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Abstract: Discrete Krawtchouk polynomials are widely utilized in different fields for their remarkable
characteristics, specifically, the localization property. Discrete orthogonal moments are utilized as
a feature descriptor for images and video frames in computer vision applications. In this paper,
we present a new method for computing discrete Krawtchouk polynomial coefficients swiftly and
efficiently. The presented method proposes a new initial value that does not tend to be zero as the
polynomial size increases. In addition, a combination of the existing recurrence relations is presented
which are in the n- and x-directions. The utilized recurrence relations are developed to reduce
the computational cost. The proposed method computes approximately 12.5% of the polynomial
coefficients, and then symmetry relations are employed to compute the rest of the polynomial
coefficients. The proposed method is evaluated against existing methods in terms of computational
cost and maximum size can be generated. In addition, a reconstruction error analysis for image is
performed using the proposed method for large signal sizes. The evaluation shows that the proposed
method outperforms other existing methods.

Keywords: Krawtchouk polynomials; Krawtchouk moments; high order polynomials; propagation
error; image reconstruction analysis

1. Introduction

Discrete orthogonal moments, simply moments, are utilized as a feature descriptor in several
fields such as signal processing and computer vision [1]. Moments, mathematically, are formed from
the projection of a signal on the discrete orthogonal polynomial basis to ensure non-redundancy of the
feature set [2,3]. Tchebichef, Hahn, Charlier, and Krawtchouk polynomials are types of polynomials that
are used to generate discrete moments. Amongst them, Krawtchouk can express an image locally [2].
Beside, discrete Krawtchouk polynomials (DKPs) have been combined with other polynomials to
enhance the performance of the resulted polynomial by adding the localization property of the
DKP such as discrete Krawtchouk–Tchebichef polynomials [4], Squared Tchebichef–Krawtchouk
polynomials [5], and Squared Krawtchouk–Tchebichef polynomials [6]. Krawtchouk polynomials and
its hybrid forms have been utilized in different applications such as speech enhancement [7], shot
boundary detection [8,9], and information hiding [10]. The DKP has a parameter (p) that controls
the shifting direction of the features [11]. The parameter p at 0.5 has a special case because it equally
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divides the moment plane into four portions and makes the feature extraction more simple than other
values of parameter p.

Many efforts have been conducted to compute the DKP coefficients (DKPCs) using three-term
recurrence algorithm (TTRA). The TTRA is employed as a replacement to the hypergeometric series
and gamma functions because these functions are time-consuming. Yap et al. [11] presented TTRA
in the n-direction to compute DKPCs. Koekkoek et al. [12] presented the TTRA in the x-direction to
generate DKPCs. However, when the image size becomes large, DKPCs shows instability because of the
numerical propagation errors. The method presented in [13] shows that a reduction in the computation
of recurrence times is the key to reduce the numerical error. However, the existing methods suffer from
the problem of initial value which tends to be zero as the polynomial-size increases [13]. To overcome
this problem, this paper proposes a new method to compute the DKPCs efficiently and swiftly.
The proposed method investigated a new location to compute the initial value which is then used to
compute the rest of the DKPCs. Based on the location of the initial value, a new TTRA is presented to
compute the DKPCs with a reduction in the computation of polynomials coefficients.

2. Preliminaries

In this section, the definitions DKPs are presented as well as the recurrence relation which are
employed in the proposed method. The n-th order of the weighted and normalized DKP is defined as
follows [12]:
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where 2F1 denotes the hypergeometric series and is defined as:
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where (·)k represents the rising factorial defined as:

(a)k =
Γ(a + k)

Γ(a)
. (3)

DKPs are generally a two-dimensional array with three parameters as shown in Figure 1,
which are: (1) the size of the array N × N, (2) the polynomial order parameter (n), and (3) the
polynomial index parameter (x).

The computation of the DKPCs using Equation (1) is considered computationally cost due to
the usage of hypergeometric and gamma functions. Therefore, the three-term recurrence algorithm
(TTRA) is employed for computing the DKPCs [14]. Two types of TTRAs are introduced: TTRAs in the
x- and n-directions.

The TTRA in the n-direction is given by [11]:

p(n− N)Kp
n+1 (x) = A(Np− 2np + n− x)Kp

n (x)− B(1− p)Kp
n−1 (x) ,

n =1, 2, . . . , N − 2, and

x =0, 1, . . . , N − 1,

(4)
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where

A =

√
(1− p)(n + 1)

p(N − n)

B =
(1− p)

p

√
(n + 1)n

(N − n)(N − n + 1)
.

(5)

In this algorithm, the polynomial coefficients are computed by employing the coefficients at the
orders n− 1 and n− 2.

Figure 1. The 2D array parameters of DKPCs.

The TTRA in the x-direction is given by [12]:

CKp
n (x + 1) = DKp

n (x) + EKp
n (x− 1) ,

n =1, 2, . . . , N − 1, and

x =1, 2, . . . , N/2− 2,

(6)

C =
√

p(N − x− 1)(1− p)(x + 1),

D = −n + p(N − x− 1) + x(1− p),

E =
√

x(1− p)p(N − x) .

(7)

In this algorithm, the DKPCs are computed by considering the values of the coefficients at the
indices x− 1 and x− 2.

3. Proposed Recurrence Algorithm

Computing the initial value is considered important and impacts the values of DKPCs. Previous
algorithms failed to compute DKP for high order because the location where initial value computed
goes to zero which in turn makes the rest of the values polynomial zero out. Thus, unlike the existing
algorithm which considers Kp

0 (0) as the initial values. Figure 2 shows the results of the K0.5
0 (x)

for different values of polynomial size. From Figure 2, it is clear that when x = 0, the values of K0.5
0 (x)

becomes very small and in several environments considered zero. On the other hand, the value of
K0.5

0 (x) at x = N/2− 1 always large values.
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Figure 2. Plot of K0.5
0 (x) for different values of polynomial size.

The proposed initial value is computed at n = 0 and x = N/2− 1. From Equation (1), the initial
value can be written as follows:

K0.5
0

(
N
2
− 1
)
=

√√√√4
(

1
4

)N/2
Γ(N)

N Γ(N/2)2 . (8)

The problem with Equation (8) is that the gamma function, Γ(·), produces very large numbers
and produces infinity in several environments such as MATALB and python. To overcome this
problem, natural logarithmic gamma function, lnΓ(·), can be utilized. Thus, Equation (8) can be
written as follows:

K0.5
0

(
N
2
− 1
)
=
√

exp (ln(4) + lnΓ(N)− 2lnΓ(N/2)− ln(N)− 0.5N ln(4)), (9)

where ln(·) represents the natural logarithmic function lnΓ(·) represents the logarithmic gamma
function. The maximum limit of each function is presented in Figure 3 which clearly shows that the
proposed formula can compute the initial values for a wide range of polynomial size.

Figure 3. The plot of K0.5
0

(
N
2 − 1

)
using the proposed formula (Equations (9)) and (8).
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The plane of the DKP is partitioned as shown in Figure 4. After finding a computable initial
value, the value of the coefficient at n = 1 and x = N/2− 1 need to be computed. The coefficient of
K0.5

1

(
N
2 − 1

)
is computed as follows:

K0.5
1

(
N
2
− 1
)
= − 1√

N − 1
K0.5

0

(
N
2
− 1
)

. (10)

It is noteworthy mentioning that the plane of the DKP is partitioned as shown in Figure 4.
After computing the four coefficients, the TTRA in the n-direction can be employed to compute the
values in the range n = 0, 1, . . . , N/2− 1 and x = N/2− 1, N/2. However, a reduced form of the
TTRA in the n-direction is presented and used. The reduced form of the TTRA is defined as:

K0.5
n+1 (x) = α1K0.5

n (x) + α2K0.5
n−1 (x) ,

α1 =
N − 1− 2x√

(N − 1− n)(n + 1)
,

α2 =

√
n(N − n)

(N − n− 1)(n + 1)
,

n = 1, 2, . . . , N/2− 1, and

x = N/2− 1.

(11)

To compute the values in the range n = 0, 1, . . . , N/2− 1 and x = N/2, the following symmetry
relation is utilized [13]:

K0.5
n

(
N
2

)
= (−1)nK0.5

n

(
N
2
− 1
)

,

n = 1, 2, . . . , N/2− 1.
(12)

Next, the coefficients of the DKP are computed in the range n = 0, 1, . . . , N/2 − 1 and
x = N/2, . . . , N − n− 2 (region K11 in Figure 4) using the proposed reduced form in the x-direction
TTRA as follows:

K0.5
n (x + 1) =

β1

βx+1
K0.5

n (x)− βx

βx+1
K0.5

n (x− 1) ,

β1 = (N − 1− 2n),

βx =
√
(N − (x + 1)) (x + 1) .

(13)

The coefficient in the range n = 0, 1, . . . , N/2− 1 and x = n, . . . , N/2− 1 (region K12 in Figure 4)
is computed using symmetry relation [13] as follows:

K0.5
n (x) = (−1)nK0.5

n (N − x− 1) . (14)

The coefficients in the range x = 0, 1, . . . , N/2− 1 and n = x + 1, x + 2, . . . , N − x− 1 (region K2
in Figure 4) are computed using the following symmetry relation [13]:

K0.5
n (x) = K0.5

x (n) . (15)

The coefficients in the range x = 0, 1, . . . , N − 1 and n = N − x − 1, . . . , N − 1 (region K3 in
Figure 4) are computed using the following symmetry relation [13]:

K0.5
n (x) = (−1)N−n−x−1K0.5

N−n−1 (N − x− 1) . (16)
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Figure 4. The partitions of the DKP plane.

The steps of the method are depicted in Figure 5 and can be summarized as follows:

1. The Initial value K0.5
0 (N/2− 1) is computed using Equation (9).

2. The value of K0.5
0 (N/2) is computed from K0.5

0 (N/2− 1) using Equation (10).
3. The first set of initial used for TTRA is computed in the range of n = 2, 3, . . . , N/2− 1 and

x = N/2− 1 using Equation (11).
4. The first set of initial used for TTRA is computed in the range of n = 2, 3, . . . , N/2− 1 and

x = N/2 using Equation (12).
5. The modified recurrence algorithm, Equation (13), is used to compute the values of the coefficients

in the range n = 0, 1, . . . , N/2− 1 and x = N/2, . . . , N − n− 2. It should be noted that, for each
x, when K0.5

n (x + 1) < 10−7 and K0.5
n (x) < 10−5, the recurrence relation is terminated and n is

increased by 1.
6. The rest of the DKPCs are computed using symmetry relations in Equations (14)–(16).

Figure 5. The steps used to compute DKPCs using the proposed recurrence algorithm.
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4. Performance Evaluation of the Proposed Method

A comparison with the existing methods is performed based on two criteria: computation cost and
maximum generated size. A comparison of computation time is performed for different polynomials
size. The existing algorithms are the TTRA in the n-direction (TTRAn) [11], TTRA in the x-direction
(TTRAx) [12], and symmetry relation-based method (SRBM) [13]. The execution time is carried out
using Krawtchouk parameter p = 0.5 and different DKP sizes. Figure 6 shows the execution time
required for each algorithm to generate DKPCs with a size of N × N. For each method, average
execution time for 10 runs is reported in Figure 6.

From Figure 6, it can be noticed that the execution times TTRAn [11] and TTRAx [12] are
approximately identical because both of the algorithms are computing 50% of coefficients using
the recurrence algorithm. TTRAn employs Equation (4) and TTRAx employs Equation (6). The rest of
the coefficients are computed using similarity relation. For SRBM [13], only 12.5% of the coefficients
are computed; thus, it shows less execution time when compared to TTRAn and TTRAx.

Obviously, in the proposed method, the average execution time to generate DKPCs is less than
existing methods. This achievement is due to: (1) the proposed method computed only 12.5% of
the DKPCs, and (2) a reduced complexity forms of the existing recurrence relations are introduced
(Equations (11) and (13)). To affirm the results of the proposed algorithm, the improvement ratio of the
execution time is measured. The improvement of the proposed algorithm to SRBM is ∼3.7%; while
the improvement ratio over the TTRAn and TTRAx is ∼30%. Accordingly, it can be inferred that the
proposed algorithm outperforms the existing methods in terms of the execution time.

Figure 6. Computation time of the proposed and existing methods.

The proposed method is also evaluated in terms of maximum size can be generated and compared
to that of the existing methods. For each method, the maximum size is found using the procedure
presented in [13]:

1. A test image, I, is used.
2. The test image is resized to a small size Ns × Ns,
3. DKP, R, is generated with signal size and order of (Ns × Ns),
4. The moment, M, is computed using M = R× I× RT ,
5. The test image is then reconstructed back from the moment domain using Ir = RT ×M× R,
6. The normalized mean square error (NMSE) is computed between I and Ir,
7. If the NMSE < 2.5× 10−3, the size of the image and DKP is increased by 2, i.e., Ns = Ns + 2 and

repeat step 1 to 7.
8. If the NMSE > 2.5× 10−3, the maximum size can be generated by the polynomial is reached

and reported.
9. The maximum size considered in the experiment is set to 12,288.

where the NMSE is computed as follows:
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NMSE =
∑x,y (I(x, y)− Ir(x, y))2

∑x,y (I(x, y))2 . (17)

Note that, the cameraman image is considered in the experiment as the test image. From the
previous experiment, the maximum size of the TTRAn is 1090, TTRAx is 1080, SRBM is 2140, and for the
proposed method is 12,288 (12K). The experiment reveals that the proposed method outperforms the
existing method and the improvement factor is ∼5.7 times greater than SRBM and ∼11.3 times greater
than TTRAn and TTRAx. To confirm the performance of the proposed algorithm, the reconstruction
error in terms of the NMSE for all cases presented in Figure 6 are shown in Figure 7.

Figure 7. Reconstruction error of the proposed and existing methods.

For more clarification regarding the ability of the proposed method, a reconstruction error analysis
is performed for the proposed method to test its accuracy. The reconstruction error analysis is
performed using a reconstruction error Sinusoidal Siemens star which is utilized to examine the
resolution of optical systems and printers. Sinusoidal Siemens star involves of sinusoidal oscillations
patterns in a polar coordinate system such that the spatial frequency varies for concentric circles of
different sizes. The Sinusoidal Siemens star is defined as [15]:

I(θ) = a + b sin(ωθ − φ). (18)

where I represent the intensity represented by a sinusoidal function with an angle θ. In addition,
a, b, ω, and φ are the intensity mean, the intensity amplitude, the number of cycles, and the phase
offset, respectively. Figure 8 shows Sinusoidal Siemens star with different values of number of cycles
ω which are ω = 50, 100, and 200. In the experiment, the parameters of the sinusoidal Siemens star
are considered as follows a = 0, b = 255, φ = 0, and ω = 200.

The reconstruction analysis using the proposed method is performed for an image with a size of
8000× 8000. First, the image is transformed into the moment domain of the DKP. Then, the image is
reconstructed using a limited number of moments. The number of moments is increased by a step of
800 until the image is fully reconstructed using the total number of moments. The obtained results
are shown in Figures 9–11. From the figures, it is clear that the proposed method is able to generate
a stable DKP with high order. For instance, the image reconstruction analysis shows that the NMSE
closes to zero when the moment order reaches 4000× 4000, i.e., the DKP can represent the signal
using only 50% of the moments; moreover, the spokes of sinusoidal Siemens star are never touched or
overlap. This led to the proposed method to compute DKP has remarkable performance and satisfy
the orthogonality condition without distortion.
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Figure 8. Sinusoidal Siemens star: (a) ω = 50, (b) ω = 100, (c) ω = 200.

Figure 9. Construction analysis for the proposed method using sinusoidal Siemens start with ω = 50.
(a) NMSE, image reconstructed using number of moment equal to (b) 800, (c) 1600, (d) 2400, (e) 3200,
(f) 4000, (g) 4800, (h) 5600, (i) 6400, and (j) 7200.

Figure 10. Construction analysis for the proposed method using sinusoidal Siemens start with ω = 100.
(a) NMSE, image reconstructed using number of moment equal to (b) 800, (c) 1600, (d) 2400, (e) 3200,
(f) 4000, (g) 4800, (h) 5600, (i) 6400, and (j) 7200.

In addition to Sinusoidal Siemens star, the well known image of Lena is utilized for reconstruction
analysis. The Lena image is resized to obtain Lena image with a size of 8000 × 8000. The same
procedure for Sinusoidal Siemens is performed for Lena image. The result is shown in Figure 12.
The result clearly confirm that the proposed method is able to generate a stable DKP with high order.
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Figure 11. Construction analysis for the proposed method using sinusoidal Siemens start with ω = 200.
(a) NMSE, image reconstructed using number of moment equal to (b) 800, (c) 1600, (d) 2400, (e) 3200,
(f) 4000, (g) 4800, (h) 5600, (i) 6400, and (j) 7200.

To sum up, the proposed method is able to compute DKP accurately and satisfy the orthogonality
condition without distortion for large signal size and order.

Figure 12. Construction analysis for the proposed method using Lena image. (a) NMSE, image
reconstructed using number of moment equal to (b) 800, (c) 1600, (d) 2400, (e) 3200, (f) 4000, (g) 4800,
(h) 5600, (i) 6400, and (j) 7200.

5. Conclusions

This paper presents a new method for efficiently computing the DKPCs. The presented method is
based on the combination of the existing recurrence methods as well as a new initial value formula
with values not tend to zero. The initial values and the combined recurrence methods are utilized to
compute the coefficients of the DKP in a specified portion. Then, the recurrence relations are employed
to compute the rest coefficients of the DKP for other portions. The results show that the proposed
method has significantly less computational cost when compared to the existing methods. In addition,
the proposed method has the ability to minimize the propagation errors which in turn makes it able to
generate DKP with high order and size of 12,288.
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The following abbreviations are used in this manuscript:

DKP discrete Krawtchouk polynomials
DKPC discrete Krawtchouk polynomial Coefficient
TTRA three-term recurrence algorithm
TTRAn three-term recurrence algorithm in the n-direction
TTRAx three-term recurrence algorithm in the x-direction
SRBM symmetry relation-based method
NMSE normalized mean square error
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