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Abstract: We present a numerical illumination model to calculate direct as well as diffuse or Hapke
scattered radiation scenarios on arbitrary planetary surfaces. This includes small body surfaces
such as main belt asteroids as well as e.g., the lunar surface. The model is based on the ray tracing
method. This method is not restricted to spherical or ellipsoidal shapes but digital terrain data of
arbitrary spatial resolution can be fed into the model. Solar radiation is the source of direct radiation,
wavelength-dependent effects (e.g. albedo) can be accounted for. Mutual illumination of individual
bodies in implemented (e.g. in binary or multiple systems) as well as self-illumination (e.g. crater
floors by crater walls) by diffuse or Hapke radiation. The model is validated by statistical methods.
A x? test is utilized to compare simulated images with DAWN images acquired during the survey
phase at small body 4 Vesta and to successfully prove its validity.

Keywords: surface properties; planetary bodies; illumination model; ray tracing; multispectral;
inversion

1. Introduction

Reliable prediction or at least estimation of illumination conditions on the surface of planetary
bides (e.g., the Earth moon) or small bodies like asteroids or comet cores is essential for mission
planning purposes.

In general, mission planning for any vehicle on a strategic (before start of the mission) and/or
tactical level (during the mission) requires knowledge about environmental conditions at the destination.
From a general point of view and depending on the vehicle(s) involved, this might include atmospheric
properties such as density, wind speed, as well as surface properties such as roughness, slope, gravity,
and illumination. This applies not only to surface elements but also to planetary landers.

Firstly, thermal design of any lander space craft relies on a reliable information about the
environment (e.g., [1]). As solar radiation is in general the major source of energy on the surface of a
small bodies without atmosphere in space, a simulation suite for calculation of the surface radiative
intensity delivers boundary conditions for any thermal model of the surface.

The same applies to the design of a mobile surface element powered by solar cells, e.g., a rover.
For rovers, additional aspects come into play, i.e., not only the thermal and power budget are affected by
illumination conditions but also the path and trajectory planning of the rover itself ([2,3]). Being able to
reliably predict illumination at any time and at any point on the surface of the small or planetary body
is an essential part of the cost function in any optimization process. During the mission, the rover’s
mission plan may involve travel to several distinct sites, interleaving periods of dedicated science data
collection with periods of traversal and opportunistic science. To repower internal batteries, it might
be beneficial to pause for a period of time to exploit time slots of maximal illumination. To plan all
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this in advance at least on a tactical, if not on a strategic level, an illumination simulation is crucial. In
addition, it may be beneficial to have the illumination simulation as lightweight as possible to have it
run onboard the rover (see e.g. Figure 1).

Figure 1. Optimal path of some generic rover on the surface of (433) Eros. The cost function involves
illumination, surface roughness, and slope to equal weights. The light source (point) is located at the
bottom left hand side corner, shading indicates illumination (see [4] for shape model).

In addition, fundamental research questions rely on high-quality estimates of the radiation and
thermal environment on the body surface. This applies, e.g., to the formation of cometary tails and
halos but also to the varying ice content of asteroids.

2. Illumination Analysis: State of the Art and Motivation

To date, a number of illumination simulation tools and suites are accessible for the scientific
community. Among those are elaborated tools as the PANGU (Planet and Asteroid Natural Scene
Generation Utility) tool [5,6] for simulation and visualization of planetary surfaces. PANGU'’s
development goal is to support the development of planetary landers (with optical navigation) to
navigate towards the surface and to perform hazard avoidance near the landing site. PANGU can be used
to generate an artificial surface representative of cratered planets and to provide images of the simulated
planet. Using position and attitude of a spacecraft or its sensors, respectively, PANGU generates an
image of the surface as seen from that camera position. From its beginnings, PANGU’s capabilities have
been extended from the lunar surface towards the martian surface as well as space scenario imaging,
it has been applied to e.g., New Horizons or Mars VMC. Recent publications (2014-2018) for PANGU
comprise [7-10]. These include a description of functionalities such as inclusion of different bidirectional
reflectance functions (Hapke, Oren-Nayar, and Lunar Lambert). In addition, performance has been
improved to support real-time image generation. A fast and powerful GPU-based camera model which
includes geometric distortions and sensor/radiometric noises was introduced in PANGU v3.60 (2016).

Another illumination model is presented in [11]. This publication presents a simulation model
for illumination conditions at the lunar south pole, based on LOLA DEM data. This tool presents
a forward model focused on in-situ illumination conditions for purposes of mission planning and
landing site selection. It does not generate camera or radiance images.

Similarly, Ref. [12] presents an algorithm whose purpose is to generate local illumination
conditions on an underlying shape model. In contrast to [11], however, a uncertainty analysis is
possible. That is, map tie errors’ impact on local irradiances can be estimated. That is, uncertainties in
the shape model or the elevation map such as mis-estimates of the extension/height/depth of surface
features can be transferred to estimates of uncertainties in the local irradiance. Ref. [13] describes an
approach to incorporate inverse modeling similar to our method. The forward model to generate
artificial camera images is embedded in a “wrapping” optimization algorithm to minimize deviations
of the simulated from actually acquired camera images. Surface properties such as brightness are
independent variables, thus providing an estimate of those after convergence of the optimization to
some local or global minimum.
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Another (proprietary) tool named SurRender [14] is available on the market. This is a software
toolkit for the scientific-level generation of space scene images. It is proprietary software of Airbus
Defence and Space, and its primary data product are simulated camera images. Physically-accurate
images are produced with quantitative radiometric values, expressed in physical units, i.e., irradiance
value per pixel. In addition, SurRender is able to include textures on a planetary scale. These textures
can be user-provided by external data as well as internally calculated by SurRender. The latter case
then yields procedural textures. Textures can be mapped to digital terrain models.

The image generation method is ray tracing, as is the case for our tool. Diffraction by
atmospheres as well as multiple scattered light (both by atmosphere and ground) can be included in
the images. In addition, arbitrary bidirectional reflectance functions (BDRF) such as Lambert, Hapke
(for regolith-covered moons and asteroids), Phong, and Oren-Nayar (for Jovian moons) can be chosen
by the user. Additionally, a sensor model can be delivered by the user, including geometry, optics,
motion, sensor, noise, and electronics.

The development goal of the illumination model presented in this study is not to design a tool
superior to PANGU, SurRender, or other tools, since these tools have a long history and a large team
of highly-skilled developers. The aim of the illumination tool presented here is to be as lightweight as
possible from a code base point of view, being open-source and easily being accessible for programmers
and developers (e.g., students). It shall be designed to act as an educational tool for students of physics,
information engineering, or mathematics to learn about illumination simulation theory.

3. Illumination Analysis: The SLIM Model

The Space-Scene Lightweight Illumination Model (SLIM) is designed to be lightweight and
efficiently deliver illumination intensities on the surface ot a planetary body. Its primary data product
is thus not a camera image, but the physical radiance or irradiance on the surface of any body.
The camera images generated for this study are used for validation against real remote sensing data
(e.g., DAWN mission). Point measurements of illumination have been recorded from various lander
missions; however, this has never been done on a near-global scale.

SLIM offers the option to do inversion, i.e., extraction of optical surface properties-Hapke
parameters or albedo-from camera images. This inversion can be done not only for disk-integrated
data sets but surface parameters can be calculated but also on scales of a couple of triangles.

[lumination calculated by SLIM can be fed directly into a thermal model or any vehicle power
model, since the data are exported in general ASCII format. The SLIM model is versatile since surfaces
can be handed to the model as triangulations given in PLY, STL, or OBJ format.

Surfaces do not need to be closed and can thus be small patches of any body surface. Bodies
of arbitrary size (asteroids, moons, planets) can be handled with the same code and user interface.
Crater and boulder distributions cannot be parametrized but need to be explicitly provided (as part
of the triangulated surface) by the user. It should be noted, however, that the planetary surface itself
and the boulders/rocks on top of it can be input in separate files. There is no need to merge the two
triangulations beforehand. Surfaces can be of arbitrary shape, i.e., do not need to be convex but can
have edges, bulges, juts, and overhangs; consider, e.g., (25,143) Itokawa (Figure 2b).

Surfaces can have arbitrary spatial resolution, and triangles of almost (up to numerical limits)
sizes can be handled simultaneously in the same data set.

The main benefit in terms of the forward (raytracing) feature of SLIM compared to other ray
tracing methods is the small code footprint (both source code as well as during runtime) as well as it
runtime speed. In addition, the code is easily accessible and can be utilized for educational purposes.

4. Small Body Data Model

The small body data used in this study come as point coordinates of surface points in R® along
with a triangulation. No points or triangles are located in the interior of the bodies. The number of
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triangles patches can vary from a few hundred up to a few million, depending on data availability and
requirements on the accuracy of the illumination analysis.

The image resolution is constant at 1024 x 1024 pixels. The Vesta shape model (compare Section 4)
is available in four different resolutions (see Table 1).

Table 1. Available resolutions of surface grid of 4 Vesta [15].

Resolution No. of Triangles Average Edge Length
coarse 49,152 6744.7 m

medium 196,608 4192 m

fine 786,432 28.3m

super-fine 3,145,728 1.7m

Data can be gained from remote sensing methods such as earth-based radar observations

(as is the case e.g., for Phobos) as well as from close-encounter orbiter data (LIDAR, etc.), as is the case,
e.g., for (25,143) Itokawa, see Figure 2.
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Figure 2. Surface triangulations of small bodies EROS, ITOKAWA and Phobos. Average edge lengths are
calculated from the average triangle area, assuming equilateral triangles. Thus, the values for average
edge lengths are of a correct order of magnitude. (a) Asteroid (433) EROS. 196,608 faces, average
triangle area 5771 m?, average edge length approx. 115 m [16]; (b) Asteroid (25143) ITOKAWA, 196,608
faces, average triangle area 2 m?2, average edge length approx. 2 m [4]; (c) Martian satellite Phobos,
49,152 faces, average triangle area 33,500 m?, average edge length approx. 278 m [17]; (d) close-up

of triangle patches on EROS’s surface, average triangle area 22,982 m?, average edge length approx.
230 m [17].
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5. Ephemerides

All relevant ephemerides data of body, spacecraft and sun are calculated by the SPICE toolkit
vIN0O066 [18]. This yields the position of the S/C as well as the line-to-the-sun (LTS) and the line-of-sight
(LOS) of the camera in the body-fixed coordinate system.

For the case study presented later, imagery data 4 Vesta as acquired by the Dawn mission have
been utilized and ephemerides data are given in the Dawn-Claudia coordinate system for Vesta.
The kernel files used in this study are listed below (see Table 2).

Table 2. SPICE kernels used in this study.

DAWN trajectory dawn-rec-160617-160902-161109-v1.bsp

DAWN S/C orientation dawn-sc-160104-160110.bc , dawn-sc60613-160619.bc
(4) Vesta trajectory sb-vesta71107.bsp

(1) Ceres trajectory sb-ceres-140724.bsp

6. Radiation

The sun is considered the only source of direct radiation. Bodies are assumed to be able to
illuminate each other (e.g., in binary systems) or themselves (e.g., crater floors by crater walls) by diffuse
radiation. Lambertian diffuse scattering can be accounted for up to arbitrary orders of scattering by
using the method of radiosity ([19-22]). For diffuse scattering following a non-Lambertian reflectance
function, only the first order of scattering is accounted for.

All quantities are considered to be independent of wavelength. This is an approximation to
reality, e.g., albedo (see Section 6.2) is wavelength dependent. For practical purposes, making
quantities wavelength independent can be accomplished by averaging over a certain wavelength
range. Alternatively, the illumination algorithm presented here can be used for single wavelengths
or wavelength intervals and the results super-positioned afterwards. That is, "color" images can be
rendered by individually rendering monochromatic images using different values for relevant physical
quantities such as albedo, Hapke parameters, etc. The corresponding set of monochromatic images can
then be super-positioned to yield a polychromatic image. For the calculation of surface illumination,
intensities of radiation can be calculated for a predefined set of wavelengths and then added to yield
the multispectral illumination, see Figures 3 and 4.

Solar flux Surface properties (e.g albeda)
(spectrally integrated) (spectrally integrated)
Sy = / S(A)dA [\\';“1112] A= [ AMNdx [+
| |
v

Surface illumination
ar
camera image
(spectrally integrated)

Figure 3. Generation of spectrally integrated images. All relevant parameters such as solar flux or
optical properties of the surface are averaged and then used in the algorithm.



J. Imaging 2020, 6, 84

6 of 23

Solar flux
(spectrally resolved)

S(A)dA  [W/m?]

Surface properties (e.g. albedo}
(spectrally resolved)

AM)dx [-]

)

Solar flux
(spectrally resolved)

S(An)dA

[W/m?]

Surface properties (e.g, albedo)
(spectrally resolved)

AQw)dA [-]

¥

Surface illumination
or
Camera image
{narrow wavelength band)

Surface illumination
or
Camera image
(rarrow wavelength band)

Multispectral superposition
of surface illumination or images

Figure 4. Multispectral superposition of surface illumination or camera images. Surface illumination
levels or camera images are calculated for N wavelengths, respectively, wavelength bands (or arbitrary
width) and then added. This approach is numerically more expensive but yields more accurate results.

6.1. Direct Radiation

Direct solar radiation is calculated using ray tracing on a body-fixed Cartesian grid. At the
beginning of all calculations, a Cartesian grid with a user-defined number of boxes in the x-, y-,
z-directions is generated. The boundaries of this grid coincide with the axis-aligned bounding box
(AABB) of the body under consideration. The home box of a triangle is referred to as the box that the
center of gravity of this triangle is located in. To determine which triangle patches are in daylight or
in shadow (see Figure 5), the solar ray is traced through the grid (see Figure 5). The ray is not tested
against intersection with all surface patches but only with those in the respective grid cell (starting in
the triangle’s home box). If there is no intersection in an individual grid cell, the ray proceeds to the
next and the triangle patches in that cell are tested.

Solar radiation

day“t ........ ._‘<
shadow ==+=—- :

night — Triangle patches

Figure 5. Direct radiation on the body surface. There are three types of triangles: day, night,
and shadow.

During the algorithm, the following pseudocode is executed:

# Triangle Irradiances are denoted by R(1..N) (N = number of triangles)
for i=1 \dots N (number of triangles) do

P = cog of triangle #i

n(i) = outer normal vector if tri #i
h(i) = home box of triangle

# Ray towards the sun

g(t) =p+t * s/s

# Calculate dot product between outer normal and ray vector
# to determine "night" triangles
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if s * n(i) <= 0 then

# sun is below local horizon
R(1) =0

cycle to next triangle
end™if

# Trace the ray through the grid
# Triangle #i is sunlit if ray g leaves the AABB

current box = h(i)
until ray left AABB~do

check all triangles <> #i in current box for intersection with ray™g

if intersect = 1 then

# Triangle #i is shadowed by another triangle

R(i) =0

cycle to next triangle

else if intersect = O then

# Triangle #i is not shadowed by any triangle in the current box
determine wether ray left current box in +x, -x, +y, -y, +z, -z direction
proceed to next box

end™if

end until

# Calculate irradiance as dot product between sun vector and
# outer triangle normal
R(i) = s * n(i)

end~do

At the end of the algorithm, the following irradiance values R(i), i = 1,...,N have been
calculated from the solar flux vector § and the triangles’ outer normal vectors 7 (i):

po= (51(i)) 1)

U , u>0,ie, triangle is in daylight, sun above local horizon
R(i) = 0 , u<0,ie., sunbelow local horizon (2)
0 , triangle is shadowed by another triangle

6.2. Backscatter and Diffuse Radiation

Backscattered light (onto the camera) as well as diffuse radiation (illuminating areas on the
body surface that are shadowed in direct light) can be calculated as totally diffuse, i.e., Lambertian
reflectance. Alternatively, scattering according to the Hapke reflectance model can be applied ([23]).

The Hapke bidirectional reflectance model has been widely used for modeling of atmosphereless
planetary soil surfaces covered with regolith. This covers e.g., the lunar surface and the surface of
Mercury as well as surfaces of small bodies like Phobos, Vesta, Ceres, etc. Most of those surfaces are
characterized by low single-scattering albedos and low degrees of anisotropies. However, effects such
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as opposition surge might occur that is a strong increase in backscattered irradiance for phase angles
of approximately zero. This effect can be accounted for in the Hapke model by a "hot spot" correction,
parametrized by (angular) width and peak height. Hapke built his model on approximate H-functions
developed by Chandrasekhar [23] and derives from this a simple parametrization of the radiation that
is multiply scattered in the sub-surface soil region. From this, a bidirectional reflectance function is
derived that describes apparent reflectance of the soil surface.

Diffuse scattering can be accounted for up to arbitrary orders of scattering by using the method of
radiosity ([19-22]). Radiosity is based on the concept of conservation of energy, i.e., incident energy
flux on a triangle equals outgoing flux. Radiosity quantifies this idea.

The scattered radiative power dE into solid angle dw from a surface patch dA as seen from angle
¢ against the surface normal is given by:

dE = Icos(¢p)dw 3)

Here, I is the constant intensity of radiation in all directions. Given diffuse scattering, the radiated
power P (in W/m?) of a surface patch dA (here: a triangle patch), consists of two contributions,
the self-emitted power E as well as the reflected power pR ([19]):

P, = Ej+pR , i=1,...,N @)

Here, p € [0, 1] is the reflectivity (albedo) of the surface, being 0 for a totally black surface and 1
for perfect diffuse reflection. The incident flux R; is the sum of all radiated powers of all other triangles
weighted by form factors F;; that quantify the mutual visibility and viewing geometry:

N
R = Y PF , 1,...N 5)
j=Lj#i
N
P, = Ei+p; Y, PF; , 1,...,N (6)
j=Lj#

Given triangles #i and #j, let 6; and 6; be the angles between the respective outer normal vectors
ii;, 7ij and the line connecting the centers of gravity of the two triangles. Let r be the distance of the
cog’s. We consider the triangles small w.r.t. to the surface of the small body (typically, the surface is
patched with a couple of thousand triangles) as well as plane (this is trivial). Thus, integration over
the triangle surfaces is not necessary and the following simplified form of the form factor calculation
can be used (see Figure 6):

12
0 , tri#jis not visible from tri #i

Fi= { cos(8) cost®;)4; , tri#jis visible from tri #i @

Note that

AiFij = A]Fﬂ (8)
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Figure 6. Calculation of form factors F;; (own work).

Equation (6) constitutes a system of linear equations in N unknowns, the total outbound radiative
powers P; of the individual triangle patches. Since N can be large, it is numerically unfavorable to
handle the N? coefficient matrix and solve the system directly. It is sparse, so that iterative solvers are
favorable. One of those is the JACOBI method. It can be used in parallel computing mode and has the
convenient feature that the iterations correspond to the individual orders of scattering, i.e., after the k-th
iteration, scattering of order up to k is accounted for. Usually, iterations are ended after a predefined
number K or after convergence, i.e., change in the P;’s below a certain threshold:

k=1...K,
i=1...N
N
Si=(Ei+p;i Y, PFj)/(1—pFj) )
=T
i=1..
P =S (10)

Note that, for the similar GAUSS—SEIDEL method, step 10 is omitted and S; is replaced by B; in
step 9.

The Hapke reflectance model follows basically the same algorithm except that the isotropic
intensity I in 3 needs to be replaced by the scattering phase function P of the form:

w

P ©) = s [PQ)(1L+B(Q)) + H(H (o) ~1 a1
14 2x

Hx) = i 12

Bx) = — D0 ___ (13)

1+ tan(x/2)/h

Here, u, 119, Q2 denote the cosine of the inbound ray and the outbound ray and the phase angle
between inbound and outbound ray, respectively. Additional surface parameters are represented by
w, By, h, the single scattering albedo, and the height and angular width of the hot-spot correction.

Impact of Multiple Scattering

For the cases studied in this paper, the impact of multiple scattering is low. However, the runtime
cost increases by a factor of 10-20 depending on solar azimuth and elevation. It should be noted that
multiple scattering leads to an O(N?) complexity of our algorithm. Thus, the illumination model does
not utilize this feature in the following analysis.
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Figure 7a,b show illumination conditions (irradiances) on the Martian moon Phobo (approx. 49k
surface triangles). Figure 7c,d show the corresponding image histograms. Note that effects of multiple
scattering can be visible on the concave part on the surface only, and this applies in particular to crater
slopes. A perfect sphere would show no difference for multiple scattering toggled on or off.

() (b)

(0) (d)

Figure 7. Comparison between irradiances with and without multiple scattering. (a) surface mesh,

without multiple scattering; (b) Martian moon Phobos, 49152 triangle surface mesh, with multiple
scattering. Maximal differences in irradiance compared to (a) are 2-3; (c) histogram corresponding to
(a), multiple scattering toggled off; (d) histogram corresponding to (b), multiple scattering toggled on.

7. Remark on Multiple Bodies

The algorithm does not distinguish between triangle patches of one or the other body. An arbitrary
number of bodies can be handled simultaneously, i.e., illumination of one body by one (or more) other(s)
can be handled by design. At the beginning of the algorithm, triangle meshes of the individual bodies
are read and concatenated into a single triangle mesh (see Figure 8). For this mesh, generation of the
AABB (see Section 6.1), direct illumination (Section 6.1) as well as diffuse illumination up to arbitrary
orders of scattering (Section 6.2) is carried out. The same applies for mutual shadowing. This is in fact
a part of the calculation of direct illumination.



J. Imaging 2020, 6, 84 11 of 23

Mesh 1 Mesh 2
(data type: tri mesh) (data type: tri mesh)

Common mesh
(data type: tri mesh)

@Y

Figure 8. Multiple bodies’ triangle meshes are internally handled like a single mesh, thus allowing
for easy implementation of mutual illumination or shadowing as well self-illumination (diffuse)
e.g., in crater walls.

8. Runtime Cost and Code Base

The runtime cost for generation of the Vesta images shown in this paper is approximately 17 s
(single CPU i7-6700, 6th generation, no parallelization) and approximately 700 MB of RAM usage.
This holds true for a shape model of 49k triangles (as shown in this paper) and a 10 x 10 x 10 spatial
raytracing grid. Running times depend on O(N) and the number of triangles N. The size of the spatial
raytracing grid mildly impacts the CPU time (see Table 3).

Table 3. Runtime cost for different sizes of the raytracing grid.

Size Grid CPU Time (49k Triangles)/s
I1x1x1 32
2x2x2 29
5x5x5 23
10 x 10 x 10 17
20 x 20 x 20 21
100 x 100 x 100 35

The more grid cells there are, the more often a ray crosses the border between two cells.
This counteracts the beneficial effect of reduction of the number of triangles to be tested against
intersection with the ray. The sweet spot seems to be somewhat around 10 x 10 x 10 cells. Other
numbers such as 9 x 9 x 9 or 11 x 11 x 11 have not been tested, as the impact in in the single-digit
second range.

The total code base (without comments) is only 12 k code lines, and is thus very small.

9. Exemplary Applications

9.1. Example: Phobos

The Martian moon Phobos has been illuminated, showing shadowing e.g., of crater floors,
see Figures 9 and 10. The spatial resolution of this mesh is 49,152 triangles, i.e., approximately
278 m average triangle edge length.
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(c) (d)
Figure 10. Solar illumination of Martian moon Phobos, showing realistic shadowing in different angles
of view. (a) Phobos [17], solar radiation from the left-hand side; (b) Phobos [17], solar radiation from
the front (directed into image plane); (c) Phobos [17], solar radiation from the right-hand side; (d)
Phobos [17], solar radiation from the bottom.
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9.2. Mutual Shadowing

Figure 11 shows mutual shadowing of two spheres. The two spheres are assumed to have equal
radii of approx. 1200 km (comparable to Pluto, see below) and are equally meshed with 2048 and
4096 nodes and triangles each, respectively. One sphere is located at (0,0,0), whereas the other is
located at (3000,1000,500), solar radiation is assumed to impinge from direction (1,0,0). The shadow
of one sphere on the surface of the other is clearly visible, showing discretization artifacts at the border,
however. Note that, in general, small bodies or lunar surfaces are available in much higher resolution,
see Figure 2.

Figure 11. Shadowing of two spheres of radius 1200 km, each. Spheres are located at (0,0, 0) and
(—3000, 1000, 500), respectively. Direction to the sun is (1m1,0,0). The blocky appearance of the shadow
is a result of the discretization of the shadowed sphere.

The Pluto—Charon binary system has been considered as a second example. Idealized positions of
Pluto and Charon have been assumed, i.e., both bodies on the x-axis, separated by the real average
distance of 19,596 km. Radii are 1187 km and 606 km for Pluto and Charon, respectively. Figure 12
shows the shadow casted by Charon on Pluto’s surface, assuming the sun in direction (1,0,0).

O
L

Figure 12. Shadowing of Pluto (right) by its largest moon Charon (left) during lunar eclipse (idealized).
Both bodies are located on the x-axis, coordinates: Pluto (0,0,0), Charon (19,596,0,0), sun vector (1,0,0).
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9.3. Illumination Statistic

The SLIM illumination model can be used to carry out statistical analysis, yielding the cumulative
distribution function (cdf) for the irradiance at different triangle patches on the body surface.
The cumulative distribution function assesses the times the irradiance is above some certain level.
Usually, time intervals are calculated w.r.t to some total time, e.g., a full spin period:

Fk(x) . Ttot = {i’ S [0,00[ : Ik(t) < x} (14)

In other words, the irradiance on triangle patch #k is smaller than some level x for ”F;(x)%” of the
total time. Figure 13 shows the results for Phobos, calculated for a full spin period of 7.65 h at 1.52 AU
heliocentric distance and for zero obliquity. Exemplary cdfs are shown for five different triangles. Note
that the maximal irradiance does not exceed approx. 500 W/m?.

Cumulative distribution function for irradiance
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Figure 13. Cumulative distribution function for the irradiance at different points (triangle patches) on
Phobos’ surface, relative to Tyt being Phobos’ spin period, i.e., 7.65 h. F(x) is shown, see Equation (14)
for five different triangles

10. Validation

A number of publications reported on optical properties of the surface of (4) Vesta as measured
using the DAWN framing camera [15,24,25] (see Table 4). Also, landmark estimates from optical (as
well as tracking) data have been investigated to derive dynamical properties such as gravity field, spin
pole, and rotation period [26].

For validation purposes, a number of images acquired by the DAWN Framing Camera FC2 (see
Figures 14 and 15 for basic parameters) have been utilized. Corresponding ephemerides and pointing
parameters have been provided by the SPICE toolkit in version N00066, released April 2017 [27].
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Table 4. DAWN mission phases in Vesta’s vicinity [28].

Time Mission Phase
Jul 16, 2011 Vesta arrival
Aug 11-31, 2011 Vesta survey phase

Sep 29, 2011-Nov 2, 2011  Vesta first high altitude orbit (HAMO)
Dec 12,2011-May 1,2012  Vesta low altitude orbit (LAMO)
Jun 15,2012-Jul 25,2012  Vesta second high altitude orbit (HAMO)

Sep 5, 2012 Vesta departure
Parameter FC
Focal Length (mm) 150.0
Aperture (mm) 19.9
f/ratio f/8

[FOV (microrad/pixel)  93.3

Field of view (degree)
Cross-track 5.46
Along-track 5.46

Figure 14. Basic parameters of Framing Camera 2 of the DAWN mission [24]. For the study presented
here, data of the camera #ID 2 have been utilized.

Channel Center Bandwidth Trans- Filter-wheel Thickness
Mo. wavelength [nm] [nm] mission position [mm]
[5e]
1 polychromatic 450+ 1010 98 Fl1 6.00 £0.05
920 4+ 10

2 43042 4045 =75 F& 2.00 £0.05
3 55042 4045 =75 F2 5.90 £ 0.05
4 65042 4045 =75 F7 6.60 +0.05
5 7504+ 2 4045 =75 F3 6.40 +0.05
6 830+ 2 40+5 =75 F6 5.90 £0.05
7 9204+ 2 405 =75 F4 5301005
8 980+ 2 BO+S5 =73 F5 4.80+0.05

Figure 15. Filter settings of Framing Camera 2 of the DAWN mission [24]. For the study presented
here, measurements using the clear filter have been utilized [24].

The validation data set (2665 pictures) is covering the time span of August 11-28 of the
DAWN/Vesta survey data set, i.e., the mission phase covering overview pictures of 4 Vesta following
the approach phase and followed by the high-altitude mapping orbit (HAMO) and low-altitude
mapping orbit (LAMO) phase:

During the survey phase (see Figure 16), the average distance between the S/C and 4 Vesta is
approx. 2720 km, and phase angles (angle between line-of-sight DAWN-Vesta and line connecting
Vesta and the sun) cover the range from approx. 11 deg to approx. 81 deg.

The robustness of the proposed illumination model depends on the underlying shape model as
well as on the BDRF reflectance function.

Firstly, uncertainties in the LTS, i.e., the direction of sunlight, are usually expressed as angular
deviations. These uncertainties are independent from the underlying shape model or sizes of any
features on the surface (craters, boulder, slopes).

The shape model introduces a spatial discretization error into the calculation. Given a certain
absolute deviation (in meters, measured in local vertical direction, say), the relative error depends on
the size of the feature. e.g., deeper craters suffer less from some absolute error than shallow craters.
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Figure 16. DAWN S/C positions relative to 4 Vesta during the survey, HAMO and LAMO phase.
Orientations of the camera (FC 2) are shown as red arrows, and the color of each dot represents time

during each mission phase from yellow (early) to blue (later) [18].

Figure 17 shows the correlation between simulated and measured radiance for image ID
FC21B0007807-26232214089F1B.FIT (compare Figure 18. It can be observed that systematic deviation
occurs for high solar zenith angles, indicating systematic deviations of the BDRF especially for shallow
illumination conditions.

It shows that the accuracy of light and shadow in craters is very high; however, the contrast in the
simulated picture seems to be stronger than in the real picture. This might be a result of the left-out
surface roughness in the Hapke model. In addition, the edge of Vesta against the sky is a lot brighter in
the real picture than in the model. To test the accuracy of the simulation, the proportion of irradiance
arriving at Vesta to radiance received at the camera was calculated with the real data and the simulated
data (Figure 17). An expected linear correlation can be found. However, for shallow illumination
conditions (high solar zenith angles), the deviation increases.
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Figure 17. Comparison of real and measured radiance (scaled to [0, 1], zero and one corresponding to

minimal and maximal values, respectively), showing linear correlation, although with a slope below

the theoretically expected slope of 1. Each data point represents the compared mean values of one

picture. The colors indicate the solar zenith angle, and each dot represents a triangle (yellow=high,
blue=low, ranging from 0 to 90 degrees), Image ID FC21B0007807-26232214089F1B.FIT. To improve
readability, only deviations are detected for low zenith angles, thus indicating systematic deviations

of the BDREF, especially for shallow illumination conditions. This might be a result of e.g., surface
roughness not included in the Hapke BDRF used here.

Figure 18. Left: real image as acquired by DAWN Framing Camera FC2. Right: simulated image,
196608-triangle-model of Vesta with 1024 x 1024 px camera resolution. Image ID FC21B0007807-
26232214089F1B.FIT, )(g ~ 0.043.

Figure 19 shows another example of a successfully passed x? test (0.39).
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Figure 20 shows an example of a pair of simulated and measured image not passing the x test
(0.074). Obviously, the images do not match very well, and substantial differences in local illumination
are visible.

Figure 19. Left: real image as acquired by the DAWN Framing Camera FC2. Right: simulated image,
196608-triangle-model of Vesta with 1024 x 1024 px camera resolution. Image ID FC21B0005907-
11232212051F1B.FIT, x2 ~ 0.039.

'
dl
-
"‘}

Figure 20. Left: real image as acquired by DAWN Framing Camera FC2. Right: simulated image,
196608-triangle-model of Vesta with 1024 x 1024 px camera resolution. Image ID FC21B0008907-
24563695343F1B.FIT, X% ~ 0.074.

Statistical Analysis

Simulated and acquired images are compared by utilizing the radiance probability density
distribution (RPDF). Measured respectively simulated radiances have been binned into 10 W /sr/m?
bins. An exemplary RPDF is shown in Figure 21.
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Figure 21. Exemplary radiance probability density function of image ID 11241023036. The DAWN
image was acquired on 31 August. The RPDF shows an average radiance of approx. 151 W/sr/m?
and minimal and maximal values of 0. (black pixel or deep shadow) and 260 W /sr/ m?, respectively.
The radiance bins are 10 W/sr/m?.

The validation approach followed in this study is based on the comparison of simulated and
acquired (measured) RPDEF. This is done using a x? test. The test method is briefly outlined as follows.
Assume a given RPDF with absolute frequencies fi, ..., f, for the various radiance bins. This is
represented by the RPDF of the measured image. Assume that p, ..., py is the relative frequencies of
the RPDF to be compared with. Given N samples pixels in this case), the deviation between the two
RPDF can be quantified by the x? value:

N 2
2 _ v (fe=Npi) 15
X5 k:Zl N (15)

The x? test statistic is an overall measure of how close the observed frequencies f; are to the
expected frequencies py. Obviously, the 'null hypothesis’ (PDF and independent, i.e., simulated and
measured image are not similar at all) is rejected if x? is large because this means that observed
frequencies and expected frequencies are far apart. A quantification of “large’ is acquired by the x?
probability density function:

¥ N/2=1,=x/2

flx) = W (16)

Here, N represents the degrees of freedom, identical with the number of pixels in our case. The Xz

curve is used to judge whether the calculated test statistic is large enough. We reject the null hypothesis
if the test statistic is large enough so that the area beyond is less than 0.05:

PO 2 8) = [ A0 a7

This test is done for every picture and for every resolution available for the Vesta surface
grid (see Table 1). As can be seen in Figure 22, the majority of the test cases yield values of
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P(x* > x?) < 0.05, i.e., the null hypothesis is rejected. Note that the null hypothesis is actually
that the underlying RPDF of the acquired and simulated images are different. Thus, the reliability of
the algorithm is good.

n. = 3145728

I:I-1'4 | | | | |
012 -
01 -
"2 008k .
A
[y |
= 006 - .
o I L L LY L A I L
0.04 = A
0.02 = -
I:I | | 1 | |
{ 500 1000 1500 2000 2500
Image (D

Figure 22. Results of X2 test, 3,145,728 surface triangles.
11. Parameter Estimation

The SLIM tool has been designed to be lightweight and efficient to be utilized in inverse modeling
and parameter estimation for planetary surfaces without atmospheres. This applies to the lunar surface
as well as to small body surfaces. The following sections presents a brief outlook into this use case (see
Table 5).

Table 5. Parameter estimation study using a brute force approach for Hapke parameters B, w, h. Values
of B and w show fairly good agreement, whereas parameter / is not in good agreement with the
literature values [15,25].

Parameter This Study [25] [15]
Image ID FC21B0005907-11232212051F1B.FIT  (4) Vesta Average (4) Vesta Average
B 1.83 1.7 1.0
w 0.45 0.51 0.51
h 0.53 0.07 0.098

In this study, the Hapke BDREF as given in Equation (11) is utilized, parameters to be estimated
are B,w,h. A sophisticated optimization algorithm has not been applied yet, but rather a simple
brute-force approach has been taken. That is, every of the three parameters has been varied by using
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an interval bisection algorithm with approximately 1000 initial samples in the range [0, 1] (w and h)
and [0, 2] for B, respectively. Figure 23 shows the principal algorithmic scheme.

Sun and camera
Surface parameters

1

1 1

1 1

! 1

T Vector X positions .

| Vector P .

! 1

H [ ] !

i ¥ !

! 1

! 1

! lllumination F(X,P) !

s 1 4 1 Forward

Optlmllzatmn : (irradiances) ! del
algorithm | | mode

! 1

Il H= G(X,P)|| = min i l !

(X as free variable) ! |

! Sim. camera image G(X,P) i

! (radiances) '
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L

Meas. cameraimage H
(radiances)

Figure 23. Algorithmic scheme for parameter estimation. The inversion should be done with a large
amount of images to increase. The overall method is modular, that is, e.g., the optimization algorithm
can be replaced by another one. In addition, the tool for generation of illumination conditions as well
as that for camera images can be replaced by another one, as long as all interfaces are maintained.

12. Conclusions and Outlook

An efficient raytracing software for simulation of camera images as well as illumination conditions
of small bodies as well as planetary surfaces has been implemented. Direct as well as indirect illumination
as well as illumination of multiple bodies are possible. Different bidirectional reflectance functions are
implemented. This includes the four-parameter Hapke model.

The illumination model has been validated using a x? statistical test to compare simulated images
with a large number of DAWN acquired images. A good statistical match is found in general.

The main purpose of SLIM is not the generation of realistic synthetic images, and the resolutions
presented in the synthetic images in this paper are fairly low. The main benefits, however, of the
simulation suite are its easy implementation and the option to use it as a forward model in an inverse
problem solver to derive optical properties of the surface of small bodies or planetary surfaces (without
atmosphere).

Using this illumination model, optical parameters can be extracted from the comparison of
simulated and observed radiances and applications of an optimization algorithm to those data. Images
in different spectral bands can be easily computed by restriction of the solar spectrum to the spectral
region under consideration. This way, dependence on the spectral parameters on wavelength can
be examined.

This has non-zero intersection with inverse problem theory, as the measured images might be
noisy and the simulated images are restricted due to finite discretization of the surface, either a small
body or any other planetary surface.
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