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Abstract: In the context of sensor-based data analysis, the compensation of image artifacts is a
challenge. When the structures of interest are not clearly visible in an image, algorithms that can
cope with artifacts are crucial for obtaining the desired information. Thereby, the high variation of
artifacts, the combination of different types of artifacts, and their similarity to signals of interest are
specific issues that have to be considered in the analysis. Despite the high generalization capability
of deep learning-based approaches, their recent success was driven by the availability of large
amounts of labeled data. Therefore, the provision of comprehensive labeled image data with different
characteristics of image artifacts is of importance. At the same time, applying deep neural networks
to problems with low availability of labeled data remains a challenge. This work presents a data-
centric augmentation approach based on generative adversarial networks that augments the existing
labeled data with synthetic artifacts generated from data not present in the training set. In our
experiments, this augmentation leads to a more robust generalization in segmentation. Our method
does not need additional labeling and does not lead to additional memory or time consumption
during inference. Further, we find it to be more effective than comparable augmentations based on
procedurally generated artifacts and the direct use of real artifacts. Building upon the improved
segmentation results, we observe that our approach leads to improvements of 22% in the F1-score for
an evaluated detection problem. Having achieved these results with an example sensor, we expect
increased robustness against artifacts in future applications.

Keywords: data augmentation; imaging artifacts; sensor images; deep learning; generative
adversarial network

1. Introduction

A key goal of image analysis is to automatically extract information contained in
an image using a suitable algorithm [1]. The devices used for image acquisition are
usually based on either charge-coupled device (CCD) sensors [2] or complementary
metal–oxide–semiconductor (CMOS) sensors [3]. Although the specific properties of
recording techniques differ, all types induce artifacts caused by the process of capturing
images [4].

We refer to all image signal components as artifacts that are not intended to be part of
an image. These artifacts impede an automatic or human evaluation of recorded images,
especially when they are similar to signals of interest, which can cause them to be falsely
recognized as such. Artifacts should compromise the analysis of images as little as possible.
Therefore, methods to reduce the influence of artifacts on an image are of particular
interest [5]. The effects causing artifacts are called disturbances. These include, for example,
instabilities of the used recording devices and other connected electronics, environmental
influence, or flaws in the preprocessing software.

J. Imaging 2021, 7, 206. https://doi.org/10.3390/jimaging7100206 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-0515-7635
https://orcid.org/0000-0003-2525-2477
https://orcid.org/0000-0002-2530-8197
https://doi.org/10.3390/jimaging7100206
https://doi.org/10.3390/jimaging7100206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7100206
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7100206?type=check_update&version=3


J. Imaging 2021, 7, 206 2 of 16

Table 1. Overview of common artifact types in sensor images, their properties, sources, and exam-
ples for algorithmic reduction methods. Correlated artifacts are also called structured noise, and
uncorrelated artifacts are called unstructured. Temporally changing artifacts can vary in each frame.

Artifact Type
Correlated Temporally

Changing Artifact Sources Algorithmic
Methods for Reduction

Yes No Yes No

Shot noise [4,6] • • environment

classic filters
(e.g., median filter) [7],
bilateral filtering [8],
neural networks [9],

wavelet/Fourier filtering [10]

Readout
noise [6] • • electronics

Thermal noise [11] • • environment,
electronics

Salt and pepper
noise [7] • • electronics

Random telegraph
noise [4] • • electronics

Temporal contrast/
brightness

inconsistencies [12]
• •

electronics,
environment,

software

homomorphic filtering [13],
stabilization algorithms [14],

temporal filtering [12],
neural networks [15]

Line, stripe, wave and
ring artifacts [16,17] • •

electronics,
environment,

optics

wavelet/Fourier filtering [10],
spatial filtering [16],
neural networks [18]

Compression
artifacts [19] • • software

bilateral filtering [8],
fuzzy filtering [20]

neural networks [19,21–23]

Projective
distortions [24] • • optics model-based calculations [25],

neural networks [26,27]

Out-of-focus
effects [28,29] • • optics morphological filtering [30],

neural networks [31,32]

Fixed pattern
noise [33,34] • •

electronics,
environment,

optics

reference imaging [33],
neural networks [35]

Aliasing [36] • • software anti-aliasing algorithms [36],
neural networks [37]

Rolling shutter
effects [38] • • electronics neural networks [39]

Artifacts are visually recognizable in a variety of shapes and intensities. Table 1 shows
common artifact types occurring in sensor images, their sources, and algorithmic example
methods which can be used to reduce these artifacts. The set of example artifacts can be
divided into correlated and uncorrelated signals. Uncorrelated artifacts, also called random
noises, are characterized by the absence of clear, detectable structures. Often, they originate
from the sensor instruments themselves due to electronic instabilities or environmental
influence [4,6,11]. Artifacts that show recognizable structures in the temporal, the spatial,
or both dimensions are referred to as correlated. In distinction to random noise, these
are also called structured noise [40,41]. In terms of their temporal behavior, most of the
correlated and the uncorrelated artifacts are temporally changing, making them difficult to
detect and reduce. Besides the determined differences of artifact types, it is worth noting
that in practice, a signal does not only contain a single type of artifact but combinations
of them.

Image-related tasks like classification, segmentation, and object detection are increas-
ingly solved using deep learning [42–44]. This holds, in particular, for the field of sensor
imaging. Examples include astronomical imaging [45], autonomous driving [46], fluores-
cence microscopy [47], X-ray [48], magnetic resonance (MR) [49], computed tomography
(CT) [50], and histological imaging [51]. While access to an arbitrarily large amount of
data could be used to form all possible combinations of signals of interest and artifact
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signals during training, a common problem is the limited availability of data, particularly
in medical imaging tasks [52]. It is caused by high time and material costs for recording
examples and intensified by data privacy restrictions that create further hurdles for the
data collection [52]. Additionally, the annotation of images can be a time-consuming task
requiring experts’ review [52]. For deep learning methods in sensor image analysis, it is
therefore particularly desirable to develop approaches that deal with very limited data
availability during the training stage.

As an example of a sensor affected by different disturbances, Section 3 describes the
Plasmon-Assisted Microscopy of Nano-Objects (PAMONO) sensor, which has been the
subject of several research questions [53–56] and served as a starting point for the research
presented in this paper. It is affected by disturbances during image acquisition, resulting in
varying artifact characteristics, for which some are shown in Figure 1. Therefore, it offers a
well-suited data basis to evaluate methods for increased robustness against artifacts.

(a) (b)

(c) (d)

Figure 1. Example images extracted from different datasets recorded with the Plasmon-Assisted
Microscopy of Nano-Objects (PAMONO) sensor after preprocessing and the application of dynamic
contrast enhancement. Different dominating types of artifacts presented in Table 1 can be perceived.
Random noise artifacts are present in each recorded image but vary in their intensities with differing
environmental influences. (a) Washed out line artifact. (b) Dominant background noise with temporal
brightness inconsistencies in an image region on the right. (c) Dominating higher frequency wave
artifact with a center near the visible region. (d) Dominating lower frequency wave artifact with
visible origin.

Motivated by the observation above, we propose a data-centric approach that aims
at increasing the robustness of learning methods against image artifacts. We use the
term data-centric to describe that only training data is modified to maximize the perfor-
mance of a learning procedure. At the same time, the existing model does not change.
There is no deceleration or change in memory requirements during inference as only the
learned weights are adjusted. We present an approach based on generative adversarial
networks (GANs) [57], which overlays images with realistic but synthetically generated
artifacts during the training of a segmentation network. The GAN is trained with real
images containing only artifacts and learns to generate an arbitrary number of new artifact
images. We do not need additional annotations for our approach. As an example for
our method, we evaluate our GAN approach on PAMONO sensor data. We find that
the effect of artifacts on a segmentation task is reduced significantly. We also show that
the GAN approach is superior to alternative, non-learning approaches in the evaluated
segmentation task. For comparison, we employ a procedural generation of combined wave
artifacts based on qualitative observations and the direct use of real artifact images from
recorded datasets.

The structure of this paper is as follows. Section 2 mentions related methods for
reducing artifacts in image signals and popular methods for generating synthetic images.
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Section 3 details the PAMONO sensor and its recorded data as the basis for evaluating
the presented approaches. Section 4.1 describes our approach for an overlay composed
of realistic but synthetic artifact patterns utilizing the StyleGAN2-ADA [58] architecture.
For direct comparison, Sections 4.2 and 4.3 present methods for overlaying training images
with real artifacts and the procedural generation of combined waves, respectively. We
present the integration of our approach into experiments and the considered metrics in
Section 5. The results are compared and discussed in Section 6. In the end, we give
suggestions for future work in Section 7.

2. State of the Art

For the task of artifact reduction, examples for methods related to specific types of
artifacts can be found in Table 1. It includes traditional as well as machine learning ap-
proaches. An overview focusing particularly on deep learning-based methods for image
artifact removal is provided by Tian et al. [9]. It covers a wide range of approaches and
structures them based on their methodological similarities. There are various traditional
approaches such as Gaussian, median and bilateral filters [7,8], homomorphic filtering [13],
methods based on physical models [25], morphological filters [30], Fourier- and wavelet-
based filtering [10]. An early application of convolutional networks for image denoising
was published by Jain and Seung [59]. The proposed strategy introduced a specific artifact
removal network that outputs a clean image with reduced artifacts [59]. Since this learning
strategy demonstrated its potential to reduce various artifacts, further work has followed
this approach [60–62]. Disadvantages of these methods include an introduction of addi-
tional computational costs, additional memory requirements, and in some cases, the need
for clean images without artifacts.

A different approach improves the robustness of an existing model against artifacts
using augmentation methods [63]. The related methods are applied to an existing model
by modifying or expanding training data during the optimization process. Since these
methods only change data but not architectures, we refer to them as data-centric. This
characteristic has the advantage that the methods can be applied during training and do not
require the modification of an existing algorithm. Various methods for augmentation show
drawbacks making them undesirable as they focus on uncorrelated noise [63], assume
perfect artifacts [15], or rely on hand-crafted definitions for creating correlated artifacts [64].
In addition, reference images are rarely exploited. Reference images can be acquired
without objects of interest and therefore contain only background and artifacts. They
contain valuable information, especially for tasks with low data availability. We developed
our approach to address these shortcomings. We exploit reference images and use both
correlated and uncorrelated artifacts.

Cubuk et al. [65] proposed AutoAugment, a method to learn sequences of augmen-
tations from a set of parametrized operations to improve the training process for an
underlying network. As our approach is comparable to an augmentation operation within
AutoAugment, the methods do not form alternatives but are combinable.

For tasks with low availability of labeled training data, various approaches augment
existing data with synthetic images using GANs [66–70]. For example, Frid-Adar et al. [66]
use a GAN to synthesize new images for CT scan data of liver lesions. Han et al. [67] follow
a similar objective by generating synthetic brain MR images. Sandfort et al. [68] employ a
CycleGAN [71] to expand a dataset of CT scans with synthetic images. Hee et al. [69] use a
conditional GAN to generate brain metastases at desired locations in synthetic MR images.
The mentioned methods do not use reference images but only images containing signals of
interest. In contrast to that, our approach also uses reference images to take advantage of
this information.

For GANs, as state of the art for image synthesis, recent developments show that they
can be trained even with very limited amounts of data [58]. Driven by these findings, we
make use of a StyleGAN2-ADA network [58] to generate realistic artifacts, which we use
for the augmentation of existing training data.
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3. PAMONO Sensor Image Streams

The following explanations characterize the images recorded with the Plasmon-
Assisted Microscopy of Nano-Objects (PAMONO) sensor [53]. Since each recording of
the device shows different types of dominant artifacts, this data serves as the basis for
our evaluation.

The PAMONO sensor employs the effect of surface plasmon resonance (SPR) [72] to
make individual nanoparticles visible as bright spots on preprocessed images. These spots
become more difficult to detect with an increasing quantity or intensity of artifacts in the
images. This functionality enables the use as a rapid test for the presence of viruses and
virus-like particles (VLPs) and for counting nanoparticles in a sample [73]. The sensor
visualizes particles of interest using a gold foil with an antibody coating on one side.
The foil is attached to a flow cell containing a liquid sample, while the opposite side
reflects a laser beam directed towards it. When specific particles in a sample attach to the
antibody coating, the reflective properties of the gold foil change at this region, and the
particles become visible in the reflected signal. This setup provides indirect imaging for the
downstream detection of nano-sized objects. Further explanations of the technical aspects
and application scenarios, such as detecting viruses, can be found in the literature [53–56].
While a high degree of reliability is essential for detecting nanoparticles, recording with the
PAMONO sensor is prone to disturbances originating from its high sensitivity to changes
in the nanometer scale, temperature dependence, sensitivity to external impacts, and
contaminations of the analyzed samples [74]. This results in random noises originating
from the electronics and the environment, wave and line artifacts resulting from air bubbles
and dirt particles in a sample, and significant global and local brightness differences
due to environmental changes or the preprocessing. In addition, local damages of the
coated gold can introduce line artifacts and fixed pattern noises. Therefore, an applied
segmentation approach must cope with different types of artifacts. Figure 1 shows example
images gathered with the PAMONO sensor containing different characteristics of artifacts.
The intensities and occurring types can change for each experiment and also during one
recording. Since tests with particles involve high material costs, the availability of the
related images is low. In contrast, reference images showing only background and artifacts
can be provided more efficiently. This property and the occurrence of various artifacts
make the data acquired with the PAMONO sensor a well-suited example for evaluating
our approach.

4. Methods

For increasing the robustness against artifacts in the analysis of sensor images, we

formally introduce our method. We assume an image IDj ,t ∈ [0, 1]
XDj
×YDj at a discrete

timestep t originating from a data stream Dj from the set of all image streams D to be
composed of different signals in an additive signal model

IDj ,t(x, y) = PDj ,t(x, y) + BDj ,t(x, y) + CDj ,t(x, y) + UDj ,t(x, y) (1)

for x ∈ [1, . . . , XDj ], y ∈ [1, . . . , YDj ]. The signal consists of a particle signal PDj ,t, a back-
ground BDj ,t, which is constant for all positions (x, y) within a single image, a correlated
artifact signal CDj ,t, and uncorrelated artifacts UDj ,t. Both artifact components can contain
values outside of [0, 1]. For this work, we use images IDj ,t, which are already preprocessed
with a sliding window method presented in previous work [56]. This preprocessing en-
hances the visibility of particle signals using temporal information for each image pixel
and a dynamic contrast enhancement afterward. Figure 1 shows example images IDj ,t
for different datasets Dj and timesteps t where CDj ,t predominates with different artifact
characteristics in each image. The goal here is to highlight all image positions containing a
particle. Therefore, we want to find a function

f : [0, 1]
XDj
×YDj → [0, 1]

XDj
×YDj (2)
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to realize a semantic segmentation [75] to learn a mapping

MDj ,t(x, y) =

{
1 if PDj ,t(x, y) > 0

0 otherwise
(3)

from images IDj ,t onto a binary segmentation map. In order for f to achieve good results on
a multitude of different datasets Dj, a broad set of artifacts has to be handled. Our approach
expands a low-artifact data basis by augmenting the training data with additional artifacts.
We make use of datasets Fk ∈ F without particles of interest so that a contained image can
be written as

I(artifact)
Fk ,t (x, y) = BFk ,t(x, y) + CFk ,t(x, y) + UFk ,t(x, y). (4)

Such images can be created without the need for test objects and serve as a basis for
learning realistic characteristics of artifact patterns.

Having identified that wave-like artifacts are a factor that can heavily disturb detection
methods, we also developed a method to generate wave-like artifacts directly to prepare
the trained network towards being robust against possible correlated artifacts. This method
serves as a basis for comparison to the presented GAN-based approach.

4.1. Artifact Overlays Based on Synthetic Artifacts

From an abstract perspective, we overlay an image containing object signals of interest
with a composite synthetic noise signal to optimize a segmentation model. Figure 2 shows
an overview of this procedure. The upper part of the system shows the learning of artifact
characteristics from images without object signals. Tiles are extracted from a recorded
image and used for training a GAN. The GAN learns to generate new tiles, which are then
combined into an artifact image. The lower part shows the overlay of a recording with a
composition of generated artifact tiles.

GAN
Particle-free 

Images

Images with
Particles

Artifact
Tiles

Artifact Imposed
Images with 

Particles
+

train

Detection
Network

train

Artifact
Images

PAMONO 
Sensor

Training Path Evaluation Path

Artifact 
Tiles 

Merger

Real Tiles
Extractor

…

Particle
Locations

Figure 2. Schematic representation of overlaying training images with generative adversarial net-
work (GAN)-generated artifacts from composite tiles. The PAMONO sensor is used to record samples
without particles of interest (upper part) and samples including such particles (lower part) for the
training process. The trained detection model is then used to search for particles in images where
their presence is unknown. Dashed arrows show the path of images in the evaluation process,
while solid arrows represent the path of images in the training process. The images in dotted boxes
visualize the single steps by examples. The yellow boxes illustrate start and end of the pipeline, green
boxes represent data and blue boxes mark algorithms.

In detail, we augment each training image IDj ,t with structured artifacts C(overlay) and

uncorrelated artifacts U(overlay). We combine both types to a single artifact signal

A(overlay)(x, y) = C(overlay)(x, y) + U(overlay)(x, y) (5)
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and use it to create an augmented image

I(augment)
Dj ,t

(x, y) = IDj ,t(x, y) + A(overlay)(x, y). (6)

Figure 3 shows an example of such an overlay.

+

I I(overlay) I(augment)

=

Figure 3. Example combination of artifacts according to Equation (6). A training image I with little
correlated artifacts is augmented with wave artifacts A(overlay) to expand the present artifact patterns.
The combination of artifacts is noted as I(augment).

In order to extract artifact signals from an image, we solve the assumed signal model
of Equation (4) for artifact components

AFk ,t(x, y) = IFk ,t(x, y)− BFk ,t(x, y). (7)

Since we are only interested in the contained artifact signals, we use images without
particle signals. Therefore, the only remaining unknown signal is the constant background
signal. We assume that the artifact and noise signals are zero-centered. Consequently, we
approximate the background as the mean intensity value

µFk ,t =
1

XFk ·YFk

XFk

∑
x=1

YFk

∑
y=1

IFk ,t(x, y) (8)

of the full image. The artifact signal S(overlay)
Fk ,t can be formulated as

A(overlay)
Fk ,t (x, y) = IFk ,t(x, y)− µFk ,t (9)

for further use as an overlay. With these artifacts, the original images from a dataset Dj
can be augmented according to Equation (6).

Despite the reduced costs of producing images without involving particles for real
artifact tiles, the available images are still limited. In order to have access to an unlimited
stream of new and distinct artifacts, we propose the synthetic generation of new images IFk ,t.
With this, we can provide an arbitrary number of synthetic but realistic-looking artifact pat-
terns. Currently, the state-of-the-art method for image synthesis are generative adversarial
networks (GANs) [58]. GANs use a generator model G to mimic the distribution of a set of
real images optimized with feedback from a discriminator model D. The discriminator is
optimized to distinguish between real and synthetic images. As the input for training the
GAN, we use real images from a dataset Fk. In this work, we employ StyleGAN2-ADA [58],
which is specifically designed for optimization with limited data. After optimizing the
generative network, the generator function is used to create an arbitrary number of new
artifact images.

The generated artifacts can be smaller than the original image IDj ,t. In this case, larger
artifact images can be composed of multiple smaller ones. A set of artifact tiles

A(overlays) =

A(overlay)
0 , . . . , A(overlay)⌈

XDj
v

⌉
·
⌈

YDj
w

⌉
 (10)
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is generated where each artifact tile A(overlay)
k is extracted from a synthetically generated

image I(overlay)
k with side lengths v and w. The tiles are then composed to a single artifact

A(composed)(x, y) = A(overlays)

b x
v c+

⌈
XDj

v

⌉
·b y

w c
(x mod v, y mod w) (11)

which has the needed size. For each training image, a new set A(overlays) is dynami-
cally generated.

4.2. Real Artifacts as Overlays

For a direct comparison, we apply real artifacts directly to the training images instead
of applying synthetic artifacts. To create overlays from recorded data directly, we modify
the set of artifacts A(overlays) to not originate from the GAN but from random cutouts
from real images. We make use of non-annotated images which do not contain signals of
objects of interest but are still affected by artifacts. Unlike in the GAN-based approach,
the available data is directly limited by the original set of input images. This allows a
meaningful comparison of the effects of learned artifacts with the direct utilization of
real artifacts.

4.3. Procedurally Generated Artifact Signals

We present another approach for generating artifact patterns which is based on the
procedural generation of artifacts in an attempt to simulate real artifacts in the form of
imperfect waves superimposed over an image. In our observations, we found sine waves
to be suitable approximations for actually recorded artifacts. These calculations are rules-
based and can be varied using random parameter values.

Given an image I with side lengths X and Y, nw waves are generated and added to
this image for training. For a single sine wave centered around point = cw = (cwx , cwy), we
determine the amplitude

h(x, y, cw, σ, ω) = sin(d(x, y, cw) · σ + ω) (12)

at every image position x ∈ [1, . . . , X], y ∈ [1, . . . , Y] using a frequency parameter σ, a phase
shift ω and a distance

d(x, y, cw) =
√
(cwx − x)2 + (cwy − y)2 . (13)

We observed that the intensities of waves in an image are often not constant over the
entire surface, so a term

e(x, y, c f , β) = 1−
d(x, y, c f )

β

max({g(a, b, c f )
β | 1 ≤ a ≤ X, 1 ≤ b ≤ Y})

(14)

is included to add a fading effect starting from an independant center point c f from which
the intensity decreases with a rate β ∈ [0, 1]. This term is applied to the original wave
function h to receive a single fading wave

h′(x, y, cw, c f , σ, ω, β) = h(x, y, cw, σ, ω) · e(x, y, c f , β). (15)

Finally, all nw waves are composed and added to the image I to simulate a combination

I(waves)(x, y, Cw, C f , S, W, B, γ) = I(x, y) +

(
∑nw

i=1 h′(x, y, cwi , c fi
, σi, ωi, βi)

)
· γ

nw
(16)

of different vanishing waves by using sets of wave centers Cw = {cw1 , . . . , cwnw }, fade
centers C f = {c f1 , . . . , c fnw

}, frequency parameters S = {σ1, . . . , σnw}, phase shifts W =
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{ω1, . . . , ωnw}, and fade rates B = {β1, . . . , βnw}. The influence of the waves in the resulting
image is controlled via the wave strength factor γ. The parameter values for each wave
are randomly chosen from a restricted interval. Figure 4 shows examples of randomly
generated wave artifacts added to a low artifact image. The resulting wave artifacts
approximate the visual appearance of real artifacts with parameters drawn from a manually
defined interval.

Although it is possible to find fitting intervals that result in a distribution similar to
real artifacts, a procedural generation of artifacts requires the manual definition of the
generating function and manual tuning to the artifact characteristics at hand.

(a) (b)

(c) (d)

Figure 4. An (a) input image and (b–d) examples of randomly generated wave artifacts.

5. Experiments

We evaluate our GAN-based method by applying it to image streams recorded with
the PAMONO sensor that is described in Section 3. Individual image streams show different
artifacts, so it offers a well-suited opportunity to evaluate this approach. The goal is to
find a model that solves the segmentation of particles, as formulated in Section 4. Particles
should be easily distinguishable from other image parts in the resulting segmentation,
so we employ a blob detection based on Difference of Gaussians (DoG) [76] features for
particle detection. To focus the evaluation on the augmentations only, we employ a plain
5-layer U-Net [77] with 16 filters in the first layer. We make no changes to this architecture
during our experiments and only conduct changes for the data itself. In this way, we can
evaluate the effectiveness of our proposed approach and compare it directly to the other
introduced methods. This provides a concrete implementation of the abstract detection
network shown in Figure 2. The different approaches are compared to each other based on
correctly detected nanoparticles.

We utilize the dice loss [78] in combination with the Adam [79] optimizer to train
the U-Net. An initial learning rate of 3× 10−5 is halved after every 15 epochs with no
improvement in the dice loss for designated validation datasets. We end the training after
30 epochs with no improvement. For this work, 23 annotated image streams containing
particles of interest provide 30,782 images in total. Only one of these datasets with low
intensities of artifacts and well visible particle regions containing 500 images is used for
training. We employ five datasets as validation data. The remaining datasets are used as
test data after the training is completed.

Due to the preprocessing, each particle contained in the image streams can be seen
not only on one but on several frames. We connect the particle locations on individual
images to traces afterward. This means that sufficiently overlapping regions on consecutive
frames are combined to one particle, which is especially important for counting particles to
determine the viral load in a sample [56].

For measuring run times, an Nvidia Geforce GTX 1080 GPU is used. Random cutouts
with side lengths of 128 pixels from 1157 images originating from a single reference image
stream are used for training the GAN. About 5 GB of video memory are allocated. Using a
batch size of 16, around 38 h are needed for training a StyleGAN2-ADA network consisting
of a generator part with 23 × 106 parameters and a discriminator part with 24 × 106
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parameters. The training times for the U-Net lie between 90 min with no augmentation
and up to 360 min for the GAN-based augmentations. For better comparability, the same
dataset for training the GAN is used for overlaying images with real artifacts.

To compare the GAN-approach also to a direct and simple augmentation we apply a
variation of image sizes relative to the sizes of particle regions in the samples. For each
training dataset Dj the median surface sDj ,med of annotated particle regions in the dataset
is calculated to determine the overall minimum size

smin = min(sDj ,med | Dj ∈ D) (17)

and the maximum size smax analogously. The median operator is used to determine sizes
within a dataset in order to compensate for possible outliers caused by manual annotation.
By restricting the random factor FDj used to scale both sides of an image separately to

fDj =

√ smin

sDj ,med
,
√

smax

sDj ,med

 (18)

for a dataset Dj, the scaled images cover the range of particle sizes seen as plausible based
on the available annotations. In each training step the side lengths u and v of a training
image IDj ,t are scaled by a factor fd ∈ Fd to u · fDj and v · fDj . Since this approach presents
a simple strategy that has proven useful in combination with more complex approaches in
preliminary tests, it is also applied in the case of procedural wave generation, real artifact
overlays, and GAN-based overlays.

For each evaluated configuration of augmentations, we consider two measures.
The first measure is the F1-score [80]

F1 =
2 · precision · recall
precision + recall

=
tp

tp + 0.5 · ( f p + f n)
(19)

of particle traces which uses the number of true positives (tp), false positives ( f p), and false
negatives ( f n) to indicate the extent to which the predicted traces and the annotations
match. A predicted trace is seen as matching if its bounding box overlaps significantly
with the box of an annotated trace. As two overlapping predictions can both be seen as
true positives when overlapping with one annotated trace, this measure focuses on the
accuracy of particle locations instead of matching trace counts.

The second measure is the count exactness [56]

e(na, np) = 1−
|na − np|

max(na, np)
(20)

which compares the number of predicted traces np with the number of annotated traces na.
As the count exactness does not consider where the single traces are located, false positives
and false negatives can misleadingly balance each other out. Nevertheless, it is a simple
and practice-oriented measure that is especially of interest in real use case scenarios, where
an expert can interpret this information based on domain knowledge. In PAMONO sensor
data, the determined particle count could be compared to expected concentrations of virus
particles related to an infection of interest.

We execute each training configuration three times to reduce the effect of outliers.
The model with the median F1-score is selected for evaluating all presented metrics. We
compare the proposed GAN-based approach in Table 2 with the alternatives based on
F1-scores and count exactness values related to particle traces. The results vary heavily
for different datasets depending on the intensities and prevalent types of artifacts in the
contained images. Therefore, we also show results for datasets split into different groups
of artifacts. A comparison broken down by the qualitative type of dominant artifacts is
given in Table 3.
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Table 2. F1-score and count exactness values measured after training with the presented augmenta-
tion methods. The best results are written in bold.

Augmentation
Metric Average

F1-Score
Minimum
F1-Score

Average
Count Exactness

Minimum
Count Exactness

No augmentation 0.62 0.07 0.53 0.03

Only direct augmentation 0.60 0.06 0.54 0.03

Procedurally generated waves 0.76 0.29 0.67 0.16

Real artifacts 0.76 0.15 0.68 0.08

GAN-generated artifacts 0.84 0.55 0.79 0.48

Table 3. F1-score (F1) and count exactness (CE) values for samples containing particles of interest
after training with different augmentation methods broken down by dominant artifact types. The
best results are written in bold.

Data Group Highly Visible
Particles

Stronger Noises or
Temporal Inconsistencies

Wave-like
Artifacts

Augmentation
Metric

F1 CE F1 CE F1 CE

No augmentation 0.85 0.74 0.51 0.44 0.10 0.05

Only direct augmentation 0.88 0.80 0.40 0.36 0.18 0.09

Procedurally generated waves 0.89 0.82 0.70 0.58 0.49 0.37

Real artifacts 0.91 0.84 0.67 0.57 0.46 0.40

GAN-generated artifacts 0.92 0.88 0.78 0.71 0.73 0.66

We also compare the approaches using the binary distinction between samples contain-
ing particles of interest and samples free of them. The exact particle counts and locations
are less relevant here. Instead, an effective separation between these two groups is sought,
for which a low number of false positives in particle-free samples is essential. Results for
samples of this type are conducted in Table 4, and the counts of predicted particles per
image are compared for models trained with the different approaches. For this purpose,
12 particle-free datasets with 10,384 images in total showing diverse artifact types and
intensities are analyzed.

Table 4. Number of falsely predicted particles (FP) per image for datasets containing no particles of
interest measured after training with different augmentation methods. The best results are written
in bold.

Augmentation
Metric Average

FP per Image
Maximum

FP per Image
No augmentation 0.87 6.55

Only direct augmentation 0.05 0.36

Procedurally generated waves 0.06 0.30

Real tiles artifacts 0.10 0.38

GAN-generated artifacts 0.02 0.05

6. Discussion

Aiming at high robustness of a learned segmentation against imaging artifacts, our
approach using GANs to generate synthetic artifacts shows to be the most effective. Com-
pared to the version with no augmentation, as shown in Table 2, this approach yields
improvements of 22% in the F1-score, 26% in the average count exactness, and even greater



J. Imaging 2021, 7, 206 12 of 16

improvements in the related minimum values. Table 3 shows that the results improve more
with stronger visible artifacts and correlation within these. The GAN approach increases
the F1-score by 63% and the average count exactness by 61% for datasets with wave-like
artifacts. In the task of searching for particles in particle-free samples, this approach im-
proves the average number of false positive particle traces from 0.87 to 0.02 per image, with
the dataset performing the worst, only having 0.05 false-positive traces per image.

Comparing the GAN-based approach with extracting artifacts directly from images,
the span between the worst and best values is smaller. The augmentation by superimposing
wave artifacts based on a hand-crafted, procedural function is approximately on par with
the augmentation with real artifacts when considering average scores. However, minimum
values show a slight improvement, which indicates greater stability of the detection after
the appropriate training. The real and the procedurally generated artifacts improve the
F1-score by 14% compared to the training without augmentations. This shows that the
model benefits significantly from augmentation with correlated artifacts. Viewing the
results in Table 2, it is noticeable that direct augmentation, representing the random size
augmentation based on the particle sizes present in the training dataset, does not improve
the F1-score and the count exactness for datasets containing particles. Compared to the
basic version without augmentation, there is even a slight deterioration in the F1-score. If
the evaluation is expanded to the datasets not containing particles of interest, the impression
is different. Table 4 shows that the average rate of false positives per image can be reduced
by 94.5% by just applying direct size augmentations.

All in all, the augmentation by overlaying with artifacts generated by our GAN-based
approach achieves the most significant improvements, both in the average and minimum
values. The increase of the minimum values can be seen as better robustness against
artifacts that do not occur in the training data. At the same time, despite the increased
training time, the advantage of not having to define and adjust a function description
by hand can be noted. This shows that the GAN-based generation of artifact images for
data augmentation can be a worthwhile improvement to classic augmentations in image
analysis. This holds especially when the exact artifact patterns can only be described with
great effort, for example, when the application environment of the used sensor changes
frequently while a lack of training data makes the determination difficult.

7. Outlook

Since our approach showed to be capable of increasing the robustness of a spatial
learning system against image artifacts, the exploitation of temporal correlations can be
investigated. In image data streams, objects of interest and artifact patterns are time-
dependent in most cases, so generating time-consistent artifacts could further improve
the results for a downstream task. It needs to be considered that, while the complexity
of the generation task increases, fewer spatiotemporal training samples can be formed
from a set of images. Despite the potential problems, evaluating a generation approach
incorporating the temporal dimension can further increase the robustness of a downstream,
spatiotemporal image analysis. Our approach demonstrates that it mitigates the effects of
artifacts in images of the PAMONO sensor. Further work should evaluate this method for
images from other sensors. The approach has the potential to be applied to other sensors
with little customization.
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