu’s method operates based on the assumption
that the pixel distribution has two peaks (i.e., bimodal). In fact, most natural images
do not exhibit that distribution. For example, see Figure 1 for the distributions of pixel
values of two test images from the BOSSbase dataset [13]. Therefore, depending on the
statistical features of the image of interest, Otsu’s method may not be suitable, and hence the
background/foreground separation output is expected to be suboptimal. As a result, the true
potential of the divide-and-conquer approach cannot be maximally harvested this way.

To address this issue, we adopt the adaptive segmentation method by Bradley and
Roth (referred to as BR’s method) [14]. This particular adaptive segmentation method
is adopted because it is lightweight; hence, it will not add significant complexity to the
coefficient recovery process. The main idea in BR’s method is to compare the pixel of interest
I(x, y) against the average pixel intensity value of a s× s neighborhood surrounding I(x, y).
The computation is efficiently performed by adopting the concept of integral image Q,
where each value in the integral image Q(x1, y1) refers to the summation of the pixel values
from the top-left pixel to the (x1, y1)-th position. In other words,

Q(x1, y1) =
x1

∑
x=1

y1

∑
y=1

I(x, y). (1)

Subsequently, the average value, denoted by Î(x, y), is compared with I(x, y) to
determine whether I(x, y) belongs to the background (black) or foreground (white) region
of the image. Specifically,

I(x, y) ∈
{

F if I(x, y) ≥ p× Î(x, y);
B otherwise,

(2)

where B and F denote the background and foreground (regions) sets, respectively, and
p denotes a scaling factor ranging from 0 to 1. Once the patches are defined, Li et al.’s
method [6] is applied to each patch to recover the coefficients.
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Figure 1. Natural images ((a) image N11 and (c) image N18)) and their distributions of pixel values
((b) for image N11 and (d) for image N18). Both histograms have more than 2 peaks.

The segmentation results using Otsu’s method and BR’s method are shown in Figure 2.
It is apparent that BR’s method produces: (a) a higher number of segments (or patches) and
(b) better segment boundaries. In particular, (a) allows more parallelism since the patches
are handled independently (hence shorter CPU time), and (b) preserves the quality of the
image at the patch level.

3.2. Rewritable Data Embedding

In this section, we put forward a rewritable data embedding method by exploiting the
fact that coefficients could be removed from an image I and later recovered to form the
image Ir, where I and Ir are visually similar. Here, the coefficients could be obtained from
an image I which is stored in the form of a matrix of pixel values, or obtained by partially
decoding a JPEG bit stream. Our method is rewritable because the loss of information
only occurs in the first round of embedding, i.e., when the selected coefficients in I are
modified to accommodate the data (message, µ). The embedded data can be removed and
the coefficients could be recovered. When the image with the recovered coefficients, i.e., Ir,
is used in turn as the host image for data embedding, one can remove the embedded data
and recover the coefficients to perfectly reproduce Ir, where no further information is lost.

To embed data, we first classify each 8× 8 block based on how well the removed
coefficients could be recovered. Specifically, we form the energy image E by computing:

E(i, j) = ∑
a 6=1,2,3

ACa(i, j), (3)

where ACa(i, j) refers to the a-th AC coefficient (in zigzag order) in the (i, j)-th 8× 8 block.
Subsequently, E is scaled by dividing T = max{E(i, j)}, i.e., E← E/T, so that the resulting
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values in E ranges from 0 to 1. BR’s method is then executed on E to label each pixel value,
i.e., “0” for background and “1” for foreground. A set of connected pixels (with respect
to 8-neighborhood) forms a patch Pd, where d = 1, 2, · · · . Therefore, there can be multiple
patches of background and foreground (i.e., disconnected regions).

(a) (b)

(c) (d)

Figure 2. Segments produced by using Otsu’s method (a,c) and BR’s method [14] (b,d). The first row
shows the results for image N11, and the second row shows the results for image N18. The segments
are colored for illustration purposes. Refer to Figure 1 for the original images.

Specifically, Pd(i, j) = 1 implies that the (i, j)-th 8× 8 block belongs to the d-th patch,
while Pd(i, j) = 0 implies otherwise. By construct, most values in each patch Pd will be “0”.
In addition, we do not distinguish background from foreground patches. However, as long
as their removed coefficients can be recovered within a predetermined precision (denoted
by τ), they can be selected for data embedding purposes. The proposed coefficient recovery
method is then executed to recover the removed coefficients.

To quantify the precision, the difference between the original coefficient (denoted by
ACa) and recovered coefficient (denoted by ACr

a) is computed; i.e.,

δa(i, j) = ACa(i, j)− ACr
a(i, j). (4)
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Subsequently, the mean square error (MSE) for the d-th patch is computed as:

MSE(Pd) =
1
|Pd|

3

∑
a=1

∑
i

∑
j

δ2
a(i, j)⊗ Pd(i, j), (5)

where ⊗ denotes the element-wise multiplication, and |X| denotes the cardinality of the set
X. The patches with MSE(Pd) < τ are labeled as usable; otherwise, unusable. Subsequently,
the patches Pd are sorted based on size (i.e., |Pd|) in decreasing order. Usable patches within
the 20 largest patches are considered for data embedding, and the remaining patches are
left unmodified. Here, a 20-bit array (denoted by M) is constructed to record which patch is
usable (i.e., “1”) or unusable (i.e., “0”). For example, M(4) = 0 implies that all 8× 8 blocks
belonging to the 4-th largest patch are usable for data embedding. Subsequently, M is
communicated to the receiver, either through some reserved space in the image or through
a separate communication channel.

Next, AC1, AC2, and AC3 from each of the 8× 8 blocks (see Figure 3) in the 20 largest
usable patches are utilized for data embedding purposes. We divide the message µ into l-bit
segments, each denoted by µk, k = 1, 2, . . . , b|µ|/lc. To embed data, the l least significant
bits of AC1 are replaced by µk, and the process is repeated for AC2 and AC3 using the
following message segments, i.e., µk+1 and µk+2. In essence, each 8× 8 block in a usable
patch will hold 3× l bits from the message µ. The process is repeated for all blocks until
all message segments µk are processed, or all usable blocks are exhausted. Note that more
features could be added to the embedding process, for example, randomizing the sequence
in which we process the message segments, i.e., from µk to µk′ , or encrypting them to µ′k
before embedding, or both. In addition, some 8× 8 blocks in the usable patch could also
be skipped—i.e., not utilizing all blocks for data embedding.

In any case, the modified coefficients (now containing data) in the usable patches are
combined with the unmodified coefficients to form the processed image I+.

Figure 3. The naming convention adopted in this work for DC and AC coefficients. AC1, AC2, and
AC3 are adopted for data embedding.

3.3. Data Extraction and Image Recovery

First, AC1, AC2, and AC3 are removed from the received image I+ and the energy im-
age E is formed. Next, the background and foreground patches Pd are formed by applying
BR’s method [14] on E. Subsequently, the patches are sorted based on size in decreasing
order, and M is consulted to determine whether a patch is usable or unusable. For each
8× 8 block in a usable patch, the l least significant bits of AC1, AC2, and AC3, will produce
three message segments. In other words, the k-th 8× 8 blocks will produce µ3k, µ3k+1,
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and µ3k+2. The process is repeated for all blocks in each usable patch. Subsequently, the
message µ is reconstructed by concatenation:

µ = µ1||µ2||µ3|| · · · . (6)

Finally, to produce an approximation of the original image Ir, Li et al.’s coefficient
recovery method [6] is invoked to recover AC1, AC2, and AC3 for each usable patch. When
we put the recovered coefficients (i.e., ACr

1, ACr
2, and ACr

3) together with the unmodified
coefficients (i.e., those from the unusable patches and the unmodified coefficients in the
usable patches), we obtain an approximation of the original image.

4. Experiment

The proposed improvement on Ong et al.’s recovery method and the proposed
rewritable data embedding method were implemented on MATLAB (Version 2020b) run-
ning on an AMD Ryzen 7 4800H PC with 8 GB of memory (Windows 10). Experiments
were conducted by using the same 20 test images (512× 512) from BOSSbase dataset [13],
which are available online [15]. For all experiments, the first three AC coefficients, i.e.,
AC1, AC2, and AC3 were removed, utilized to embed data, and eventually recovered. The
data embedded in the experiments were randomly generated by using the pseudo-random
binary generator (PRBG) using a fixed seed. For BR’s method [14], the threshold p = 0.8 is
set and for the proposed rewritable data embedding method, the threshold τ is set based
on a ratio, i.e., 20% of the mean square error (MSE) values for all recovered coefficients.
For data embedding, among the 20 largest patches, those with MSE value above τ are
skipped, i.e., neither removal nor data embedding was carried out in those patches. After
data extraction, all the embedded binary bits were compared with the binary sequence
generated by using the same seed as in data embedding, and it was confirmed that the
recovered data contained no errors.

4.1. Coefficient Recovery

First, we examined the quality of resulting images after the missing coefficients were
recovered by using the proposed improvement method (denoted by Adaptive Method) and
Ong et al.’s method [7]. In terms of the segmentation process, BR’s method was able to
produce clearer and more refined boundaries for the images considered. For example, for
the energy image of N11 shown in Figure 2, the contour of the balcony was captured more
accurately when using BR’s method, whereas Otsu’s method grouped several distinctive
regions into one patch. To quantify the quality of the recovered images, the PSNR (dB)
and SSIM [16] scores were recorded in Table 1. The results suggest that the proposed
method and Ong et al.’s method achieved similar image quality, although the proposed
method showed marginally better image quality—18 out of 20 for PSNR and 16 out of 20
for SSIM. The average PSNR/SSIM for the proposed method and Ong et al.’s method [7]
were 30.15 dB/0.9248 and 28.99 dB/0.9207, respectively.

To further confirm this observation, selected images are shown in Figure 4. By visual
inspection, Ong et al.’s method and the proposed method produced images which are
visually similar to the original image, hence confirming their ability to recover the removed
coefficients. It is noticed that for both recovery methods, the recovered images tend to be
brighter (see N4 and N12). Upon further investigation, it was observed that images N4 and
N12 are both simple in texture, having less visual details in most parts of the image (i.e., the
wall for N4 and the cloud for N12). In such smooth blocks, there were lesser high frequency
DCT coefficients, and most energy is concentrated on the low frequency DCT coefficients,
representing the smoother pattern of the DCT block. However, the low frequency DCT
coefficients (i.e., first 3 AC coefficients) are removed in our experiments. Hence, the linear
solver might face difficulties in finding the optimum solution and predict the intensity for
such DCT blocks, because only a very limited number of coefficients are available as the
reference. Therefore, it can be observed that the recoverability of the coefficients in these
kinds of images in both methods are not as accurate as the other textured images.
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Second, we considered the number of patches produced by BR’s method and Otsu’
method. The results are recorded in Table 1. As expected, the number of patches produced
by BR’s method was consistently higher than that of Otsu’s method, except for image N13.
In particular, the largest difference was an increment of 17 patches as observed in image
N6. On average, BR’s method produced 17 patches, whereas Otsu’s method in Ong et al.’s
proposal produced 9.6 patches.

Third, the CPU times were compared, the results of which are also recorded in Table 1.
The CPU time here indicates the computational time used to solve the linear program-
ming problems of all patches in the image. For all 20 images considered, the proposed
improvement always completed the coefficient recovery task in a shorter period of time
(see the bold values in Table 1). The percentage of improvement ranged between 1.35%
and 27%, and the average improvement was 10.02%. In general, a significant improvement
was observed for images, with large differences in terms of the number of patches. Even
Ong et al.’s method produced more patches than the proposed adaptive method (see N13),
and when both methods had similar number of patches (i.e., ±2 to 3 patches, see N1 and
N20), the proposed adaptive method still required less CPU time—viz., solving the linear
programming problem in a shorter time span. This also shows the effectiveness of using
an adaptive segmentation method in the linear programming solver as compared to the
conventional segmentation method, which uses a global threshold.

Table 1. Performance comparison between the proposed adaptive coefficient recovery method and Ong et al.’s method [7].

Image
Adaptive Method Ong et al.’s Method CPU Time

PSNR SSIM No. of CPU PSNR SSIM No. of CPU Improvement
(dB) Patches Time (sec) (dB) Patches Time (sec) (%)

N1 25.59 0.9433 4 549.13 25.49 0.9366 2 564.66 2.75

N2 31.88 0.9497 16 277.17 31.00 0.9410 10 301.63 8.11

N3 31.66 0.9445 18 258.42 31.64 0.9442 13 264.72 2.38

N4 16.50 0.8881 18 222.23 16.41 0.8873 12 236.81 6.16

N5 30.29 0.9277 17 323.44 30.00 0.9273 10 332.45 2.71

N6 37.06 0.9602 21 240.80 37.12 0.9604 4 305.56 21.19

N7 33.50 0.9230 20 238.56 33.11 0.9372 9 284.53 16.16

N8 26.50 0.9624 24 200.23 25.96 0.9601 7 277.55 27.86

N9 33.33 0.9658 8 289.05 33.14 0.9514 4 374.75 22.87

N10 35.24 0.9600 17 227.97 35.03 0.9592 11 247.58 7.92

N11 31.87 0.9419 20 235.14 25.81 0.9101 16 266.94 11.91

N12 12.00 0.6400 11 242.56 11.79 0.6511 8 265.23 8.55

N13 33.50 0.9312 20 202.63 33.11 0.9300 22 212.13 4.48

N14 27.08 0.9288 22 268.38 26.88 0.9278 4 337.06 20.38

N15 32.98 0.9351 20 256.88 32.54 0.9344 10 294.77 12.85

N16 36.23 0.9508 20 268.14 25.81 0.9382 11 271.80 1.35

N17 29.58 0.9422 20 280.23 30.02 0.9501 14 296.08 5.35

N18 36.01 0.9692 16 313.91 35.17 0.9639 10 319.34 1.70

N19 30.47 0.9097 13 273.19 28.81 0.8921 3 295.27 7.48

N20 31.80 0.9214 15 247.58 30.94 0.9122 12 267.06 7.29

Average 30.15 0.9248 17.0 270.78 28.99 0.9207 9.6 286.01 10.02
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For completion of discussion, the graph of CPU vs. number of patches is shown in
Figure 5. It is shown that the CPU time is negatively correlated with the number of patches;
i.e., CPU time decreased as the number of patches increased. Therefore, having larger
number of patches implies, in general, less CPU time.

N4 N5 N12 N16
Figure 4. Original images (first row), recovered images produced by using Ong et al.’s method [7]
(second row) and the proposed method (third row).
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Figure 5. The graph of CPU time against number of patches.

4.2. Rewritable Data Embedding

In this subsection, we evaluate the performance of the proposed rewritable data
embedding method. First, for results of the embedding capacity, the number of usable
8× 8 blocks, and the number of patches are recorded in Table 2. The 20 largest patches
in each image were considered for data embedding. However, not all of the patches are
qualified (viz., not satisfying the condition |Pd| > τ). As recorded in Table 2, the number
of qualified patches ranged from 4 to 20; and on average, 17 of them were usable. We
observed that the number of usable patches does not imply higher embedding capacity.
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This is because the patch size (i.e., number of 8× 8 blocks belonging to each patch) dictates
the embedding capacity, and the patch size is varies depending on the texture of the test
image. In particular, N1 only had four qualified patches, but the number of qualified
blocks was >2000. For N13, although all 20 largest patches were usable, the number of
qualified blocks was only 1704. Note that N1 produced larger patches due to its smoother
texture and fewer edges, whereas N13 produces many smaller patches because it has more
complex texture and more edges.

This also explains the reason behind the variations in embedding capacity for images
where all largest 20 patches are usable, e.g., see N6 (31,779 bits) and N13 (15,336 bits). Based
on our observations, N6 achieved the highest embedding capacity because it has fewer
edges (viz., larger patches), and its slightly rough texture (that can pass the precision test)
is suitable for data embedding purposes. If an image has less texture (i.e., smooth), the
distortion caused by data embedding will be obvious, hence making most of the patches
in smooth images such as N1 fail in the precision test. Therefore, depending on the edges
and textures of the test images, the embedding capacity of these test images ranged from
12,636 to 31,779 bits using the same threshold settings. On average, 20,146 bits could be
embedded into each image. In other words, 2238 8× 8 blocks were usable.

Second, let I− denote the image with its coefficients AC1, AC2, and AC3 removed.
Similarly, let I+ denote the image after embedding data into I− using the proposed method.
However, for the non-usable patches in I, the coefficients AC1, AC2, and AC3 were copied
back into I+. The quality of both I− and I+ is also recorded in Table 2. For all images
except four (i.e., N1, N4, N8, and N12), the image quality for I+ is higher than that
of I− (see the bold values in Table 2). Images N1, N4, N8, and N12 are the exceptions
because they are smooth, as opposed to the other images, which contain objects with
complex backgrounds and textures. The test images used in these experiments are shown
in Appendix A. Furthermore, the image quality of I+ is also affected by the total number of
qualified blocks for data embedding and the embedded data. When there are less qualified
blocks for data embedding, it implies that more AC coefficients remain intact, since there
are more unqualified blocks. Moreover, three first AC coefficients are vacated to carry data;
hence, the inserted data also affects the image quality. For the same reason, we observed
that for some images, the quality reported here is higher than that of their counterparts, as
reported in Table 1. In fact, the results reported in Table 1 serve to estimate the quality of
the recovered image when all patches (blocks) are utilized for data embedding purposes.

For comparison purposes, Guo et al.’s method [17] was considered, due to the similar-
ities of their work and ours. Although different image datasets were considered, Guo’s
method was able to embed 2205/(256× 256) = 0.03365 bits per pixel, whereas the pro-
posed method could embed 0.07685 bits pixel. In terms of image quality, on average, Guo’s
et al.’s method [17] achieved 39.19 dB; the proposed method achieved 30.01 dB. Based on
these outcomes, we conclude that our proposed method trades image quality for higher
embedding capacity. In fact, higher image quality can be attained with the proposed data
embedding method by: (a) setting a small threshold τ for MSE, or (b) using fewer AC
coefficients for data embedding purposes.

It is noteworthy that the proposed data embedding method is irreversible but rewritable.
The rewriting process is illustrated in Figure 6. For a reversible data embedding method,
the images I and Ir (viz., image after data extraction and recovery) are always identical.
However, in our proposed data embedding method using the adaptive coefficient recovery
technique, information loss occurs when we generate I− from I. When the embedded
data are removed from I+, the proposed improved coefficient recovery method can be
invoked to recover the coefficients removed earlier to form the recovered image Ir. When
Ir is in turn used for data embedding by using the same threshold value, the receiver will
be able to form I−, and subsequently reconstruct Ir. Therefore, the embedding-recovery
cycle can be repeated without incurring further quality degradation as long as the same
threshold (viz., τ) is in use. This is because the same coefficient recovery method is used in
the process with reference to the unused coefficients, which stay intact all the time.
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Table 2. Image quality after removal of coefficients (I−) and after data embedding (I+). Results for
image quality are presented in the format of PSNR (dB)/SSIM. Capacity is recorded in the unit of
bits. The number of qualified blocks and the number of qualified patches are recorded in the last
2 columns.

Image I− I+ Capacity Qualified Blocks Qualified Patches

N1 26.06/0.8673 25.51/0.9431 18, 036 2004 4
N2 24.10/0.8381 31.85/0.9494 21,708 2412 16
N3 26.13/0.8293 31.61/0.9350 26,325 2925 18
N4 28.95/0.8504 16.38/0.8571 18,063 2007 18
N5 24.32/0.7709 30.27/0.9275 24,516 2724 17
N6 28.58/0.8787 37.05/0.9600 31,779 3531 20
N7 28.48/0.7967 33.49/0.9226 21,519 2391 20
N8 33.60/0.9196 26.49/0.9619 23,355 2595 20
N9 22.61/0.8059 33.28/0.9650 12,636 1404 8

N10 27.47/0.8470 35.24/0.9597 15,255 1695 17
N11 23.54/0.7833 31.84/0.9410 16,173 1797 20
N12 36.04/0.9344 11.60/0.6340 17,118 1902 11
N13 29.91/0.7995 33.15/0.9304 15,336 1704 20
N14 24.77/0.8248 27.06/0.9281 22,977 2553 20
N15 25.96/0.8097 32.93/0.9346 22,491 2499 20
N16 28.61/0.8314 36.20/0.9501 23,328 2592 20
N17 23.30/0.8165 29.55/0.9420 20,871 2319 20
N18 23.30/0.8043 35.30/0.9644 17,145 1905 16
N19 24.67/0.7776 30.39/0.9093 16,254 1806 13
N20 25.66/0.7602 31.04/0.9171 18,036 2004 15

Note: Quality of the image after coefficient recovery can be found in Table 1.

Figure 6. The rewritable process in the proposed method.

5. Conclusions

In this study, we first identified the problem caused by the use of Otsu’s segmentation
method in Ong et al.’s coefficient recovery method [7]. Specifically, the bi-modal distri-
bution assumption in Otsu’s method leads to suboptimal performance, where the true
potential of divide-and-conquer cannot be fully harvested. Accordingly, we proposed to
replace Otsu’s method by using an adaptive method put forward by Bradley and Roth [14].
In addition, we put forward a rewritable data embedding method by exploiting the fact
that coefficients can be recovered when the neighboring coefficients remain intact. Among
the largest 20 patches induced by Bradley and Roth’s segmentation method, the usable
ones are exploited for data embedding purposes. The three least significant bits of each
of the AC1, AC2, and AC3 coefficients are replaced by the message bits to be embedded.
Experiment results suggest that the proposed improved coefficient recovery method is
able to achieve up to 27% improvement in terms of CPU time over Ong’s et al.’s method
without compromising on image quality. In addition, the proposed method is able to
embed, on average, 20,146 bits into each image. The proposed data embedding method is
also rewritable.
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As future work, we want to find a more secure and efficient way to encode the 20-bit
location map or to eliminate the need for that map completely. We also aim to apply the
proposed coefficient recovery method in the video domain.
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Appendix A

The 20 test images utilized in all the experiments are provided in Figure A1. The
images were obtained from the BOSSbase dataset [13].

N1 N2 N3 N4 N5

N6 N7 N8 N9 N10

N11 N12 N13 N14 N15

N16 N17 N18 N19 N20

Figure A1. The test images (N1 to N20) utilized in the experiments.
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