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Abstract: In recovering information from the chart image, the first step should be chart type classi-
fication. Throughout history, many approaches have been used, and some of them achieve results
better than others. The latest articles are using a Support Vector Machine (SVM) in combination with
a Convolutional Neural Network (CNN), which achieve almost perfect results with the datasets of
few thousand images per class. The datasets containing chart images are primarily synthetic and
lack real-world examples. To overcome the problem of small datasets, to our knowledge, this is the
first report of using Siamese CNN architecture for chart type classification. Multiple network archi-
tectures are tested, and the results of different dataset sizes are compared. The network verification
is conducted using Few-shot learning (FSL). Many of described advantages of Siamese CNNs are
shown in examples. In the end, we show that the Siamese CNN can work with one image per class,
and a 100% average classification accuracy is achieved with 50 images per class, where the CNN
achieves only average classification accuracy of 43% for the same dataset.

Keywords: chart classification; chart image processing; data visualization; Siamese neural network;
image processing and computer vision

1. Introduction

In today’s world, everything can be measured and described by numbers, and the
numbers can accumulate fast and create tabular data. From tabular data, it is often hard
to read, notice important information, and present that information to others who may or
may not have prior knowledge of it. Because of the problems mentioned above, people
tend to use graphical representations of tabular data-data visualizations or chart images.
Graphical representation also helps identify unusual results and compare different values,
trends, and relations between different types of data. Today, the most common data
visualizations (known as line, bar, and pie chart) have been used since the 18th century [1].
The majority of the used data visualizations are “locked” inside the documents, which
can be digitized. These documents contain graphical and textual information linked
together in one visual unit. Each year raises essential questions and issues in retrieving and
storing these documents and the information that is “locked” inside. The first challenge in
retrieving information from digitized data visualization images is classifying that image in
one of many existing chart classes.

Chart type classification is a well-studied problem with a vast number of real-world
applications dealing with chart text processing, chart data extraction, and chart description
generation. Some of the existing applications include: automatic generation of a summary
description of the presented chart image, exporting original data table from the chart
image, adding accessibility for various screen readers, etc. Since chart image contains
heterogeneous information, it is built using graphical (lines, marks, circles, rectangles, etc.)
and textual (title, legend, description, etc.) components. These components are not strictly
standardized, and not every component is required to be used. The designers have many
choices and much freedom when designing a chart image, which often results in creating
new chart classes or new chart sub-classes.
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CNN can achieve state-of-the-art results in many computer vision tasks. However,
this method requires many images (often 1000 or more per class) to be successful. Since
new chart classes (and sub-classes) can be created daily, the number of available images
is often inadequate to be used with classic CNNs. The required computing power, time
to create a dataset, and teaching the network to linearly grow for each added chart class
and introducing a new chart class requires retraining the network, which can be time-
consuming and computationally expensive. To deal with the presented problem, and to
our knowledge, we are the first to introduce the Siamese CNN in chart type classification.
The Siamese network has many advantages compared to the classic CNN, about which a
detailed experimental analysis will be made.

The main contributions of this paper are the Siamese CNN architecture for chart
type classification, state-of-the-art results in chart type classification, and performance
comparison between Siamese CNN and classic CNN.

The rest of the paper is organized in the following sections. Section 2 presents the
current research on chart type classification and the usage of Siamese networks in other
scientific fields. Section 3 provides brief information about Siamese CNN architecture, the
used model, and used image datasets in this research. In Section 4, the verification process,
the results of multiple Siamese networks, and a comparison between the classic CNN and
Siamese CNN is presented. Finally, Section 5 shows the final remarks on this experiment
and instructions for improvements.

2. Related Work

Some of the earliest scientific papers that introduced chart type classification were
written in 2000 by Zhou and Tan [2,3]. These authors explained one of the most popular
processes in chart type classification, which can be adopted by any method or technique.
The process’s root is to create a textual and graphical separation of an input image, which
outputs two images with different information. These two images are processed separately
with different techniques, and the obtained results are joined for final classification. It is
unnecessary to use both (textual and graphical information) for final classification, but
better results can be achieved. The authors also developed a Modified Probabilistic Hough
Transform for detecting lines in a bar chart. They achieved 85% average accuracy on a
dataset of 35 bar chart images.

Since then, the research field of chart type classification has gained importance, and
up to the day, dozens of related scientific papers have been created. Over the years, the
authors have been using different key approaches for chart type classification, grouped in
four categories: custom algorithm, the model-based approach, SVMs, and CNNs.

The most noted scientific papers that use custom algorithms are the Image and graphic
reader [4], View [5], and Beagle [6]. In the Image and graphic reader [4], authors are using
low- and high-level analysis of geometrical objects of an image. Only bar charts and pie
charts are analyzed. The achieved average classification is 83% on a dataset of 55 images. In
View [5] authors presented a system that automatically extracts information from a bar, pie,
and line charts. Before chart classification, the geometric features of graphical components
are extracted. Analyzing extracted segments, which can be filled areas or lines, the system
can classify input raster images. The reported average accuracy is 97% on a dataset of
300 images. Beagle [6] is the latest work that uses a custom algorithm. It is a complete
system that mines the Internet for Scalable Vector Graphics (SVG) charts, extracts them,
and classifies them into 24 classes. The classification is conducted using basic statistics of
SVG elements: position, dimension, number of colors, number of circles, rectangles, etc.
The authors report average classification accuracy of 86%.

The model-based approach requires a model for each chart class. The model consists
of specific graphical and textual features that represent a specific chart class. In the classifi-
cation process, the extracted features are matched against defined models. The charts that
are outside of model specification or are missing some key features will not be recognized.
Mishchenko et al. describe the usage of the model-based approach [7,8]. The authors also
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created the area, bar, line, and pie chart models and achieved an average classification
accuracy of 92%. The image corpus consisted of 980 images.

The extracted image features can be used as an input to an SVM. The basic concept of
SVM is to find a hyperplane that will separate the data into two classes. The SVMs are fast
when used as classifiers, but setting a hyperplane is demanding when two classes share
extracted features (such as vertical bar chart and horizontal bar chart). The most noted
use of SVMs is in View [5], Reverse-Engineering Visualizations [9], and Revision [10]. In
Reverse-Engineering Visualization [9], authors are using SVM only for text role classifica-
tion. In View [5] and Revision [10], SVMs are used for final classification based on extracted
features. Revision [10] is the most cited scientific paper in this research field and also the
first paper that created multi-class chart classification, including area, bar, line, map, Pareto,
pie, radar, scatter, table, and Venn. The classification results of these ten chart classes are
the most compared ones. The latest researches combine CNNs and SVMs. The CNNs are
usually used for generating feature vectors that are used as input to an SVM. This approach
is best described in VizByWiki [11], Visualizing for the Non-Visual [12], DocFigure [13],
and by Kaur et al. [14]. SVMs achieve state-of-the-art results with an average classification
accuracy above 90% on ten or more chart classes in the previous papers.

CNNs can also be used without SVMs and any type of image processing technique
(feature extraction, pattern recognition, image segmentation, text, and graphic separation,
etc.). Bajić et al. showed that CNN could achieve an average classification accuracy of 78%
across ten chart classes without using image processing techniques. After applying appro-
priate image pre-processing techniques, as a consequence, image complexity is reduced,
which increases average classification accuracy up to 89% [15]. The line and bar charts
are the most researched. Kosmen et al. [16] created a CNN architecture that can classify
line charts according to trend property (increasing or decreasing) and functional property
(linear or exponential). The achieved average classification accuracy is 93.76%. Another
work that focuses only on line charts is written by Ishihara et al. [17]. The author uses
custom CNN architecture and achieves average classification accuracy of 97%. Bar charts
are researched in BarChartAnalyzer [18] and by Zhou et al. [19]. BarChartAnalyzer uses
CNN that classifies the bar chart into seven subtypes (simple bar, grouped bar, stacked bar,
and a combination of different orientations). The average classification accuracy is 85%.
In [19] authors proposed a new method for extracting textual and numerical information
from bar charts. For textual information, extraction Region-based CNN combined with
Tesseract Optical Character Recognition (OCR) engine is used. For numeric information,
encoder-decoder is used. The achieved results are state-of-the-art for this type of archi-
tecture. The classification results also depend on the used dataset and the type of used
architecture. Among the simplest CNN architectures used are LeNet (named after Yann
LeCun et al. in 1989) [20], AlexNet (named after Alex Krizhevsky et al. in 2012) [21], VGG
(named after Visual Geometry Group in 2014) [21], GoogLeNet (named after Google in
2014) [22], and Residual neural network (ResNet) [12]. With 1000 or more images per one
chart class, the CNNs can achieve an average accuracy of 99%. The detailed comparison of
AlexNet, GoogLeNet, VGG, and ResNet models is presented in Chart Decoder [22] and
a brief survey written by Thiyam et al. [23]. A summary of the presented related work is
summarized in Table 1. The last column, “Dataset,” is a sum of all images from different
datasets that are usually split into validation, testing, and training sets. We are using the
summarized value because not all authors report on all three dataset sizes. Additionally,
many newer scientific papers use multiple datasets and often combinations of datasets
from other authors.
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Table 1. A short summary of a presented related work.

Ref. Year Method
Results
CA—Classification Accuracy
DE—Data Extraction

Dataset

[2] 2000 Modified Probabilistic
Hough Transform

Bar reconstruction rate 92.30%. Correlation of bar
pattern and text 87.30% 20

[3] 2000 Modified Probabilistic
Hough Transform

CA: synthetic bar 90.00%, real images of a bar
87.30%, hand-draw bar 78.00% 35

[4] 2001 Custom algorithm CA: bar 73.00%, pie 93.00% 55

[7] 2011 Model-based CA: line 100.00%, area 96.00%, bar 96.00%, 2D pie
74.00%, 3D pie 85.00% 980

[8] 2011 Model-based CA: line 100.00%, area 96.00%, bar 96.00%, 2D pie
74.00%, 3D pie 85.00% 980

[10] 2011 SVM
CA: area 88.00%, bar 78.00, line 73.00%, map
84.00%, Pareto 85.00%, pie 79.00%, radar 88.00%,
scatter 79.00%, Table 86.00%, Venn 75.00%.

2601

[5] 2012 Custom algorithm, SVM CA: 97.00% (bar, pie, line) 300

[9] 2017 CNN, SVM
CA: area 95.00%, bar 97.00%, line 94.00%, map
96.00%, Pareto 89.00%, pie 98.00%, radar 93.00%,
scatter 92.00%, Table 98.00%, Venn 91.00%

5125

[20] 2017 CNN CA: 70.00% (area, bar, line, map, Pareto, pie, radar,
scatter, table, Venn) 4837

[6] 2018 Custom algorithm CA: from 83.10% to 94.00% 33,778

[11] 2018 CNN CA: non-dataviz 89.00%, dataviz 93.00% 755

[22] 2018 CNN CA: 99%. (bar, pie, line, scatter, radar)
DE: from 77.00% to 89.00%. 11,174

[12] 2019 CNN

CA: area 96.00%, bar 98.00%, line 99.00%, map
97.00%, Pareto 100.00%, pie 96.00%, radar 94.00%,
scatter 98.00%, Table 92.00%, Venn 97.00%.
DE: 87.67%.

2398

[13] 2019 CNN CA: 28 types from 88.96% to 92.90% 33,000

[14] 2020 CNN

CA: ordination 98.00%, map 97.00%, scatter 89.00%,
line 91.00%, dendogram 97.00%, column 97.00%,
heat map 95.00%, box 96.00%, area 80.00%, network
91.00%, histogram 83.00%, timeseries 84.00%, pie
97.00%, stack area 96.00%

4073

[15] 2020 CNN Comparison of image preprocessing methods to
overall chart classification 3002

[16] 2020 CNN CA: line 93.75% 1920

[17] 2020 CNN CA: line 97.00% 4718

[21] 2020 CNN Comparison of pre-trained and fine-tuned models 4249

[18] 2021 CNN CA: bar 85% 1400

[19] 2021 CNN DE: bar 85% 30,480

[23] 2021 CNN Comparison of deep learning models 57,097

Although multiple CNNs can be used for different classification tasks, none of the authors used Siamese CNN for chart-type classification.
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3. The Model

The Siamese CNN was introduced by Bromley et al. for solving signature verification
problems [24]. Since then, Siamese CNNs have been rarely used. The development of
Compute Unified Device Architecture (CUDA) hardware and different CUDA libraries
enabled fast training times. With the technology development, Siamese CNNs have
become widely available. Today, they are often used in security applications, such as face
recognition [25], signature validation [26], signal classification [27], speech recognition [28],
etc. The Siamese CNN is a network architecture built using two or more identical (twin)
networks. The main advantages and disadvantages of Siamese CNN are listed below.

The advantages of Siamese CNN:

• Can generalize to inputs and outputs that have never been seen before—a network
trained on approximately ten classes can also be used on any new class that the
network has never seen before, without retraining or changing any parameters;

• Shared weights—two networks with the same configuration and with the same pa-
rameters;

• Explainable results—it is easy to notice why the network responded with a high or
low similarity score;

• Less overfitting—the network can work with one image per class;
• Labeled data—before training, all data must be labeled and organized;
• Pairwise learning—what makes two inputs similar;
• In terms of dataset size—less is more.

The disadvantages of Siamese CNN:

• Computationally intensive—less data but more data-pairs;
• Fine-tuning is necessary—the network layer architecture should be designed for

solving a specific problem;
• Quality over quantity—the dataset must be carefully created and inspected;
• Choosing loss function—available loss functions are contrastive loss, triplet loss,

magnet loss, and center loss.

Many of the listed advantages and disadvantages will be experimentally proven in
the following sections.

3.1. The Dataset

Before explaining the datasets, image pre-processing should be noted. The pre-
processing used in the creation of datasets is similar to pre-processing used in [15]. The
noted “Stage 3 image processing” is fine-tuned, and the number of details on the image is
further reduced. The updated algorithm is presented in Figure 1. With this algorithm, a
title, coordinate axes, legend, and any additional elements on the outside of chart graphics
are removed. These elements are not crucial for chart type classification based only on
the shape of graphic objects used in chart creation. The images are scaled-down with a
preserved aspect ratio and are normalized to 105 × 105 pixels and black-and-white color
space. All images are labeled and organized as the training Siamese CNN requires true
(e.g., bar and bar chart) image pairs and false (e.g., bar and line chart).
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In this research, three different datasets are used:

1. The dataset used in our previous research, which consists of 3002 images, is divided
into ten classes, as shown in Figure 2 [15,29]. This dataset includes images collected
from the Google Image search engine and ReVision system [10] (further on in the text
referred to as a dataset 1).

2. International Conference on Document Analysis and Recognition (ICDAR) 2019
synthetic chart dataset, which consists of 198,010 images that are divided into seven
classes as shown in Figure 3 [30] (further on in the text referred to as a dataset 2).

3. AT&T Database of Faces, which consists of 400 images, is divided into 40 classes [31].
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pie (442), radar (401), scatter (288), table (403), and Venn (178). In the top row are original images, and in the bottom, images
after pre-processing.
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Figure 3. A sample from dataset 2 (198,010 images), from left to right: horizontal bar (22,304)—includes grouped and stacked,
vertical bar (21,961)—includes grouped and stacked, pie (28,203)—includes pie and donut, scatter (41,703), horizontal
box (21,007), vertical box (20,958), and line (41,874). In the top row are original images, and in the bottom, images after
pre-processing.

Datasets 1 and 2 are fully pre-processed, while in dataset 3, the only applied image
pre-processings are image resolution normalization and image color space normalization.
Dataset 3 is only used in the Siamese CNN training because the additional 40 classes help
the network to learn similarities better. Instead of this dataset, any other labeled dataset
can be used. However, if no additional datasets are used, the network over-fits and the loss
value oscillates between the two values. This phenomenon indicates that the model has
not learned similarities.

Before training the network model, one validation set is excluded from datasets 1 and
2, which consists of 20 images per class, as listed in Table 2. This set is used as a reference
point, as the images never change, and the set is never seen in the training process.
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Table 2. The total number of images in each dataset after excluding the validation set.

Dataset 1

Chart type Available Validation Set

Area 288 20

Bar 301 20

Line 267 20

Map 126 20

Pareto 208 20

Pie 422 20

Radar 381 20

Scatter 268 20

Table 383 20

Venn 158 20

Total
2802 200

3002

Dataset 2

Chart type Available Validation Set

Pie 28,183 20

Line 41,854 20

Scatter 41,683 20

Horizontal box 20,987 20

Vertical box 20,938 20

Horizontal bar 22,284 20

Vertical bar 21,941 20

Total
197,870 140

198,010

3.2. The Architecture

The presented model in Figure 4 consists of two inputs (two images), one for each
CNN. The input images are pre-processed and handed to the CNN. In this research,
multiple CNN architectures are tested and compared. The used CNNs are:

• Simplified VGG—the same network architecture used in our previous research. The
achieved average classification accuracy over ten classes ranges from 78% to 89%,
depending on the used dataset [15,29]. The achieved results are for classic CNN
architecture.

• SigNet CNN—the network used for writer independent offline signature verification.
The authors report accuracy ranging from 76% to 100%, depending on the used
dataset [26]. The achieved results are for Siamese CNN architecture.

• Omniglot CNN—the network used on the Omniglot dataset for the validation of hand-
written characters. The authors report accuracy ranging from 70% to 92%, depending
on the used dataset [32]. The achieved results are for Siamese CNN architecture.

All listed network architectures were remade according to the original papers, where
the authors stated details about network configuration. The input layer of the networks is
reconfigured to accept new image datasets. The Siamese CNNs are identical with the same
parameters, configuration, and shared weights. The parameters are mirrored and updated
in both networks. Each network outputs a different feature vector. If the same input image
is handed to both networks, the feature vectors will be the same. The feature vectors are



J. Imaging 2021, 7, 220 8 of 18

used in calculating the loss function (contrastive loss), which computes a similarity score
using the Euclidean distance between these two vectors. Based on the resulted similarity
score and a threshold value, it can be determined if the two input images are similar and
whether they belong to the same class. Used threshold values are: 0.5, 0.75, and 1. In terms
of the similarity score, a lower value (closer to 0) is better (same class).
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3.3. Experiment Setup

All CNN and Siamese CNN models were trained and tested on the Google Collab
platform with PyTorch deep learning framework and enabled CUDA acceleration.

4. Experiments

This section summarizes the findings and contributions made. The verification process
of N-way one-shot learning is described. The results of the Simplified VGG, SigNet CNN,
and Omniglot CNN are compared. The detailed information of network classification
results is provided, as well as a confusion table. In the end, the comparison between classic
CNN and Siamese CNN is given.

4.1. Verification

As seen from Table 1, the CNN architecture relies on substantial data for a good
outcome. Thousands of images are required for training before a network can accurately
assess a new image of a chart. Newly created chart classes lack datasets, and creating and
labeling a dataset is a time-consuming and expensive task. When datasets are inefficient,
CNN cannot match images using learned features but can calculate similarity scores
between different classes. To address this problem, FSL is used in conjunction with Siamese
CNN architecture. The FSL has two main variations: Zero-shot and N-shot (or N-way-K-
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shot). Zero-shot learning refers to using a model to predict a class without being introduced
to that class in the training process. On the other hand, N-way-K-shot is a broader concept
used when the number of classes N and the number of samples K from each class is familiar.

All network models were trained from scratch using datasets described in the pre-
vious section. The used verification method is N-way one-shot learning, introduced by
Lake et al. [33]. The 10-way one-shot learning is explained in Table 3. The Siamese CNN
requires two input images to generate a similarity score. The input in one side of Siamese
CNN is an image from the validation set (or any new image that was not used in the
training process). The other CNN requires one random image from each class that was
used in the training process. This creates ten image pairs for one image. Comparing each
image pair, the Siamese CNN calculates a similarity score.

Table 3. Example of a 10-way one-shot learning. The highest expected similarity score should be SS3.

Image Pair
(Class N)

Input Image 1
(New Image)

Input Image 2
(Known Image) Similarity Score (SS)

1
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Table 3. Cont.

Image Pair
(Class N)

Input Image 1
(New Image)

Input Image 2
(Known Image) Similarity Score (SS)
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less than 10% of the total images from dataset 1. The two other networks achieve around 
50% worse results than reported in papers. The reason is network layer construction. The 
Simplified VGG is a network that is adapted specially for chart-type classification. When 
the input image passes through the network layers, the image is segmented into smaller 
sub-images. The Omniglot CNN and SigNet CNN are specially designed for searching 
and learning imperfections of two images on a pixel level, while Simplified VGG observes 
the image as a whole. Since the input images are heavily pre-processed, they contain im-
age noise that the Omniglot CNN and SigNet CNN are detecting. 

Table 4. Ten-type average classification accuracy. The testing of each architecture is conducted on the same validation set 
from Table 2. In terms of average accuracy and F-1 score, the Simplified VGG outperforms other networks. 

 Input vs. Random Train Image from Each Class Input vs. Highest Similarity Image from Each Class 
Simplified VGG Omniglot CNN SigNet CNN Simplified VGG Omniglot CNN SigNet CNN

Accuracy (%) 68.00 40.00 30.00 82.00 63.00 41.00
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F-1 score (%) 67.86 39.68 29.43 81.94 63.00 40.54
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SS10

The expected highest similarity, i.e., similarity score closest to 0, according to Table 3,
should be SS3. If SS3 is the lowest value in the group and within the set threshold value,
this is treated as a correct classification (same class); otherwise, this is incorrect. Repeating
the algorithm x times, the class accuracy CA is calculated. In Equation (1), CC represents
the number of correct classifications within a class.

CA =
100 × CC

x
[%] (1)

For verification, a set of 20 images per class (x = 20) is used. With this method,
200 image pairs are tested for one class or 2000 image pairs for ten chart types.

In this algorithm, the similarity score depends on two random variables, the input
image 1 (new image) and the input image 2 (random training image). To eliminate one
random variable (random training image), the input image is tested against all trained
images from each class. The highest similarity images from each class are grouped, and
new image pairs for verification are created. With this method, 4000 image pairs are tested
for one class or 40,000 image pairs for ten chart types.

4.2. Results

To validate the performance of the proposed architecture, a set of experiments is
conducted. The goal is to evaluate the performance using all three models and determine
which model achieves the highest average classification accuracy on chart images.

Table 4 shows the 10-type average classification accuracy that was conducted using
dataset 1. The three used networks were trained from scratch. Planned comparisons
revealed that the Simplified VGG outperforms the Omniglot CNN and SigNet CNN. When
used as the Siamese CNN, the Simplified VGG achieves results similar to our previous
work, used as a classic CNN. It must be pointed out that the results are achieved using
less than 10% of the total images from dataset 1. The two other networks achieve around
50% worse results than reported in papers. The reason is network layer construction. The
Simplified VGG is a network that is adapted specially for chart-type classification. When
the input image passes through the network layers, the image is segmented into smaller
sub-images. The Omniglot CNN and SigNet CNN are specially designed for searching and
learning imperfections of two images on a pixel level, while Simplified VGG observes the
image as a whole. Since the input images are heavily pre-processed, they contain image
noise that the Omniglot CNN and SigNet CNN are detecting.
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Table 4. Ten-type average classification accuracy. The testing of each architecture is conducted on the same validation set
from Table 2. In terms of average accuracy and F-1 score, the Simplified VGG outperforms other networks.

Input vs. Random Train Image from Each Class Input vs. Highest Similarity Image from Each Class

Simplified
VGG

Omniglot
CNN SigNet CNN Simplified

VGG
Omniglot

CNN SigNet CNN

Accuracy (%) 68.00 40.00 30.00 82.00 63.00 41.00

Precision (%) 68.00 39.50 29.50 81.50 63.00 40.50

Recall (%) 69.36 46.32 29.83 84.24 66.67 42.34

F-1 score (%) 67.86 39.68 29.43 81.94 63.00 40.54

From the left side of Table 4, it can be seen that choosing a random train image
for comparison can have a hit-or-miss result. If the system chooses the correct image,
the classification result can be 100% and 0% if the image is not similar. To avoid this
phenomenon, the quality of the dataset is more important than the quantity of the dataset.
On the right side of the table, 20 times more image pairs are used, which increases the
average classification accuracy by 15%. The difference between these two approaches can
also be seen in Figures 5 and 6.
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In both approaches, the highest amount of correctly classified images is between 0
and 0.5. This confirms that all three networks are correctly trained, and they are confident
in the results they give. When using the higher amount of image pairs, the third column
(0.75 < x < 1) is eliminated, as shown in Figure 6.

For statistical comparison of the models, a statistical hypothesis test is conducted
using McNemar’s test. A McNemar’s test uses a contingency table, which is a 2 × 2 table
that contains binary variables as correct or incorrect. Each model’s prediction on the same
image is noted as both models predicted correct or incorrect, or only one model correctly
predicted. This test calculates whether the two models disagree in the same way or not. In
Table 5, all models’ p-values are compared against a significance level of 0.05. In all cases,
the p-value is less than 0.05, and the null hypothesis H0 is rejected. The rejected H0 shows
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a significant difference in the disagreements between the models, and we conclude that the
models make considerably different predictions when introduced to the same images.
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Table 5. The McNemar’s test with a significance level of 0.05. All model comparisons rejected null
hypothesis H0.

p < 0.05 H0

input vs. random train image from each class

Simplified VGG—Omniglot CNN true reject

Simplified VGG—SigNet CNN true reject

Omniglot CNN—SigNet CNN true reject

input vs. highest similaritiy image from each class

Simplified VGG—Omniglot CNN true reject

Simplified VGG—SigNet CNN true reject

Omniglot CNN—SigNet CNN true reject

Since slightly superior results are achieved with Simplified VGG, additional infor-
mation is presented in the confusion table, Table 6. The horizontal rows represent known
(seen) classes, and the vertical columns represent predicted classes. The number of correct
predictions is displayed in a diagonal green row (maximum is 20). Red-colored cells show
the number of wrong predictions. The Siamese CNN can also be used to classify chart
types that were not used in the training process; therefore, the network does not know of
them. To prove this statement, a box plot from dataset 2 is used. When letting the network
choose a random image pair, the results are slightly worse than with seen classes during
the training. When the network uses all available image pairs, the results are the same as
for the seen classes during the training.
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Table 6. There are two cases in a table: (a) input vs. random train image from each class; (b) input vs. highest similarity image from each class (shown in parenthesis). Each class can have a
maximum of 20 correct predictions.

Simplified
VGG

Seen Classes during Network Training Unseen Class
Accuracy (%)

Area Bar Line Map Pareto Pie Radar Scatter Table Venn Box

Area 15 (16) 5 (4) - - - - - - - - - 75 (80)

Bar - 15 (16) - - 5 (4) - - - - - - 75 (80)

Line - - 16 (16) - - - - 4 (4) - - - 80 (80)

Map 5 (6) - - 10 (14) - - - - - 5 (0) - 50 (70)

Pareto - 3 (3) 2 (0) - 15 (17) - - - - - - 75 (85)

Pie - - - - - 17 (20) - - - 3 (0) - 85 (100)

Radar - - 4 (4) - - - 13 (16) 3 (0) - - - 65 (80)

Scatter - - 3 (4) - - - 4 (0) 11 (16) 2 (0) - - 55 (80)

Table - - - - - - 5 (0) 3 (6) 12 (14) - - 60 (70)

Venn - - - 2 (0) - 6 (2) - - - 12 (18) - 60 (90)

Box - - 4 (2) 8 (0) - - 4 (2) - - - 4 (16) 20 (80)

(a) input vs. random train image from each class

10—type classification (without box plot) average: Precision 68.00% Recall 69.36% F-1 score 67.86% Accuracy 68.00%

11—type classification (with box plot) average: Precision 63.64% Recall 67.49% F-1 score 62.57% Accuracy 64.00%

(b) input vs. highest similarity image from each class

10—type classification (without box plot) average: Precision 81.50% Recall 84.24% F-1 score 81.94% Accuracy 82.00%

11—type classification (with box plot) average: Precision 81.36% Recall 84.19% F-1 score 81.86% Accuracy 81.00%
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The average classification accuracy between 10-type and 11-type slightly decreases,
which is expected when the number of types for classification increases.

To compare the classic CNN with the Siamese CNN, additional tests are created
for the Simplified VGG. The network is trained 16 times from scratch (eight times as a
classic CNN and eight times as Siamese CNN). The network configuration and the training
parameters were always the same. The training is conducted using dataset 2 (7—type chart
classification). The same batch of images is used when training classic CNN and Siamese
CNN. The goal of training each network from scratch eight times is to find the minimal
training dataset size to achieve state-of-the-art results. In Table 7, e.g., “t10” referees to
training dataset with ten images per class. For the model, verification is always used the
same set of images, validation set. Verification of Siamese CNN is conducted by creating
image pairs for 7-way-one-shot learning. Comparing the results from Table 7 shows how
the number of images and image pairs impacts classification accuracy and the required
time for classification. The classic CNN does not require the pairing of input images with
training images, which makes it equally fast with any size of the training dataset. However,
even with 500 images per class, the average classification accuracy did not reach 100%.
This type of CNN is not usable with small training datasets, and competitive results start
showing when the number of images per class reaches 200 or more. On the other hand, the
Siamese CNN can work with one image per class.

The competitive results are achieved with the datasets between 20 and 50 images per
class, and state-of-the-art results are achieved with just 50 images per class. The average
classification and F-1 score should constantly increase if the number of images is also
increasing. Although this is true, it is false when pairing the input image with a random
train image. In Figure 7, the effect of the hit-or-miss random image can be seen between
“t10” and “t20,” where average classification accuracy decreases.
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Figure 7. The summary of the average classification accuracy from Table 8. Between t10 and t20,
the hit-or-miss effect can be seen. The state-of-the-art results for Siamese CNN are achieved with 50
training images per class.
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Table 7. Comparison of Siamese CNN and classic CNN conducted on dataset 2 (7-type chart classification). Both networks use the same dataset for training and verification. Regarding the
average classification accuracy and F-1 score, when small datasets are used, Siamese CNN outperforms classic CNN. When comparing the required time for image classification, classic
CNN is the fastest.

Dataset

Simplified VGG as Siamese CNN
Simplified VGG as Classic CNN

Input vs. Random Image from Each Class Input vs. Highest Similarity Image from Each Class

Image
pairs

Time to
classify

Accuracy
(%)

Precision
(%)

Recall
(%)

F-1
score
(%)

Image
pairs (s)

Time to
classify

Accuracy
(%)

Precision
(%)

Recall
(%)

F-1
score
(%)

Time to
classify

Accuracy
(%)

Precision
(%)

Recall
(%)

F-1
score
(%)

t1 140 2 s 32.14 32.14 40.46 32.45 140 2 s 32.14 32.14 40.46 32.45 1 s 0 0 0 0

t5 140 2 s 34.28 34.28 41.47 35.36 700 7 s 45.00 45.00 49.30 46.10 1 s 0 0 0 0

t10 140 2 s 62.14 62.14 64.39 62.53 1400 15 s 77.85 77.85 78.91 78.66 1 s 0 0 0 0

t20 140 2 s 57.85 57.85 60.65 57.45 2800 30 s 85.71 85.71 86.60 85.62 1 s 5.00 5.00 15.99 5.85

t50 140 2 s 93.57 93.57 94.28 94.28 7000 1 m 100 100 100 100 1 s 42.85 42.85 48.22 44.87

t100 140 2 s 100 100 100 100 14,000 2 m 100 100 100 100 1 s 56.42 56.42 57.70 56.63

t250 140 2 s 100 100 100 100 35,000 5 m 100 100 100 100 1 s 97.85 97.85 98.70 98.56

t500 140 2 s 100 100 100 100 70,000 10 m 100 100 100 100 1 s 99.28 99.28 99.32 99.28
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Table 8. The McNemar’s test with a significance level of 0.05. The results are in accordance with the classification results
from Table 7.

Dataset

Input vs. Random Image from Each
Class—Input vs. Highest Similarity

Image from Each Class

Input vs. Random Image from
Each Class—Classic CNN

Input vs. Highest Similarity
Image from Each Class—Classic

CNN

p < 0.05 H0 p < 0.05 H0 p < 0.05 H0

t1 false failed true reject true reject

t5 true reject true reject true reject

t10 true reject true reject true reject

t20 true reject true reject true reject

t50 true reject true reject true reject

t100 false failed true reject true reject

t250 false failed false failed false failed

t500 false failed false failed false failed

For statistical comparison, the same McNemar test is conducted as for Table 5. When
comparing two Siamese CNNs, the significant difference can only be seen between “t5”
and “t50,” and H0 can be rejected. This is expected behavior since one Siamese CNN is
using random train images for generating similarity scores. When the Siamese CNNs are
compared to classic CNN, the H0 can be rejected up to “t100”, as shown in Table 8. This
confirms that these models make considerably different predictions that are in accordance
with average classification accuracy and F-1 score from Table 7.

5. Conclusions

This paper focuses on the classification of chart images using the Siamese CNN, which
has never been conducted before. This work is motivated by the lack of publicly available
datasets and a continually growing number of chart types. The conducted research proves
that Siamese CNN can be used with chart type classification. The results of three used
Siamese CNN architectures show that the network layer construction impacts classification
results. Regarding N-way-one-shot learning, choosing image pairs can have a hit-or-miss
result, which indicates the quality over quantity of the used dataset. When compared to a
classic CNN, the Siamese CNN outperforms the required image dataset size and achieved
an average classification accuracy and F-1 score. We have shown that the Siamese CNN
can also generalize the input never seen before and achieve competitive results. When
trained on seven chart types, the Siamese CNN achieved state-of-the-art results, which is
100% average classification accuracy and F-1 score.

In the future, other loss functions (triplet loss, magnet loss, center loss) will be tested
and compared. The plan is also to increase the number of chart types to 20 or more. The
image pre-processing algorithm can be further optimized, and the number of details in the
image can be further decreased, resulting in achieving 100% accuracy with an even lower
number of images per class.
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