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Abstract: During the production of pharmaceutical glass tubes, a machine-vision based inspection
system can be utilized to perform the high-quality check required by the process. The necessity to
improve detection accuracy, and increase production speed determines the need for fast solutions
for defects detection. Solutions proposed in literature cannot be efficiently exploited due to specific
factors that characterize the production process. In this work, we have derived an algorithm that
does not change the detection quality compared to state-of-the-art proposals, but does determine a
drastic reduction in the processing time. The algorithm utilizes an adaptive threshold based on the
Sigma Rule to detect blobs, and applies a threshold to the variation of luminous intensity along a
row to detect air lines. These solutions limit the detection effects due to the tube’s curvature, and
rotation and vibration of the tube, which characterize glass tube production. The algorithm has been
compared with state-of-the-art solutions. The results demonstrate that, with the algorithm proposed,
the processing time of the detection phase is reduced by 86%, with an increase in throughput of
268%, achieving greater accuracy in detection. Performance is further improved by adopting Region
of Interest reduction techniques. Moreover, we have developed a tuning procedure to determine
the algorithm’s parameters in the production batch change. We assessed the performance of the
algorithm in a real environment using the “certification” functionality of the machine. Furthermore,
we observed that out of 1000 discarded tubes, nine should not have been discarded and a further
seven should have been discarded.

Keywords: pharmaceutical glass tube; image processing; defect detection; inspection systems; real
time inspection

1. Introduction

Glass tubes, which are used for the production of pharmaceutical containers such as
carpules, vials, and syringes, are typically made of borosilicate glass, since it is considered
the most convenient solution for drug delivery systems and parenteral drug contain-
ers [1–3]. Borosilicate glass tubes can present defect-like flexible fragments called lamellae,
lines of air and blobs (knot inclusions). Subsequent problems and pharmaceutical recalls
may be a consequence of these defects [3–8] and indeed, glass issues have resulted in the
withdrawal from the market of hundreds of millions of units of drugs packaged in vials or
syringes [9–12]. Therefore, pharmaceutical tube manufacturers must check the quality of
the tube produced, to avoid the fact that the finished product’s quality is affected by defects.
Quality checks can be executed by an automated machine vision-based inspection system.
The glass tube is, in fact, translucent and monochromatic, and defects can be detected by
image processing algorithms, since they appear as changes in the gray level of images [13].

The Image Acquisition Subsystem and the Host Computer are the main components
of a machine vision-based inspection system [13–18] for pharmaceutical glass tubes. The
Image Acquisition Subsystem consists of a line scan camera, an LED illuminator, and
a frame grabber. It captures digitized images (frames) and transfers them to the Host
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Computer’s memory. The Host Computer identifies the Region of Interest (ROI), i.e., the
portion of the acquired image that only contains the object to be analyzed, eliminating other
areas whose analysis is useless and would waste time in the subsequent stages, detects and
classifies defects in the Defect Detection and Classification Subsystem, and sends discard
commands to a Cutting and Discarding Machine.

The Image Acquisition Subsystem sets the quality level based on the production speed,
and imposes time constraints on the system. This subsystem, in fact, generates images at a
rate determined by the lines that constitute a frame and by the linear camera sampling rate.
The Defect Detection and Classification Subsystem have to sustain this rate, to avoid loss
of decisions. Therefore, the processing time needed for defect detection and classification is
bound by the sampling rate of the linear camera. Advances in glass production processes
require systems with faster production lines (from 5 m/s up to 10 m/s and over) and high
accuracy in defects detection. Linear scan cameras with a higher sampling rate must be
used to ensure that detection accuracy is kept constant or increased when the production
speed accelerates. Consequently, defect detection and classification must be performed in a
shorter processing time.

State-of-the-art implementations of glass tube inspection systems essentially rely on
Canny’s algorithm [19] to perform defect detection. These solutions prove to be com-
putationally expensive and inadequate to the performance requirements of advanced
production lines. The objective of this work is to identify more efficient defect detection
algorithms that allow the meeting of the timing requirements imposed by innovations in
glass tube production lines.

Numerous industrial processes have adopted machine vision-based inspection sys-
tems [20–27], in addition to the related application domain such as the glass tube processing
industry. In particular, the production of vials, bottles, and glasses [13,21,28–31]. However,
specific requirements and factors characterize glass inspection. In particular, the glass
tube has a cylindrical shape and, as a result of the production process, it is suspended.
Moreover, it partially rotates and vibrates, and does not always result as centered with
the illuminator. The cylindrical shape of the tube produces a sharply luminous intensity
that decreases near the edges of the tube image, and a non-symmetrical luminous intensity
when the illuminator is not centered. This makes the determination of the ROI complex
possible, and prevents the use of some classic methods of defect detection. State-of-the-art
solutions which adopt local thresholds [32] or edge detection [33] cannot satisfy the timing
requirement of the system, while a global threshold [34] is inadequate due to the circular
and irregular profile of tubes.

In this work, we propose a defect detection algorithm that does not change the
detection quality compared to state-of-the-art proposals, but does drastically decrease the
frame processing time. The algorithm performs row level processing to detect air lines, and
column level processing to detect blob defects. In particular, working at the column level,
we apply an adaptive threshold (one for each column) based on the Sigma Rule [35] to
detect blobs. At the row level, we apply a threshold to the variation of luminous intensity
along a row. Thereby, we limit the effects on detection of the curvature of the tube as well as
tube rotation and vibration. The algorithm has been compared to state-of-the-art solutions
in terms of detection quality and performance. The results point out that the detection
phase processing time is reduced by at least 86%, with a throughput increase of at least
268%, achieving greater accuracy in detection. Further performance improvement can be
achieved with ROI reduction techniques. Results show that the algorithm is suitable for a
faster production process. Moreover, we have developed a tuning procedure to determine
the algorithm’s parameter during the change of production batch. The performance has
been verified in real operating conditions, and we have discussed implementation issues,
by considering specific production-related problems. A first step towards the development
of the algorithm that appeared in [36] is only devoted to blob detection, with partial
evaluation and without tuning.
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The work is organized as follows: Related works are presented in Section 2, while
the implementation of an inspection system for pharmaceutical glass tubes is discussed
in Section 3. This section highlights the most relevant requirements on defects and per-
formance. The proposed algorithm is presented in Section 4, together with the tuning
procedure. Section 5 is devoted to the setup and discussion of the experimental results,
and also presents the performance assessment in a real world implementation. In Section 6,
discussions on implementation issues are given, while Section 7 concludes the work.

2. Related Works
2.1. Related Inspection Systems

In literature, Foglia et al. [14] present the complete design of a glass tube inspection
system. The image acquisition system is based on LED illuminators, CCD line scan cameras,
and frame grabbers. The layout of lighting is in backlight configuration, which is the most
used for the inspection of transparent parts [37]. The illuminator is set at a red wavelength,
as the CCD sensors have the best sensitivity at this wavelength. The defect detection
system is based on Canny’s algorithm [19], and functions properly up to a maximum tube
speed of 4 m/s. Moreover, the authors propose a specific method to extract the ROI based
on projections.

Solutions dedicated to the glass tube inspection are implemented by manufacturers
(for example [38–40]), but they are not sufficiently documented (for commercial reasons).

A related application domain is the glass tube processing industry. In particular,
the production of vials, which represents one of the final products obtained from the
processing of glass tubes, and the related inspection systems. The inspection of vials
consists of different tasks: Finding dimensional defects and finding defects in the vials. The
last task is performed by analyzing different inspection zones: The mouth, the body, and the
bottom [31]. In particular, the analysis of the body is relevant, since its structure is the same
as the glass tube, and the adopted solutions can give hints to solve our detection problem.

Eshkevari, Rezaee et al. [28] present a system for automatic detection of dimensional
defects in glass vials. The image acquisition system is based on CCD cameras and LED
illuminators in backlight configuration. In addition, image acquisition is performed in two
steps to obtain lateral and top views on the vials. ROI extraction is performed by applying
a fixed (heuristically tuned) threshold to the images, and by elaborating the horizontal
and vertical projections of the images (i.e., the sum of the luminous intensity of the pixels
along a direction). To highlight the borders of the vials, the authors apply a threshold to the
difference between the luminous intensity of two consecutive pixels and the previous ones,
by starting from the four sides of the image frames and moving to the opposite direction.
They present the results on a dataset, but do not show the performance achieved in a real
working environment.

As for the detection of defects in glass vials, Yang and Bai [29] present a vial mouth
defect detection system. Illumination is furnished by an annular LED light source, and
a CCD camera is used to get the images. As for software architecture, a median filter is
applied to reduce the image noise, and the border of the vials (the ROI) are individuated
mainly by applying Canny. The defects are detected by applying a threshold algorithm
to the polar coordinate version of the image. The paper mainly deals with software
architectures and algorithms, and no data are given on real time performance of the system.
The authors present the results on a dataset, but do not show the performance achieved in
a real working environment, and thresholds are heuristically determined.

Liu et al. [30] describe a system for the analysis of the vial’s body and cap. The
illumination is multi-angle [37] for cap defect detection and backlight for body analysis.
As there are only small mechanical vibrations in the vertical direction (the transportation
direction of vials in the apparatus is horizontal), the upper and lower boundaries of ROI
are determined by the vial’s cap/body’s height in the acquired image. Then, the left and
right boundaries of the ROI are obtained by finding the first edge in the image from the left
or right, respectively. For the body, the left and right boundaries are located by taking a
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rectangle that has an equal distance from the edge of the body. To detect crack defects on the
caps, the authors propose a method based on horizontal intercept projection. In addition,
thresholds on the mean and standard deviation on the projections permit individuating
defective caps. Nevertheless, the method does not permit locating defects and obtaining
their geometric features. For the detection of body defects, a Gaussian filter is first applied
to reduce noise. Then, a black top-hat transforms [41] to highlight the crack area, and a
fixed threshold (derived from testing) is used to binarize the image. Six features on the
resulting connected regions are evaluated to determine if the vial’s body is defective. This
shows that the performance achieved by a dataset of 100 images is compatible with the
production requirements.

Huang et al. [31] present a more general system for inspecting glass bottles, and
present different algorithms for defect detection located on the mouth, the bottom, and the
body of the bottle. The illumination system is in backlight configuration for the detection of
body defects and the image size is 640× 480 pixels. For ROI detection, they combined edge
points with the histogram to guarantee the positioning accuracy. Defect detection utilizes
the OTSU [34] algorithm, and features are determined on the connected region to classify
a defective bottle. The authors perform the experiments on a test platform, designed to
simulate the actual production situation, which show a detection rate of 99.95%, with a line
speed of one bottle per second.

Moreover, inspection systems based on machine vision are used in other glass man-
ufacturing sectors, where the appearance of defects, such as bubbles, lards, and optical
distortion, cannot be avoided and might depress the glass quality. A real-time defect
detection system for float glass fabrication has been proposed by Peng [13]. The system
is composed of eight cameras and LED illuminators to cover the whole glass surface and
achieve the required resolution. The acquired images present the stripes noise that is re-
moved by building a benchmark image and applying a threshold to the difference between
the reference image and the current ones. Then, the OTSU algorithm is applied to highlight
the defects. The system has been tested in a float glass manufacturing plant, achieving a
detection rate that is higher than 99%.

Adamo et al. [21] propose an online inspection system that is capable of detecting
and classifying the typical defects (scratches and spots) of the surface of satin glass sheets.
The authors present the design of motion system, whose speed is programmable to adapt
it to the image acquisition unit. The lighting system is composed of four low-cost dark
field linear sources, designed to guarantee a grazing light on the glass surface, that permit
the correct visualization of irregularities. In the prototype, the image acquisition system
is composed of two cameras based on a 1.3 Mpixels CMOS sensor. A manual system for
camera and lighting system calibration is used. A mosaicking algorithm restores the image
of the whole sheet starting from the partial images obtained with different cameras. The
ROI is selected via the heuristic threshold. Defect detection is performed via the Canny
algorithm. In addition, a procedure for tuning the thresholds, based on the analysis of the
gradient magnitude for a defect free and defective image is proposed. The system has been
successfully tested on glass sheets and on batches of sample images.

For the systems devoted to glass analysis, the main issue is the large dimension of
the part to be inspected. The proposed solutions consist of using multiple cameras to
capture the product image, and the processing techniques adopted can meet the timing
requirements as they are not strict. In systems for the analysis of vials and bottles, either
small-size images are used [28,31], or when employing high-pixel-count cameras, time
requirements are less stringent [30,42]. This allows the application of algorithms that
are computationally more complex than in the case of glass tube inspection, which is
characterized by high process speed and high resolution. In all of the analyzed systems,
however, it must be said that the production speed can be adapted to the inspection
system, as stated in [21]. However, this is not possible in the production of the glass tube,
where variations in the process speed produce changes in the physical properties of the
produced tube.
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2.2. Algorithms

Glass tube inspection can be carried out in three consecutive stages, as in other
production environments [16,20,43]:

• Pre-processing stage;
• Defects detection stage;
• Defects classification stage.

The purpose of the pre-processing stage is to speed up the subsequent processing
phases, identify and eliminate regions that should not be analyzed, and reduce errors intro-
duced by image acquisition. Algorithms for contrast enrichment are usually implemented
in this phase, as well as algorithms for noise reduction [44], and for detection and extraction
of Region of Interest (ROI) [15].

The problem of ROI detection and extraction depends on the properties of the inspec-
tion object and the background, as well as the illumination system. When the background
has a different light intensity (darker as in [21] or brighter as in [28]), threshold-based
algorithms can be used to detect the ROI without altering its content. The detection phase
can be followed by rotations, with the goal of generating rectangular matrices [45] that
are easier to analyze. In the case of glass vials [28], the ROI of image is identified using
threshold algorithms and it is subsequently extracted by analyzing horizontal and vertical
projections. Moreover, ROI detection can be performed through edge detection techniques,
which identify points where there are sudden changes in luminous intensity, as shown
in [30] for the analysis of body and cap vials, and in [31] for the analysis of bottle bodies.

The ROI, for glass tube images, does not include the outer part of the tube and its
edges. The edges are useless for detection since light rays are reflected off them and do
not hit the camera sensor. Therefore, the ROI (Figure 1) consists of the inner part of tube
(internal) within the frame. In this case, threshold techniques cannot be used to extract the
ROI, since, due to the imperfect alignment between the camera and the tube, one of the
areas outside the tube can be lighter and the other darker than the inner part of the tube.
Edge detection techniques only allow detection on the outer edge of the tube, since, due to
the curvature and vibration of the tube and the refraction of light, the areas between its
edges have alternating light and dark zones, making edge detection difficult to apply. This
effect has not been detected in inspection systems for vials and bottles [30,31] due to the
lower resolution of the images used.
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The ROI detection and extraction algorithm adopted in this work follows the approach
presented in [14]. The projections of light intensity per column as averaged over the number
of rows have the minimum values at the edges of the tube. The algorithm detects such
minima, starting from the center of the tube and moving in opposite directions. A threshold
is applied in the research, to avoid adopting local minima that is caused by defects or noise
within the tube.
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The defect detection phase is dedicated to identifying pixels that may belong to a
defect within the image [16,20,43]. For this purpose, segmentation techniques [20] find wide
application, and they can be implemented using edge detection [19,33,46] or threshold-
based [13] algorithms.

In the classification phase, the segmented regions are analyzed by extracting and
analyzing a set of attributes, possibly matching them with pre-defined defect classes [20].

In edge detection techniques, defects are detected by sharp changes in image bright-
ness [33,46]. Canny’s algorithm [19] is considered as one of the best edge detection algo-
rithms for analyzing noisy images [33]. In addition, it has been used for inspection and
analysis in various manufacturing processes. For example, in [14] it has been applied for
the inspection of glass tube, in [21] to satin glass, and in [22] to the wafer surface, in the
analysis of bubble formation in co-fed gas-liquid flows [24], as well as in the analysis of
ice shape on conductors [23]. However, the Canny algorithm uses time-consuming tasks
such as: Applying a Gaussian filter for noise reduction, calculating the intensity gradient,
and performing double-threshold comparisons. Therefore, the processing time required
by Canny may not be compatible with the time constraints imposed by faster glass tube
production lines.

Threshold-based techniques can use a single threshold for the whole image (global
threshold techniques) or different thresholds for different regions of the image (local
threshold techniques) [32].

The Otsu algorithm [34] is a global threshold algorithm, which produces effective
image segmentation when the image luminosity histogram is characterized by a bimodal
or multimodal distribution [20]. The threshold is chosen to maximize the variance among
the classes of the image histogram [47]. Otsu’s algorithm is the basis of several inspection
systems in the literature: In [20], it was used for surface inspection of transparent parts,
in [13] and [25] for inspection during float glass fabrication.

The edges of the tube appear darker in a frame image due to the cylindrical shape of
the glass tubes, and the pixels belonging or not belonging to a defect may have a similar
luminous intensity (Figure 2). Consequently, the detection of defects can hardly be obtained
with techniques based on constant thresholds (single or multiple) [36]. In addition, it is not
possible to utilize algorithms that exploit a defect-free image or template, such as template
matching or background subtraction techniques [13,48], as the tube vibrates and it does
not have a perfectly circular shape (a shape similar to a “sausage”).
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Niblack’s algorithm [32] is a segmentation technique based on local thresholds. It
uses the mean value and variance of the luminous intensity in a window to analyze the
pixel located in the center. The method is mainly applied in the analysis of documents, and
allows the efficient separation of the background from the text [49]. It has been used in a
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vision system to observe the surface of the melt in the Ky method for the growth process of
the sapphire crystal [27]. However, this method requires an update of the mean value and
variance for each image pixel. In addition, the processing time may not be compatible with
the real-time requirements of glass tube inspection.

As the processing time is a main constraint for the realization of real-time inspection of
glass tubes, we consider a state-of-the-art implementation of the inspection system [14] to
highlight how the three stages of inspection—(i) Image preprocessing; (ii) Defect detection;
(iii) Defect classification—contribute to the total processing time. In this implementation,
stage 1 is implemented through the ROI extraction algorithm described in [14]. Defect
detection is implemented through Canny’s algorithm, while classification is implemented
through the algorithm described in Section 4.4.

When analyzing the processing time required by the three phases of processing an
image, the defect detection phase (Canny’s algorithm) is the one that requires the highest
processing time (72% of the total time, 62.5 ms). This is due to the complexity of the
algorithm, which performs time-consuming tasks such as applying the Gaussian filter,
evaluating the intensity gradient, and applying a dual-threshold hysteresis algorithm.
Canny’s algorithm finds application in the general case, and produces good results without
considering the peculiarities of defects.

Since the defect detection phase takes most of the processing time, we derive a defect
detection algorithm that achieves a shorter processing time by exploiting the characteristics
of the most significant defects in the application domain.

3. Image Capture and Processing

The most critical defects in the production of glass tubes for pharmaceutical use [1,14],
due to the significant effects on product quality and for their critical size are:

(1) Air lines. In the furnace, there are air bubbles that, when pulled by the drawing
machine, generate air lines. In an image, they assume the form of darker lines of long
dimensions (Figure 3). The final parts of the line are thinner than the central ones. The air
lines become increasingly difficult to detect if they break (open lines) as they are thinner.
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Figure 3. An air line defect (enclosed in a green oval). Due to the rotations and oscillations of the
tube, the air line appears curved and irregular in the image, although it is straight.

(2) Blobs (inclusion of knots). Imperfections in raw materials in the furnace generate
blobs. They have the shape of circular lenses on the surface of the tube, but appear on the
captured image, due to the movement of the tube, as dark spots, orthogonal to the frame
(Figure 4).
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Tube slices that include these defects are not suitable for some applications. For
example, tube slices that include air lines cannot be used for vaccine syringes, as they can
cause a rupture of the inner surface of the syringe and contents may be contaminated. Vials
cannot be produced from tube slices that include blobs, as they can easily give consumers
the impression of low product quality.

The detection of these defects is realized by an inspection system based on machine
vision [14], constituted by the Image Acquisition Subsystem and the Host Computer. The
Image Acquisition Subsystem consists of a line scan camera, an LED illuminator, and
a frame grabber. It captures digitized images (frames) and transfers them to the Host
Computer’s memory. The individual lines captured by the line scan camera are grouped
together by the frame grabber, generating a single frame. The 360-degree inspection of the
tube is achieved with three cameras and the associated frame grabbers and illuminators.

The tube is inspected as it moves (web inspection [16]) from the furnace to the drawing
machine. The Host Computer detects and classifies defects and, based on the results of the
classification, sends discard commands to the Cutting and Discarding Machine, which cuts
(and, if necessary, discards) the tube in slices of about 1.5 m. Communication among the
modules is realized via an industrial distributed solution [50]. The algorithms for detection
and classification are executed by the Defect Detection and Classification Subsystem.
Discard decisions are taken based on discard policies, depending on the production order.
Typical parameters are the number of defects in the tube slices (blobs and/or air lines), the
maximum size of defects, and their (cumulative) length or area They can be set by operator
via high usable interfaces [51].

3.1. Image Acquisition Settings and Requirements on Performance and Quality

A two-dimensional image frame is constructed by the frame grabber. A pixel in the
image frame maps a virtual rectangle on the tube. The dimensions and area of the virtual
rectangle are used to set the Image Acquisition Subsystem, which is based on the quality
requirements of the system. Moreover, they are utilized to capture the size and area of
defects detected in the frames [14]. The dimension of the virtual rectangle in the direction
orthogonal to the tube movement (OrthogonalDimension) is derived from the optical
magnification and the sensor size of the linear camera as in (1):

OrthogonalDimension = OpticalMagnification × SensorSize (1)

The dimension of the virtual rectangle in the direction longitudinal to the tube move-
ment (LongitudinalDimension) is derived from the line acquisition period of the linear
camera and the tube speed as in (2):

LongitudinalDimension = LineAcquisitionPeriod × TubeSpeed (2)

As for resolution requirements, the process demands a longitudinal resolution of
2 pixels per mm, while in our scenario the tube velocity varies, ranging between 0.5 and
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4 m/s, depending on the tube diameter. The requirement on longitudinal resolution is
satisfied with a value of 8 kHz for the line scan frequency of the linear camera. In fact, the
longitudinal dimension has a value of about 0.5 mm, with a scan frequency of 8 kHz and at
maximum tube speed, according to (2):

LongitudinalDimension = 1/8000 s × 4 m/s = 125 µs × 4 m/s = 0.5 mm

Regarding the other camera parameters, we used a CCD linear camera, with 2K CCD
sensors and a sensor size of 7 × 7 µm, and an optical magnification of 1:2.15. The resulting
orthogonal dimension is about 15 µm (1).

OrthogonalDimension = 2.15 × 7 µm = 15.05 µm

Therefore, one pixel maps an area on the surface of the tube of about 0.0075 mm2, with
a height-to-base ratio of about 33.3.

As for the time requirements, the Host Computer receives images from the frame
grabber at a rate that is equal to the line scan frequency of the linear camera, divided by the
number of lines that make up a frame. Consequently, the period of acquisition of a frame
depends on the acquisition period of a line and the number of lines that constitute a frame
according to (3):

FrameAcquisitionPeriod = LineAcquisitionPeriod × NumberOfFrameLines (3)

Once a frame has been processed, the accept/discard command must be sent to the
Cutting and Discarding Machine. A condition for executing the process in real-time is that
the processing of a frame must be completed before the arrival of the next frame, i.e., (4):

FrameProcessingTime < FrameAcquisitionPeriod (4)

In this work, frames are composed of 1000 lines and the line acquisition period is
125 µs. The resulting acquisition period for each frame is equal to 125 ms (3). Therefore,
the processing time is constrained to be less than this value (4).

The effect of the increasing tube speed, induced by advances in the manufacturing
process, is a proportional increase in longitudinal dimension of the virtual rectangle (2),
and thus a reduction in longitudinal resolution. If we want to hold the longitudinal resolu-
tion, it is then necessary to reduce the line acquisition period of the camera accordingly.
However, the use of camera with a lower line acquisition period results in a reduction of
the acquisition period for a frame (3), and consequently, the processing time of each frame
must also be reduced (4).

3.2. Rational of the Proposal

The algorithm is intended to detect the following classes of defects:

• Air lines (Figure 3);
• Blobs (Figure 4).

As aforementioned, these defects can have a major impact on the quality of the
produced tubes and are difficult to detect due to their features.

The algorithm works on the ROI derived, as in [14]. The projections of light intensity
per column as averaged over the number of rows have minimum values at the edges of the
tube. The algorithm detects the minima of the projections of luminous intensity per column
as averaged over the number of rows, starting from the center of the tube and moving in
opposite directions. A threshold is applied in the search, to avoid envisioning local minima
caused by defects or noise within the tube. This approach minimizes the issues related to
the rotation and vibration of the tube, and the imperfect alignment between the camera
and tube.
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To detect the blob defect, we started by analyzing the luminous intensity of a column
that includes this defect. Figure 5 represents a frame with a blob defect, and the luminous
intensities of a column that include this defect is shown in Figure 6.
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blob defect), as shown in Figure 5.

The effect of a defect is to lower the luminous intensity of pixels on which it is placed,
compared to pixels on which it is not present. Consequently, defects could be detected via
a threshold-based algorithm: Pixels with luminous intensity values below a threshold can
be marked and passed to the classification stage.

Since the pixels that belong to columns that are close to the edge of the tube have a
lower luminous intensity than the pixels of the blob (column a in Figures 5 and 6), defects
detection cannot be performed with a fixed global threshold. By considering that the mean
luminosity of each column varies among columns, the threshold value must be adaptive
to the mean luminosity of each column, and it must also take into account, due to image
noise, the dispersion around the mean. In our idea, the Sigma Rule [35] can be utilized to
determine the adaptive thresholds (one for each column). According to this approach, blob
defects are detected via an adaptive threshold calculated as the mean value (µ) minus kC
times the standard deviation (σ) of the luminous intensity of each column (Figure 7). We
used this solution since, from the computational point of view, it is leaner than the other
solutions, such as Median Absolute Deviation (MAD).
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Figure 7. Application of sigma rule on a column that includes a blob defect. The mean of the
luminous intensity of column b of Figure 5 is represented by line µ, while σ is the related standard
deviation. Lines µ-σ, µ-2σ, µ-3σ, represent thresholds equal to µ minus 1, 2, 3 times σ (kC).

To highlight air lines (Figure 8), from Figure 2 we can observe that, apart from low
variations (noise) due to irregularities in the cylindrical shape of the tube, the luminous
intensity varies gradually when moving along a row towards the border of the tubes, but
suddenly changes in the correspondence of pixels belonging to an air line. Therefore, we
calculate the variation of luminous intensity along the orthogonal direction of the tube for
each row (Figure 9) to detect air lines. Peaks on this variation may indicate the presence of
air lines. We assume from Figure 9 that the peaks belong to an air line defect, when the
absolute value of these peaks is over a given threshold (kR).
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The use of the variation of luminous intensity is motivated by the significant change in
luminous intensity near the air line (i.e., the absolute value of the peak over the threshold),
due to the optical effect of refraction of light rays produced by the cavity of the air line.
For this reason, this variation is greater than the variations induced by noise. Moreover,
differently from the noisy points, the variation for the air line also appears in previous and
subsequent rows. Therefore, during the classification phase, it is possible to individuate
the air lines. In addition, the method presents a low computational cost.

4. The Sigma Algorithm

The proposed algorithm analyzes a glass tube image composed of grayscale pixels
and only includes the ROI of tube image (source image). The luminous intensity of the
image is represented with 8-bit values in the range [0, 255] with grayscale notation, and
I(i, j) represents the luminous intensity of the pixel with coordinates i, j. The source image
has the size of N rows and M columns. The pixels detected by the algorithm are written
to a result image R(i, j), with the same dimensions as the source image. This image is
initialized to 0 (black).

The algorithm consists of two successive parts. The first part allows the identification
of blob defects, while the second part allows the identification of air line defects. After that,
the result image R(i, j) is ready to perform the classification (Figure 10).
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4.1. Processing of Columns for Blobs Detection

1. For each column, the mean value m(i) of the luminous intensity and its standard
deviation σ(i) are evaluated as follows:

m(i) =
1
N

N

∑
J=1

I(i, j)

σ(i) =

√√√√ 1
N

N

∑
j=1

I(i, j)2 −m(i)2

2. A pixel in column i is considered as belonging to an anomaly and the corresponding
pixel is set to a white value (255) in the result Image R, if its luminous intensity is lower
than m(i) minus kC times σ(i):

if I(i, j) < m(i)− kC∗ σ(i) then R(i, j) = 255

3. After processing each column, rows are processed to detect air lines.

4.2. Processing of Rows for Air Lines Detection

1. The finite difference along the horizontal direction is evaluated

D(i, j) = I(i + 1, j)− I(i, j), ∀i ∈ {1 . . . M− 1}, ∀j ∈ {1 . . . N}
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2. The pixel (i, j) is considered as belonging to an anomaly, and the related pixel is set
to a white value in the result Image R, if the absolute value of the finite difference is greater
than a threshold kR.

if |D(i, j)| ≥ kR then R(i, j) = 255

3. After the processing of each row, the result Image R is ready for classification.

4.3. Algorithm

The pseudocode of the algorithm is shown in Algorithm 1. The acquired image is
denoted as I. Other inputs are the constants (kC and kR) and the R image. The algorithm
returns an output image denoted as R (the result image). In the output image, defects are
represented as white pixels (value of 255).

We do not report the implementation of some functions for simplicity, but an explana-
tion is provided for each of them. For each column of the input matrix, the array of the
standard deviation values is returned by function std_column(matrix), while the array
of the mean values is returned by mean_column(matrix) abs(value), that calculates the
absolute value of input value. Function ROI(ImageP) returns an image that only contains
the ROI of the imageP parameter, by applying the algorithm described in [14].

The core of the algorithm is represented by two functions: The elabCol (row 1) and
elabRow (row 16). Function elabCol(I, kC) implements the processing of columns for blob
detection, while function elabRow(I, kR, R) implements the processing of rows for air
lines detection.

The overall algorithm builds an Image I by applying function ROI to an acquired
image (line 28). It calls (line 29) function elabCol(I, kC) to perform columns elaboration
and the returned image is stored in R (an image of the same size of I). In line 30, function
elabRow(I, kC, R) is called to perform row elaboration, and the result image is stored in R.
This image is then passed to the classification stage.

4.4. Classification

Defect classification is based on constructing a container of the detected pixels, defined
as the smallest rectangle containing a set of adjacent white pixels, obtained in the defect
detection step. Based on the defect analysis, the classification of blobs, air lines, and noise
is performed by evaluating the characteristic features of the container.

For each container, we evaluate its area in pixel (A), and the ratio between the length
and the height of the container (LHR) in terms of pixels number. We define the minimum
area in pixel (AMin), the minimum value of ratio between the length and the height of a
blob (BRLHMin), the maximum value of ratio between the length and the height of a blob
(BRLHMax), and the minimum ratio (ALRLHMin) between the length and the height on an
air line.

A potential defect is a container whose area is greater than the AMin parameter. A
blob is a potential defect whose ratio of the height to the width of the container is within
the range [BRLHMin, BRLHMax]. An air line is a potential defect whose ratio of the height
to the width of the container is greater than ALRLHMin.

As for the parameters, we utilize AMin = 20 pixels, BRLHMin = 0.1, BRLHRMax = 0.8,
ALRLHMin = 2, the values are recommended by experts and are the consequence of the
defect characteristics. As a result of the value assigned to AMin and Equations (1) and (2),
the smallest detectable defect has an area of 0.5 mm2.
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Algorithm 1 Proposed algorithm (Sigma).

1. function elabCol (I, kC)
2. N = Number Of Rows (I);
3. M = Number Of Columns (I);
4. m = mean_column (I);
5. s = std_column (I);
6. for (i = 1; i ≤ N; i++)
7. for (j = 1; j ≤M; j++)
8. if (I(i,j) < m(j) − kC*s(j))
9. then R(i,j) = 255;
10. else R(i,j) = 0;
11. end if
12. end for
13. end for
14. return R;
15. end function
16. function elabRow (I, kR, R)
17. N = Number Of Rows (I);
18. M = Number Of Columns (I);
19. for (i = 1; i ≤ N; i++)
20. for (j = 2; j ≤M; j++)
21. if (abs(I(i,j) − I(i,j − 1)) > kR)
22. then R(i,j) = 255;
23. end if
24. end for
25. end for
26. return R;
27. end function

28. I = ROI (acquired_image)
29. R = elabCol (I, kC)
30. R = elabRow (I, kR, R)

4.5. Setting of kR and kC Values—Tuning

Real defects can be undetected (introducing false negatives) if kC and kR take high
values. If kC and kR are too low, the algorithm detects as defects the containers that do
not belong to any real defect (false positive). To determine the best kC and kR values, we
developed a tuning procedure that, starting from a set of frames, determines the intervals of
these values that do not introduce false negatives and minimize false positives (Figure 11).
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In an industrial use of the inspection system, kR and kC depend on factors specific to
the production batch (such as the thickness, size, diameter, dimension, color, and opacity
of the glass tube). The tuning phase is performed on the changes in the production batch,
to adapt parameters to the new production related factors. The procedure analyzes frames
during the setup of the new production, one frame at each step.

The procedure (Figure 11) finds, for each frame, the kCmin value which guarantees the
absence of false positive blobs, and the kCmax value below which there are no false negative
blobs, as well as the kRmin and kRmax values which have similar meaning for the air lines.

The constants kC and kR can vary in the intervals [kCmin,kCmax] and [kRmin,kRmax] with
the guarantee that: (i) No false positives are detected; (ii) real defects are detected in a
defective frame (no false negative).

The procedure is based on three experimental observations. Defects increase the
variance of the columns on which they are located (observation 1). This rule allows us to
compute the minimum values kCmin and kRmin that exclude the defects in a low variance
zone. For blob defects, as glass has irregularities that produce a variation of luminosity
intensity (the “sausage” effect as can be seen on the center and right side of Figure 4 and in
Figure 12e), false positive blobs may also be in high variance zone. Nevertheless, if a real
blob is detected for an assigned kC value, small decreases in kC determine small changes in
the detected area. For false positive blobs (due to tube imperfections), small decreases in
kC determine big changes in the detected area, as shown in Figure 12 (observation 2). For
air lines, if kR values over kRmin are present, they ensure that only real air lines are detected
in high variance zone (observation 3).
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Figure 12. Different behaviors of a real blob (a) and a noisy image due to tube imperfection or noise (e) when changing the
kC parameter. The blob in frame (a) is not detected for kC = 19.20 (b). It is detected if kC is decreased of a step of 0.1 (c).
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changed (h). The blob is a false positive.

Observations 1, 2, and 3 allow the algorithm to be executed in an unsupervised
manner, without the need to manually label defects in the frame. If the frame does not
include any defects, the procedure sets kCmax = +∞, kRmax = +∞.

Once the procedure has been applied to n frames, we obtain a set of n intervals
[kCmin(i), kCmax(i)] and [kRmin(i), kRmax(i)], where i is an image in the set. We can evaluate
the following intervals:

[kCmin , kCmax] where kCmin= maxn
i=1(kCmin(i)), kCmax= minn

i=1(kCmax(i)) (5)

[kRmin , kRmax] where kRmin= maxn
i=1(kRmin(i)), kRmax= minn

i=1(kRmax(i)) (6)
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Parameters kC and kr can be chosen in these intervals.
Figure 13 shows the flowchart of the tuning procedure. Here, N frames are inspected,

and the tuning procedure for kC and kR parameters are executed for each frame.
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The pseudocode of tuning procedure for the kC parameters is shown in Algorithm 2.
After the frame acquisition and ROI extraction (line 1), the variance vector of the columns
of frame V and its mean value m (line 2) are calculated. The value m+var_thre is utilized to
separate high and low variance columns in line 7 (var_thre is set to 2 in our experiment,
line 3); kCmin is assigned 0; kR is assigned +∞; step defines the amount of increase for
kC value (set to 0.1) in the search; and mul is utilized to determine if there is a big/small
increase in the size of detected defect (set to 12, line 3). The algorithm increases kCmin
until there are no defects in the low variance zone (lines 4–7). Thereafter, a first value of
kCmin is determined (line 8). If the last classification has detected no blobs, indicating that
there are no blobs in the frame, thus kCmax is set to +∞ (lines 9–10). If there are blobs, the
algorithm must update kCmin if false positive blobs are detected, and must determine kCmax,
i.e., the highest value that reveals blob defects, if any. Otherwise, kCmax is set to +∞ (lines
21–23). This is done in lines 11–20, starting from kC = kCmin (line 11), where the algorithm
iterates increasing kC (line 14), as well as detects defects and false positives through the
size criterion (observation 2) (lines 15 and 16). If false positives are present, the value of
kCmin is updated to kC+ step (lines 17–19), and the iteration ceases when the number of
blobs (true positive blobs) changes, if at least one was detected in the iterations or no more
false positives are present (in the case of a frame with no true positive blobs) (line 20). The
algorithm ends returning kCmin and kCmax.
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Algorithm 2 Tuning algorithm for the kc parameter.

1. « A frame is acquired, and ROI is extracted »
2. « Calculates vector V, the variance on the columns of the ROI and its mean value m »
3. kCmin = 0, kR = +∞, step = 0.1, var_thre = 2, mul = 12
4. do
5. kCmin = kCmin + step
6. « Perform detection and classification. Parameters of Sigma are (kCmin, kR) »
7. while « There is at most a blob with V (j) < m+ var_thre for each column j of the blob »

//observation 1
8. // a first value of kCmin is determined
9. if «There are no blobs with the last classification »
10. then kCmax = +∞
11. else kC = kCmin
12. « Determine the list of blobs »
13. do
14. kC = kC+ step
15. « Perform detection and classification. Parameters of Sigma are (kC, kR) »
16. « Determine the list of blobs and label as false positives the blobs that have changed the

size of at least mul * step times since the previous step » // observation 2
17. if « The number of false positives » ! = 0
18. then kCmin = kC+ step
19. endif
20. while « The number of blobs is the same as in the previous step and is not zero» OR «

there are only false positive »
21. if « At least a blob has been detected in the previous iteration»
22. then kCmax = kC− step
23. else kCmax = +∞
24. endif
25. endif
26. return (kCmin, kCmax)

The pseudocode of tuning procedure for the kr parameters is shown in Algorithm 3.
After the frame acquisition and ROI extraction (line 1), the variance vector of the columns
of frame V and its mean value m (line 2) are calculated. These steps are executed once if
the two tuning procedures are executed together. Here, kRmin is assigned 0; kC is assigned
+∞; and step defines the amount of increase in the search for kR value (set to 1 in our
experiment, line 3). The algorithm increases kRmin until there are no defects in the low
variance zone (lines 4–7). Thereafter, the value of kRmin is determined (line 8). To evaluate
kRmax, if the last classification has detected no air lines, kRmax is set to +∞ (lines 9–10). If
the air lines are classified in high variance zones, the algorithm starts from kRmax = kRmin
and increases to the highest value that keeps the number of detected air lines constant
(lines 11–17). The algorithm ends returning kRmin and kRmax.

Algorithm 3 Tuning algorithm for the kr parameter.

1. « A frame is acquired, and ROI is extracted
2. « Calculates vector V, the variance on the columns of the ROI and its mean value m »
3. kRmin = 0, kC = +∞, step = 1
4. do
5. kRmin = kRmin + step
6. « Perform detection and classification. Parameters of Sigma are (kC, kRmin) »
7. while « There is at most an air line with V (j) < m+2 for each column j of the air line »

//observation 1
8. // kRmin is determined
9. if « There are no air lines with the last classification »
10. then kRmax =+∞
11. else kRmax = kRmin
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Algorithm 3 Tuning algorithm for the kr parameter.

12. do
13. kRmax = kRmax + step
14. « Apply the Sigma algorithm and classification with (kC, kRmax) »
15. while « The number of air lines is constant » // observation 3
16. kRmax = kRmax − step
17. end if
18. return (kRmin, kRmax)

5. Results

A prototype inspection system has been implemented in a real glass tube foundry.
The main components of the Image Acquisition Subsystem are reported in Table 1. The
illuminator provides a uniform, high-power light source to prevent changes in ambient
lighting resulting in changes in the values captured by the linear camera. A PC equipped
with an intel i7-940 CMP [52,53] deploys the Host Computer. The inspection algorithms
have been implemented in OpenCV [15,54] in a task whose execution is triggered upon
completion of the transfer of a frame into the main memory. Therefore, the processing of
one frame is overlaid on the transfer of the next frame. The Host Computer communicates
by means of a CIFX 50E-DP card [55] with the Cutting Machine. Since the distance between
the Cutting Machine and the Host Computer is greater than 5 m, from the processing of a
frame, 1 s is available to generate the command of discard. This time is superimposed on
the processing of subsequent frames, and therefore was neglected in our evaluation.

Table 1. Image acquisition subsystem.

System Component Adopted Hardware

Linear Camera Basler Racer [56]
Illuminator Red light COBRA Slim LED Line [57]

Frame Grabber Matrox Solios eCL/XCL-B [58] (2K)

In the implementation, the functionality of the verification and certification of produc-
tion quality for the customer has been added. This functionality discards all of the tubes
produced in a given time interval, and allows the certification of the machine data against
the real control, which is carried out offline by expert operators.

The evaluation of the system was carried out in two ways. In the first, we used a
dataset to compare the proposed solution with others existing in the literature, developing a
system that emulates the architecture of the real system. Then, through the functionality of
verification and quality certification, we evaluated the proposed solution in the real system.

5.1. Comparison with Other Solutions

These evaluations are made via a 30-frame dataset (each frame has a size of
2048 × 1000 pixels), captured in the production phase. In the dataset, one frame con-
tains two air lines, another contains three blobs, while 10 frames include a blob, six frames
include an air line, and 17 frames are defect free. A machine similar to the one used in
production was used to carry out the tests.

In the evaluation, four metrics are considered: Processing time, type and number of
detected defects, area in pixels of the blob, and length in pixels of air lines. In order to
evaluate the processing time, the complete dataset was analyzed 400 times [59]. In each run,
to reproduce real working conditions and interferences, the three CPU cores (each dedicated
to the processing of frames coming from a camera) perform the processing on randomly
selected frames preloaded in RAM in a task statically assigned to a core. At the end of
the experiment, the maximum total processing time was measured, since it represents an
estimate of the worst case execution time [59], and the average processing time of each
processing step (ROI extraction, defect detection, defect classification) was measured.
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Regarding the type and number of defects, we determined: (i) The number of true
positives (TP), i.e., precisely classified defects; (ii) the number of false positives (FP), i.e.,
detected defects not corresponding to real defects; (iii) the number of false negatives (FN),
i.e., actual defects not detected. Human experts determined the actual defects (expected
value) by visually inspecting the tubes. These expected values constitute the ground truth.

We have compared the performance figures of Sigma to the performance figures
achieved by the Canny algorithm [19] and the Niblack algorithm [32]. In all of the ex-
periments, we have considered the version of the ROI identification algorithm proposed
in [14], as the pre-processing phase, and the classification based on containers described in
Section 5.4. After executing the tuning algorithm of Section 5.3, the resulting parameters
of the Sigma algorithm were kC = 4.91 and kR = 12. Both Canny and Niblack parameters
were obtained through a design space exploration with the goal of optimizing the detection
quality. For the Canny algorithm, we obtained the parameters 35–80. A threshold K of
−1.7 and a window of 20 × 20 pixels were obtained as Niblack’s parameters. Table 2
lists the algorithms utilized in the experiments for the various steps of detection and
their parameters.

Table 2. Algorithms considered in the evaluation.

Experiment Name Pre-Processing Defect Detection Parameters Post-Processing

Canny ROI identification [14] Canny Algorithm [19] Hysteresis
Thresholds35, 80

Class. of containers
(Section 4.4)

Sigma ROI identification [14] Local and Global
Threshold (Section 5)

kc = 4.91
kr = 12

Class. of containers
(Section 4.4)

Niblack ROI identification [14] Niblack Algorithm [32] N = 20 × 20
K = −1.7

Class. of containers
(Section 4.4)

By analyzing the results related to the accuracy in defect detection (Table 3), the three
algorithms detect all of the real defects in the tubes (the number of true positives is equal to
the number of real defects) and do not present false negatives. The Sigma algorithm has the
least number of false positives, while that number is high for Niblack. This behavior is due
to darker horizontal spots resulting from the imperfectly circular shape of the tube. The
use of a window, in Niblack, does not allow the separation of these spots from the defects.
Moreover, the same considerations apply to the defective frames (Table 3). In particular, to
the frames that the system should discard. We have introduced this further classification as
a frame that can contain multiple defects.

Table 3. Defects/defective frames and classification.

Blobs Air lines Defective Frames

Expected value TP 10 6 13
Canny TP/FP (FN) 10/5 (0) 6/0 (0) 13/2 (0)
Sigma TP/FP (FN) 10/3 (0) 6/0 (0) 13/1 (0)

Niblack TP/FP (FN) 10/11 (0) 6/0 (0) 13/4 (0)

Tables 4 and 5 show the area of the blobs and the length of the air lines (in pixels) for
defects classified as true positives. As for the blobs area (Table 4), the Sigma algorithm
has the best performance in terms of cumulative percentage and relative error (Avg Abs
Error, which is the average of the absolute error). Canny and Niblack have the worst
performances. At the end of the Canny algorithm, the dilate morphological operator is
usually applied [15] to improve the detection of connected regions (which is useful in our
case for air lines). However, the application of this operator introduces a high error in the
detection of the blob area (83%). On the other hand, the thresholds generated by Niblack,
tend to be lower than those of Sigma. In correspondence with the windows that enclose
blobs (Figure 14), the resulting thresholds are less capable in the detection of the exact
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contours of the blob. In terms of air line lengths, the three algorithms perform similarly.
The cumulative error in the three cases does not exceed 15%.

Table 4. Area in pixels of blob defects.

Expected Value Canny Algorithm Sigma Niblack

Cumulative Sum 1796 3293 2016 664
Cumulative
Percentage 100 183.35 111.38 36.69

Avg Abs Error (%) 0 167.27 22.86 44.38

Table 5. Length in pixels of air line defects.

Expected Value Canny Algorithm Sigma Niblack

Cumulative Sum 3025 2552 2691 2586
Cumulative
Percentage 100 84.36 88.96 85.49

Avg Abs Error (%) 0 15.42 12.58 15.60
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Figure 14. Luminous intensity (blue) of the portion of a row, including a blob defect and threshold
used with Sigma (yellow) and Niblack (red). In correspondence of the blob columns, Niblack thresh-
olds are lower than Sigma, and the resulting detected region (purple) is smaller than Sigma (green).

In terms of processing time (Table 6), Niblack presents the highest execution time
and the minimum throughput. In addition, it is not compatible with the performance
requirements of the Inspection System. In Figure 15, we only report the performance data
for the Canny and Sigma algorithms. In particular, we report the average time for the
extraction of the ROI (ROI), the average time of the defect detection algorithm (Detection),
and the average time for the classification (Class). Moreover, we show the maximum among
the total processing times for all of the frames, represented as Total, and the achievable
throughput, represented as Frames Per Second (FPS). The Sigma algorithm has the best
performance, with a reduction of the processing time of the algorithm (Detection) of 86%
and of the total time (total) of 63% compared to Canny. The resulting throughput, for Sigma
is 29.8 FPS, which is an increase of 268% compared to Canny.

Table 6. Processing time and throughput.

Processing Time Throughput

Algorithm ROI Detection Classification Total FPS

Canny 7.845 61.538 9.395 89.824 11.1
Sigma 7.698 8.585 8.192 33.514 29.8

Niblack 7.934 2323.891 50.606 2642.169 0.4



J. Imaging 2021, 7, 223 21 of 26

J. Imaging 2021, 7, x  21 of 27 
 

 

Figure 14. Luminous intensity (blue) of the portion of a row, including a blob defect and threshold 
used with Sigma (yellow) and Niblack (red). In correspondence of the blob columns, Niblack 
thresholds are lower than Sigma, and the resulting detected region (purple) is smaller than Sigma 
(green). 

In terms of processing time (Table 6), Niblack presents the highest execution time 
and the minimum throughput. In addition, it is not compatible with the performance 
requirements of the Inspection System. In Figure 15, we only report the performance data 
for the Canny and Sigma algorithms. In particular, we report the average time for the 
extraction of the ROI (ROI), the average time of the defect detection algorithm (Detection), 
and the average time for the classification (Class). Moreover, we show the maximum 
among the total processing times for all of the frames, represented as Total, and the 
achievable throughput, represented as Frames Per Second (FPS). The Sigma algorithm has 
the best performance, with a reduction of the processing time of the algorithm (Detection) 
of 86% and of the total time (total) of 63% compared to Canny. The resulting throughput, 
for Sigma is 29.8 FPS, which is an increase of 268% compared to Canny. 

Table 6. Processing time and throughput. 

 Processing Time Throughput 
Algorithm ROI Detection Classification Total FPS 

Canny 7.845 61.538 9.395 89.824 11.1 
Sigma 7.698 8.585 8.192 33.514 29.8 

Niblack 7.934 2323.891 50.606 2642.169 0.4 

 
Figure 15. Performance data for the Canny and Sigma algorithms. 

The Sigma algorithm is then successful in decreasing both processing times for defect 
detection and total processing time, resulting in a similar or better quality of inspection 
than the algorithms considered in this work. In particular, with the adoption of the Sigma 
algorithm (Tables 3–5), the number of true positives is correct, while the number of false 
positives is lower than the other algorithms, and the accuracy in detecting the size of the 
defects is higher. This is all with an increase in throughput of at least 260%. The solution 
implementing the Niblack algorithm presents the worst detection quality, but also the 
worst performance in our problem. 

According to (4), the reduced processing time obtained with Sigma makes it possible 
to increase the sampling rate of the linear cameras. Therefore, smaller defects can be 
detected due to the better resolution of the collected frames (2). Another implication of the 
reduction in processing time is that the quality of defect detection should not be changed 
by an increase in production speed (2). 

0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0

0.000

20.000

40.000

60.000

80.000

100.000

CANNY Sigma

FP
S

m
ill

ise
co

nd
s

Processing Time and Throughput

ROI Detection Classification Total FPS

Figure 15. Performance data for the Canny and Sigma algorithms.

The Sigma algorithm is then successful in decreasing both processing times for defect
detection and total processing time, resulting in a similar or better quality of inspection
than the algorithms considered in this work. In particular, with the adoption of the Sigma
algorithm (Tables 3–5), the number of true positives is correct, while the number of false
positives is lower than the other algorithms, and the accuracy in detecting the size of the
defects is higher. This is all with an increase in throughput of at least 260%. The solution
implementing the Niblack algorithm presents the worst detection quality, but also the
worst performance in our problem.

According to (4), the reduced processing time obtained with Sigma makes it possible
to increase the sampling rate of the linear cameras. Therefore, smaller defects can be
detected due to the better resolution of the collected frames (2). Another implication of the
reduction in processing time is that the quality of defect detection should not be changed
by an increase in production speed (2).

To further reduce the processing time of the defect detection phase, the DSDRR tech-
nique can be applied [60]. This technique is a preprocessing technique which, via detrended
standard deviation and double threshold hysteresis, further reduces the ROI, by eliminat-
ing regions where it is sure that defects are not present. The technique is independent from
the defect detection algorithm (and it does not alter its quality of detection [60]). Therefore,
it can be applied to both Sigma and Canny algorithms (we do not consider the Niblack
algorithm in the evaluation due to its low performance and low detection quality).

The use of the DSDRR technique allows the reduction of the processing time for both
algorithms (Table 7). In particular, a reduction is observed in the defect detection and
classification. The throughput increase is three times for Canny and two times for Sigma
(DSDRR is more effective for more complex algorithms). However, Sigma continues to
be the most performing algorithm, with a throughput that is 1.73 times the throughput
by Canny.

Table 7. Processing time and throughput.

Processing Time Throughput

Algorithm ROI Detection Classification Total FPS

Canny Without DSDRR 7.845 61.538 9.395 89.824 11.1
DSDRRD 10.331 10.437 2.554 29.745 33.6

Sigma Without DSDRR 7.698 8.585 8.192 33.514 29.8
DSDRRD 10.321 1.485 2.469 17.133 58.3

5.2. Performance and Quality Assessment in a Real World Implementation

The Sigma algorithm was implemented in the inspection system described at the
beginning of the section. We utilize the functionality of verification and quality certifi-
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cation of the system to evaluate the quality parameters obtained by the algorithm in a
real environment.

To highlight the limit of the algorithm, we performed a stress test, in which the system
was made to work with very stringent discard parameters, i.e., the presence of a single
defect on the tube determines the discarding of it. In real cases, it is the set of defects
present on the tube and/or their size that determines the discard criterion.

In the stress test, all of the tubes checked by the machine were discharged, stored, and
analyzed offline by expert operators. The experts analyze individual tubes using a black
background and orthogonal white fluorescent light to highlight even the smallest defects.

To assess the quality of the system, the machine counts the following quantities: Tubes
Accepted by the inspection system, Tubes Discarded by the inspection system, Tubes
Validated by operators as actually meeting the quality requirements, Tubes Invalidated by
operators actually not meeting the quality requirements, False positive Tubes (TubeFp),
i.e., tubes discarded by the inspection system but meeting quality requirements and False
negative Tubes (TubeFn), i.e., tubes accepted by the inspection system but not meeting the
quality requirements. True positive Tubes (TubeTp) are tubes correctly discarded by the
system. As metrics to assess the quality of the system, we utilize the Precision Rate, which
identifies the effectiveness of the discard, and the Recall Rate which identifies the quality
of the product after the discard phase [61,62]. The precision P is defined as:

P =
TubeTp

TubeTp + TubeFp
=

TubeInvalidated− TubeFn
TubeDiscarded

(7)

and recall R is defined as:

R =
TubeTp

TubeTp + TubeFn
=

TubeInvalidated− tubeFn
TubeInvalidated

(8)

This is due to the fact that

TubeInvalidated = TubeTp + TubeFn (9)

TubeDiscarded = TubeTp + TubeFp (10)

In an industrial scenario, the product quality rate should be as high as possible after
inspection, which means adopting a strict inspection technology to minimize the number
of false negatives. However, a strict inspection technology may result in a high number of
false positives, which leads to low productivity and high cost in production. A good defect
detection system should be characterized by high precision (P) and high recall (R).

We performed the stress test on two separate production batches, which differ in
caliber, i.e., outer diameter and thickness. The test length was set to 300 tubes (to give
operators a reasonable inspection time). Table 8 shows the result obtained.

Table 8. Stress test.

Caliber
(mm) # Tubes Tube

Accepted
Tube

Discarded
Tube

Validated
Tube

Invalidated TubeFp TubeFn P R

8.65/.9 300 238 62 240 60 3 2 0.950 0.967
11.6/.9 300 257 43 257 43 2 2 0.953 0.953

The results show the good values we obtained for precision and recall. Moreover, it
can be observed that the machine performs better in real conditions than what was obtained
with the training set. This is due to the fact that the training set was selected with the
images that make the detection more critical. The processing time observed during stress
testing and the actual operation are in line with what was estimated using the datasets,
confirming the validity of the estimates obtained. In addition, all of the frames processed
in the test were scanned and classified in time. Finally, it must be said that the test was
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performed under stress conditions. In real supplies (with commercial criteria of quality
currently accepted by pharmaceutical companies), R results are higher than 0.993 and P
results are higher than 0.991. In practical terms, out of 1000 discarded tubes, nine should
not have been discarded and a further seven should have been discarded.

6. Discussion and Implementation Issues

In the case of implementation in a real system, it is necessary to consider the case of
a defect extending over more than one frame belonging to the same tube. To handle this
situation, the classification of the defects of a frame takes place after the next frame has
been processed (defect detection). For adjacent pixels present on the frame proximal to the
bottom edge, adjacent pixels with the same coordinates are searched for on the top edge
of the next frame. If these pixels exist, the two relative containers of the detected pixels
are merged, and the potential defect is classified according to the algorithm described in
Section 4.4.

Regarding the implementation of an inspection machine for a glass foundry, it re-
quires the consideration of some production-related problems: Management of the phase
of production caliber change, resetting of production in the case of tube breakage, and
automatic drafting of the production report.

The management of the caliber change consists of aligning the machine with the
characteristics of the new production. The tube rests on rollers, and passing from a
large to a small caliber, the axis of the camera and the illuminator do not intercept the
axis of the tube. In particular, the tube will be located in the non-uniform illumination
area of the illuminator itself for two illuminators. In general, the solution consists of
repositioning (manually or automatically) the group of cameras and illuminators to have
the two intersecting axes. The hostile environment of the foundry and the need to make the
machine simple and mobile prompted us to find a software solution. As was conducted in
the Sigma algorithm, which considers the effects on the non-uniform illumination.

The tube is cooled by running 60–80 m on rollers in the presence of puffs of cooling air
to the machine that pulls the tube. The tube can break on the way. An operator must pick
up the tube from the start and quickly attach it to the pulling machine. All of the machines
present on this route must be made in a way as to facilitate this operation. In particular,
the inspection machine must have the mechanical structure that supports the cameras and
illuminator that can be opened as a shell, in order to close it again when production is
completely restored.

Tubes with many defects represent a cost for the tube transformation industry into
carpules, vials, and syringes, since these pharmaceutical containers made with a defective
tube will not pass the quality control. For this reason, the customer specifies the minimum
quality that the tubes must have and tolerates the presence of a minimum part of tubes
that do not comply with this specification.

The inspection machine will be able to provide the production report, which indicates
the percentage of discarded tubes and the estimate of the defective tubes (false negatives
with respect to the quality criteria) that may be present in a production batch. The esti-
mation can be made by furnishing the certification of the discarding system, namely the
statistical certification for all the types of tubes made. Certification is provided via the
functionality of “verification and quality certification” present in the inspection system. It
consists of setting aside a few tubes (300 in our case) and experts manually verifying the
defect data provided by the machine.

7. Conclusions

During the production of glass tubes for pharmaceutical applications, a machine
vision-based inspection system can be utilized to check the quality of tubes. The need to
improve accuracy in detection and advances in the process determine the need for defect
detection techniques with reduced processing time. Nevertheless, specific factors that
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characterize the production process prevent the efficient exploiting of solutions, which are
proposed in the literature.

In this work, after analyzing the characteristics of the most significant defects for the
application area, we have derived the Sigma algorithm that does not change the detection
quality compared to the state-of-the-art proposal, but does determine a drastic reduction
in the processing time of a frame. The algorithm only performs columns level processing
to detect blobs, by applying an adaptive threshold based on the Sigma Rule. In addition,
it only performs row level processing to detect air lines, by applying a threshold to the
variation of luminous intensity along a row. Therefore, this limits the detection effects due
to the tube’s curvature, as well as the rotation and vibration of the tube, which characterize
the production of the glass tube. The algorithm has been compared, in terms of detection
quality and performance, with state-of-the-art solutions. The results demonstrate that,
using the algorithm proposed, the processing time of the detection phase is reduced by
86%, with an increase in throughput of 268%, achieving greater accuracy in detection. The
results show that the algorithm is suitable for faster production lines as it can sustain the
increased sampling rates of the cameras, thus keeping the quality of detection constant or
increasing it.

Moreover, the performance has been verified in real operating conditions. We carried
out a stress test on two different sized batches of tubes, by setting considerably more
restrictive discard conditions than the real ones. The results obtained in terms of precision
and recall demonstrate the effectiveness of the technique. The processing times observed
during stress testing and the actual operation are in line with what was estimated using
the datasets, confirming the validity of the estimates obtained. With the reject criteria
commonly adopted in production, the precision and recall values are even higher than
observed in the stress test. By analyzing the effects of defect on the column on which
they are located, we developed a tuning procedure that permits the determination of
the algorithm’s parameters in the change of the batch of production. Furthermore, we
discussed the implementation issues of the system.
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