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1. Introduction

The study of the magnetic fields of the planets is one of the ways to obtain information
about the internal structure of the planet and its evolution. Access to information about
the magnetic fields of planets became possible due to the emergence and development of
interplanetary missions. The first results of measuring the magnetic field of Mars were
obtained in 1965 by the US mission Mariner 4, which discovered the absence of the global
magnetosphere of Mars. In the 1970s, Soviet Mars 2, 3, 5 and later Phobos 2 detected
a rather weak magnetic field of about 60 nT in the vicinity of the equator and 120 nT
in the vicinity of the pole [1]. In 1996, the MGS (Mars Global Surveyor) mission with a
magnetometer reflectometer onboard was sent to Mars [2]. Thanks to this device, data
were obtained on the magnetic field of Mars at various altitudes above the surface of
Mars. These data made it possible to solve inverse problems of restoration of such physical
parameters as magnetization [3,4]. It was found that the crust of Mars is quite strongly
magnetized in some areas. From this it was concluded that, although Mars now does not
have a global magnetic field, it may have had an active magnetic dynamo earlier [5]. In
this regard, modeling of the remanent magnetic field is an important task for studying the
deep structure of Mars and for testing models of the magnetic dynamo of Mars in the past,
as stated in the literature, see [6–15]. In the latter case, this allows the creators of magnetic
dynamo models to verify their models and examine what happens after it disappears, —
whether the distribution of remanent magnetization predicted by these models in the crust
of Mars coincides with the values observed today. The experimental data of the MGS
mission made it possible to obtain a primary estimate of the global distribution of magnetic
field sources in the planet’s crust [6,16].
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The most recent research is based on experimental observation data [17] of the MAVEN
mission (NASA’s Mars MAVEN orbiter [18] that began work in 2014). A variety of methods
developed for studying the Earth’s magnetic field can be applied to studying the magnetic
field of Mars (see, for example, [3,4]). Previously widespread approaches to modeling local
(the intensely magnetized southern highlands with strong magnetic anomalies reaching
1500 nT at 200 km altitude) [7–9] and global regions magnetic field distributions induced
by remanent magnetism of the Martian crust were divided into the “spherical harmonic
expansions” models [10,11] and the “equivalent source” models [12,13]. Current crustal
magnetic field models [14,15] consider the MAVEN magnetometer dataset at an altitude
of about 135 km [2]. This is due to the fact that the data obtained by the abovementioned
MGS magnetometer are mainly distributed in an orbit with an altitude of 370–430 km,
some data are available at an altitude of 90–170 km. Therefore, in these studies, only a part
of the data from the MAVEN mission was used in order to compare the results obtained on
the basis of the data of the MAVEN magnetometer with the results obtained earlier on the
basis of the data of the MGS magnetometer.

The structure of this work is as follows. In Section 2, we describe a model based on
restoring magnetization parameters from traditional magnetic data that are total magnetic
intensity (TMI) [3,4]. Further, in Section 3 we use this model to reconstruct the equivalent
distribution of magnetization parameters in the near-surface layer (crust) of Mars. This
approach is similar to the approach proposed in [19]—the method of “sweeping” the
sources of fields from a multidimensional region of space to its boundary. On the example
of studying the gravitational field of Mars, it was shown [20,21] that the distribution of
two-dimensional sources on a plane under the surface of Mars resembles the field itself in
outline. In [20], a simulation of anomalous gravity masses distribution in the sourthwestern
part of Elysium Planitia under the surface was performed on the base of the modified
S-approximation method. The same technique was used to restore the equivalent magnetic
sources in [22]. The results obtained in these works are based on the so-called linear integral
representation method proposed in [23,24] and then evolved in [25–30]. Therefore, the
approach we are considering to restore the equivalent distribution of magnetic field sources
is encouraging. The proposed algorithm was used to process the magnetic data of the
MAVEN mission at all altitudes. The obtained results demonstrate the effectiveness of the
proposed approach. Section 4 discusses the possibilities of increasing the accuracy of the
retrieval of the unknown magnetization parameters in the case of future interplanetary
missions using instruments that allow measuring magnetic gradient tensor data [31–33].

2. General Problem Statement

The equation describing the magnetic field induction B f ield induced by an object with
a magnetization distribution M(r) and a localization in a domain V has the form [34]

B f ield(rs) =
µ0

4π

∫∫∫
V

(
3
(
M(r), r− rs

)
(r− rs)

|r− rs|5
− M(r)
|r− rs|3

)
dv, (1)

where |r− rs| =
√
(x− xs)2 + (y− ys)2 + (z− zs)2 is a distance between the point rs =

(xs, ys, zs), at which the triaxial sensor s measuring magnetic field induction B f ield is located,
and the point r = (x, y, z) of the domain V, at which a magnetic source with a total magnetic
moment per unit volume M(r) is placed, µ0 is a permeability in vacuum.

The inverse problem is to determine the magnetic moment density M(r), r ∈ V, by
using measured magnetic field induction B f ield(rs) at points rs, s = 1, S.

Remark 1. Note that this problem statement is physically defined. In the present formulation, it is
necessary to restore one vector function from the results of measurements of one vector function
as well. Taking into account the fact that each component of a vector function is a scalar function,
it requires reconstructing three scalar functions from the results of measurements of three scalar
functions. This formulation leads to a system of three scalar equations with three unknown functions.
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3. Reconstruction of the Equivalent Distribution of Magnetization Parameters in the
Near-Surface Layer (Crust) of Mars

For convenience, we rewrite Equation (1) as

B f ield(xs, ys, zs) =
µ0

4π

∫∫∫
V

KTMI(xs, ys, zs, x, y, z)M(x, y, z) dv, (2)

where
KTMI(xs, ys, zs, x, y, z) =

=
1
r5

 3(x− xs)2 − r2 3(x− xs)(y− ys) 3(x− xs)(z− zs)
3(y− ys)(x− xs) 3(y− ys)2 − r2 3(y− ys)(z− zs)
3(z− zs)(x− xs) 3(z− zs)(y− ys) 3(z− zs)2 − r2

.

Here, for shorthand, we use the notation:

r ≡ |r− rs| =
√
(x− xs)2 + (y− ys)2 + (z− zs)2.

In addition to the default Cartesian coordinate system, we also introduce a spherical
coordinate system (see Figure 1):

x = ρ cos ϕ sin θ, y = ρ sin ϕ sin θ, z = ρ cos θ, ρ ∈ [0, R], θ ∈ [0, π], ϕ ∈ [0, 2π). (3)

Here, R is the average radius of Mars.

Figure 1. Planetary coordinate systems used to solve the problem.

Based on the assumption that the region V is a near-surface spherical layer of Mars of
depth h and taking into account (3), Equation (2) can be rewritten as:

B(xs, ys, zs) =
µ0

4π

R∫
R−h

2π∫
0

π∫
0

K(xs, ys, zs, ρ cos ϕ sin θ, ρ sin ϕ sin θ, ρ cos θ)·

·M(ρ cos ϕ sin θ, ρ sin ϕ sin θ, ρ cos θ) · ρ2 sin θ · dρ dφ dθ.

(4)

Remark 2. Here B ≡ B f ield and K ≡ KTMI . The introduction of additional notation is due to
the fact that the matrix K (and, accordingly, the vector-function B) can be extended by taking into
account additional physical information in the formulation of the problem. This will be done at the
end of Section 4.

Let us introduce grids ΦNϕ = {ϕn, 1 ≤ n ≤ Nϕ : ϕn =
hϕ

2 + hϕ (n− 1), hϕ = 2π
Nϕ
} and

ΘNθ
= {θm, 1 ≤ m ≤ Nθ : θm = hθ

2 + hθ (m− 1), hθ = π
Nθ
}. Furthermore, for simplicity, we
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will proceed from the assumption that the spherical layer is thin enough. As a consequence,
with respect to the variable ρ we introduce a grid with only one node ρh = R− h

2 . As a
result, approximating the integrals in (4) using the midpoint rule, we obtain

B(xs, ys, zs) =
µ0

4π

Nϕ

∑
n=1

Nθ

∑
m=1

K(xs, ys, zs, ρh cos ϕn sin θm, ρh sin ϕn sin θm, ρh cos θm)·

·M(ρh cos ϕn sin θm, ρh sin ϕn sin θm, ρh cos θm) · ρ2
h sin θm · h hϕ hθ .

We take into account that (1) measurements are made for all s = 1, S, (2) B and M re
vector-functions (in particular, M = Mxi + Myj + Mzk). Thus, we obtain a system with
3× S equations (which correspond to the measurement of three components of the vector-
function B at S points) with 3× Nϕ × Nθ unknowns (which correspond to the grid values
of the three components of the vector-function M on the introduced grid ΦNϕ ×ΘNθ

).
To these equations we add the following natural physical conditions.

1. Matching condition along one of the meridians. This condition means that the mag-
netic image must be 2π-periodic in the variable ϕ:

M(ρh cos ϕ1 sin θm, ρh sin ϕ1 sin θm, ρh cos θm) =

= M(ρh cos ϕNϕ sin θm, ρh sin ϕNϕ sin θm, ρh cos θm), m = 1, Nθ .

These conditions give additional 3× Nθ equations.
2. Matching condition at the South Pole. This means that all the grid values of the

components of vector-function M must match when θ = θNθ
:

M(ρh cos ϕn sin θNθ
, ρh sin ϕn sin θNθ

, ρh cos θNθ
) =

= M(ρh cos ϕn+1 sin θNθ
, ρh sin ϕn+1 sin θNθ

, ρh cos θNθ
), n = 1, Nϕ − 1.

These conditions give additional 3× (Nϕ − 1) equations.
3. Matching condition at the North Pole.

M(ρh cos ϕn sin θ1, ρh sin ϕn sin θ1, ρh cos θ1) =

= M(ρh cos ϕn+1 sin θ1, ρh sin ϕn+1 sin θ1, ρh cos θ1), n = 1, Nϕ − 1.

These conditions give additional 3× (Nϕ − 1) equations.

Remark 3. Note that for the chosen method of drawing the meshes, formally ϕ1 6= ϕNϕ , θNθ
6= π

2
and θ1 6= 0. However, for Nϕ → ∞ and Nθ → ∞: ϕ1 → ϕNϕ , θNθ

→ π
2 and θ1 → 0. Therefore,

the sewing conditions described above are adequate in the case of sufficiently dense grids with a
sufficiently large number of intervals Nϕ and Nθ .

Thus, taking into account additional physical conditions, we obtain a system of linear
algebraic equations consisting of 3S + 3Nθ + 6Nϕ − 6 equations, each of which contains
3NϕNθ unknown (the grid values of the components of the vector-function M). Note that
the resulting system for a sufficiently large S is overdetermined only from the mathematical
point of view. From a physical point of view, the resulting system is still definite.

This system of linear algebraic equations can be written in matrix form

AM = B. (5)

Here, the vector M contains the grid values of three components of the unknown vector
function M, the first 3S components of the vector on the right side of B contain the results of
experimental measurements of three components of the vector function B, and subsequent
components of the vector B are zeros.
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3.1. Using a Regularizing Algorithm

When processing experimental data, instead of exactly known vector B and matrix
A their approximate values Bδ and Ah are usually known, such that ‖Bδ − B‖E 6 δ,
‖A− Ah‖E→E 6 h. This is due both to errors in the measurements of the magnetic field
(they add an error in the values of the components of the vector B) and to errors in the
accuracy of determining the position of the satellite relative to Mars (they add an error
in the values of the components of the matrix A). Under the described conditions, the
problem is ill-posed. To solve it, it is necessary to construct a regularizing algorithm. We
will use an algorithm based on minimization of the Tikhonov functional [35]

Fα[M] = ‖Ah M− Bδ‖2
E + α‖M‖2

E. (6)

For any α > 0 there is a unique extremal of the Tikhonov functional Mα
η , η = {δ, h},

realizing the minimum of Fα[M]. The algorithm of the generalized residual principle [35]
can be used to select the regularization parameter. Then, choosing the parameter α = α(η)
according to the generalized residual principle

ρ(α) ≡ ‖Ah Mα
η − Bδ‖2

E −
(

δ + h‖Mα
η‖E

)2
= 0,

Mα
η tends to exact solution with η → 0.

The method of conjugate gradients is used as a method for minimizing the Tikhonov
functional.

3.2. Using the Conjugate Gradient Method

Let M(k) be a minimizing sequence, p(k) and q(k) be auxiliary vectors, and p(0) = 0,
M(1) — any admissible point. Then, the formulas of the conjugate gradient method for
finding the element M(3Nϕ Nθ), realizing the minimum of the functional (6) can be written
as

r(k) =

{
AT

h
(

Ah M(k) − Bδ

)
+ α M(k), if k = 1,

r(k−1) − q(k−1)/
(

p(k−1), q(k−1)), if k > 2,

p(k) = p(k−1) +
r(k)(

r(k), r(k)
) ,

q(k) = AT
h
(

Ah p(k)
)
+ α p(k) ,

M(k+1) = M(k) − p(k)(
p(k), q(k)

) .

Remark 4. It should be noted that during numerical experiments we define α = 0, M(1) = 0
and use the iteration number k as the regularization parameter. In this case, the criterion for
terminating the iterative process is consistent with the error in specifying the input data by means
of the condition [36]

‖Ah M(k+1) − Bδ‖2
E ≤

(
δ + h‖Mα

η‖E

)2
.

When numerically searching for the minimum of the functional (6) it is possible to
effectively use multiprocessor systems, the specifics of working with these are detailed
in [37–39].

3.3. Experimental Data Processing Results

The data [17] of observations of NASA’s Mars MAVEN orbiter [18] were taken as
experimental data. The observation area was a set of points at which the magnetic induction
of Mars was measured on the 135th day of 2020. Every 32nd point was taken from the
data file [17], starting with the first and ending with the 86400th (see Figure 2). Thus,
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S = 2700. For calculations, grids with the number of intervals Nϕ = 200 and Nθ = 200
were used. The grid data made it possible to reconstruct the qualitative distribution of the
magnetization parameters over the surface of Mars. The calculations used the values for
the average radius of Mars R = 3,389,500 (m) and the thickness of the near-surface layer
h = 1000 (m). The results are shown in Figure 3 in polar coordinates. Note that changes in
the value of h will lead to a proportional change in the values of the components of the
vector M, but the picture of its normalized value shown in Figure 3 will remain unchanged.

Figure 2. The location relative to Mars of the magnetic field measurement points by the MAVEN
mission used in the calculations.

Figure 3. The normalized value of the magnitude of the retrieved magnetic moment density
M(R cos ϕ sin θ, R sin ϕ sin θ, R cos θ).

4. Discussion

In recent years, with the development of advanced technology, acquisition of the full
tensor gradient magnetic data became available. Much research has shown the advantages
of magnetic gradient tensor (MGT) surveys as compared to the conventional total magnetic
intensity (TMI) surveys [40–44]. The main conclusion is that better inversion results can
be obtained with full MGT data. Thus, we see this approach as promising in the future,
since the use of solely magnetic data does not always give satisfactory results. Some
work notes their insufficiency and the importance of using data on the magnetic field at
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low altitudes, which makes it possible to increase the accuracy of retrieving the desired
magnetic parameters when using the TMI model.

We define full tensor magnetic gradient Btensor, which unlike the magnetic induction
B f ield (that has only three components) has nine components and can be written in the
following matrix form [31]:

Btensor ≡ [Bij] ≡



∂Bx

∂x
∂Bx

∂y
∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂z

 ≡
Bxx Bxy Bxz

Byx Byy Byz
Bzx Bzy Bzz

,

where Bx, By and Bz are components of the vector-function B f ield.

Note that
∂Bx

∂y
=

∂By

∂x
,

∂Bx

∂z
=

∂Bz

∂x
,

∂By

∂z
=

∂Bz

∂y
and

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0. So,

actually, we have only five different components of the tensor matrix.
The diagonal elements and non-diagonal elements of tensor matrix Btensor have the

form (details of the derivation of these formulas are presented in [31]):

Bii =
µ0

4π

∫∫∫
V

(
6Mi(r)(i− is)

r5 +
3
(
M(r), r− rs

)
r5 −

15
(
M(r), r− rs

)
(i− is)(i− is)

r7

)
dv,

Bij =
µ0

4π

∫∫∫
V

(
3Mi(r)(j− js)

r5 +
3Mj(r)(i− is)

r5 −
15
(
M(r), r− rs

)
(i− is)(j− js)

r7

)
dv.

Here, for each character from the set {i, j} one of the characters must be substituted
among {x, y, z}.

By adding these equations to Equation (2), we obtain the following system of two 3D
Fredholm integral equations of the 1st kind:

B f ield(xs, ys, zs) =
µ0

4π

∫∫∫
V

KTMI(xs, ys, zs, x, y, z)M(x, y, z) dv,

Btensor(xs, ys, zs) =
µ0

4π

∫∫∫
V

KMGT(xs, ys, zs, x, y, z)M(x, y, z) dv,
(7)

where B f ield = [Bx By Bz]T and Btensor = [Bxx Bxy Bxz Byz Bzz]T . Kernel KMGT of the
second integral equation can be written as

KMGT(xs, ys, zs, x, y, z) =

=
3
r7


(x− xs)[3r2 − 5(x− xs)2] (y− ys)[r2 − 5(x− xs)2] (z− zs)[r2 − 5(x− xs)2]
(y− ys)[r2 − 5(x− xs)2] (x− xs)[r2 − 5(y− ys)2] −5(x− xs)(y− ys)(z− zs)
(z− zs)[r2 − 5(x− xs)2] −5(x− xs)(y− ys)(z− zs) (x− xs)[r2 − 5(z− zs)2]
−5(x− xs)(y− ys)(z− zs) (z− zs)[r2 − 5(y− ys)2] (y− ys)[r2 − 5(z− zs)2]
(x− xs)[r2 − 5(z− zs)2] (y− ys)[r2 − 5(z− zs)2] (z− zs)[3r2 − 5(z− zs)2]

.

Thus, using the full magnetic gradient tensor in Equation (4) the structure of B and K
will change. Now B ≡ [B f ield Btenzor]T and K ≡ [KTMI KMGT ]

T .
As a result, we obtain a physically overdetermined problem, which consists of deter-

mining three unknown scalar functions from the results of experimental measurements of
the other eight scalar functions. The accuracy of recovering the unknown functions from
this formulation of the inverse problem will be much higher [31].
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5. Conclusions

The method developed by the authors for determining the magnetic properties of
rocks from satellite data can be successfully applied in the process of complex interpretation
of data (the so-called joint inversion) on the physical fields of Mars and its topography. The
distribution of the magnetization parameters equivalent to the external field, found using
the algorithm presented in the article, makes it possible to recreate a qualitative picture
of the internal structure of the planet [45–49]. This is due to the fact that the magnetic
permeability and magnetic susceptibility are closely related to such magnetic distributions.
In the future, it is planned to test the methodology when solving problems in various
statements, both simpler and more complicated. It is very important to emphasize that we
are processing a dataset all over Mars, i.e., we solve the problem of interpretation in the
global version. The method described in the article provides a high quality interpretation
of the data on the magnetic field of Mars, which were obtained from satellites flying at
different heights above the surface of the Red Planet. To take into account the nuances of
mathematical formulations, a more detailed study of the local features of the magnetic field
of the Red Planet is required. We hope that, as information comes from the surface of the
planet, we will be able to improve the accuracy and reliability of our method. Building an
analytical model of the magnetic field of Mars from satellite data is a difficult problem that
researchers from different countries are trying to solve. Verification of certain theoretical
studies can be carried out only on the basis of experimental measurement data. At the
same time, the difficulties that theorists face when solving interpretation problems can
serve as an incentive for technologists and developers of space equipment when planning
an experiment.
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