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Abstract: A deep learning technique to enhance 3D images of the complex-valued permittivity of
the breast obtained via microwave imaging is investigated. The developed technique is an extension
of one created to enhance 2D images. We employ a 3D Convolutional Neural Network, based on
the U-Net architecture, that takes in 3D images obtained using the Contrast-Source Inversion (CSI)
method and attempts to produce the true 3D image of the permittivity. The training set consists of
3D CSI images, along with the true numerical phantom images from which the microwave scattered
field utilized to create the CSI reconstructions was synthetically generated. Each numerical phantom
varies with respect to the size, number, and location of tumors within the fibroglandular region.
The reconstructed permittivity images produced by the proposed 3D U-Net show that the network is
not only able to remove the artifacts that are typical of CSI reconstructions, but it also enhances the
detectability of the tumors. We test the trained U-Net with 3D images obtained from experimentally
collected microwave data as well as with images obtained synthetically. Significantly, the results
illustrate that although the network was trained using only images obtained from synthetic data,
it performed well with images obtained from both synthetic and experimental data. Quantitative
evaluations are reported using Receiver Operating Characteristics (ROC) curves for the tumor
detectability and RMS error for the enhancement of the reconstructions.

Keywords: microwave breast imaging; image reconstruction; tumor detection; convolutional neural
networks; deep learning

1. Introduction

Microwave Imaging (MWI) techniques that have been applied to the detection of breast cancer
come in two forms: Radar-based techniques that attempt to detect tumors within the breast’s
interior [1], and inverse-scattering based methods that attempt to reconstruct complex permittivity
maps corresponding to the distribution of different breast tissues [2]. The quantitative techniques,
which are of interest herein, rely on the fact that different breast tissues (e.g., skin, adipose,
fibroglandular and cancerous tumors) have different dielectric properties in the microwave frequency
band [3,4].

Successfully implementing the inverse-scattering approach requires that one has a good numerical
electromagnetic field model for the MWI system being used to acquire scattered-field data, including
the antennas and the breast, but more importantly, requires that one solves a non-linear ill-posed
inverse scattering problem. This is usually accomplished using computationally expensive iterative
methods where the inversion model consists of a numerical solution of an electromagnetic forward
scattering problem [5]. One challenge in using MWI for breast imaging is that the breast is a
high-contrast object-of-interest (OI) having complicated internal structures and this produces unique
artifacts in the quantitative reconstructions of the complex-valued permittivity of the breast tissue.
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Both the non-linearity and the ill-posedness of the inverse scattering problem become more difficult
to deal with for high contrast OIs having such complicated internal structure because they lead to
multiple reflections within the OI.

The MWI technique we use in the work reported herein is the Contrast Source Inversion (CSI)
method [6–8]. Although this is a state-of-the-art MWI technique it still succumbs to artifacts even when
prior information is utilized to try to alleviate the non-linearity and ill-posedness of the problem [9,10].
Note that all MWI techniques, qualitative and quantitative alike, currently have difficulties with
imaging artifacts [1,2,5,11].

Recently, there has been intense interest in the use of deep learning techniques in a broad range
of applications such as natural language processing, computer vision and speech recognition [12].
In medical imaging, utilizing deep learning techniques for segmentation [13,14], as well as detection
and classification [15–17] has been well investigated, at least for the more common modalities.
Studies have shown that there is significant potential in applying deep learning techniques for the
purpose of removing artifacts from biomedical images generated using some common modalities.
Kang et al. proposed a deep Convolutional Neural Networks (CNNs) using directional wavelets
for low dose x-ray computed tomography (CT), and results illustrate that a deep CNN using
directional wavelets was more efficient in removing low dose-related CT noise [18]. Han et al. [19] and
Jin et al. [20] independently proposed multi-scale residual learning networks using U-Net to remove
these global streaking artifacts, In addition, domain adaptation from CT to MRI has been successfully
demonstrated [21].

MWI researchers are also trying to use machine learning techniques to improve the performance
of microwave imaging. For instance, researchers combined a neural network with microwave imaging
to learn the forward model for a complex data-acquisition system [22]. Rekanos et al. proposed radial
basis function neural network to estimate the position and size of proliferated marrow inside bone
tissue with microwave imaging [23]. Le et al. tried to take the benefit of a deep neural network to
enhance the constructed images [24]. Their deep neural network was trained to take microwave
images created using the back-projection (BP) method as an input and have the network output a
much-improved image. In fact, they tried to by-pass the use of iterative techniques for solving the full
nonlinear electromagnetic inverse problem. Most recently, we have investigated utilizing deep learning
techniques to improve 2D microwave imaging for the breast imaging application [25]. Researchers
employing radar-based techniques have also been investigating machine learning approaches for the
detection of breast lesions [26].

In this paper, we utilize a deep learning technique, based on CNNs, to enhance full 3D MWI
reconstructions obtained using a 3D CSI algorithm that uses the Finite Element Method (FEM) to
solve the electromagnetic forward problem [27]. The enhancement removes reconstruction artifacts
and improves the accuracy of the resulting images. We utilize a 3D 10-channel U-Net architecture
for the CNN where the input and output are both 3D images, and each channel corresponds to
the real and imaginary parts of the complex-valued permittivity images created using five different
microwave frequencies.

In Section 2 we start by providing a brief description of the CSI-based methodology that we use,
as well as the numerical phantoms and MWI parameters utilized to generate training images. We also
provide details of our chosen deep learning approach. In Section 3 we describe the training data set
as well as the parameters used for the network training. In the following, quantitative assessment
and assessment of robustness for numerical experiments are described. Section 4 provides a brief
description of our experimental setup and also the result of trained CNN for the experimental data.
Finally, in Section 5 we give our conclusion and explain our future work.

2. 3D CSI-Deep-Learning Methodology

In microwave data acquisition processes, electromagnetic fields scatter from, and propagate
through, the tissue in a three-dimensional (3D) space. However, to accelerate the image reconstruction
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process and reduce the computational complexity, researchers are trying to represent electromagnetic
waves in 3D space as a simplified 2D model. However, studies have shown that simplifying 3D
problems to 2D models can increase the level of artifacts in the recovered dielectric properties [28].
Moreover, in 2D imaging when the object of interest is small, there is a chance that it place between
two consecutive imaging slice, then the reconstruction algorithm would not discover the target
precisely. Hence, utilizing a viable 3D microwave image reconstruction will enhance the accuracy
and quality of reconstruction [29]. While iterative methods have improved dramatically over the
years, providing improved resolution and accuracy of the reconstructed properties, as well as more
efficient implementations, there are still many fundamental trade-offs between these three aspects due
to operational, financial, and physical constraints.

Lower resolution in comparison with other modalities, as well as the many reconstruction artifacts
that are related to the nonlinearity and ill-posedness of the associated inverse problem, are the main
reasons that MWI is not clinically accepted yet. Although it has been shown that using accurate
prior information will reduce the Root-Mean-Squared (RMS) reconstruction error over the whole
image [9,10,30–32], artifacts and reconstruction errors near the tumor can translate to poor tumor
detection results [33].

2.1. Microwave Imaging via Contrast Source Inversion

The first part of the proposed 3D CSI-Deep-Learning methodology consists of quantitatively
generating the complex-valued permittivity images using a MWI technique. Quantitative MWI
requires that one solve a non-linear ill-posed inverse scattering problem. A plethora of algorithms
have been developed during the past 40 years to solve this problem. They generally involve
computationally expensive iterative methods to locally minimize a specially designed functional
that incorporates a numerical inversion model approximating the relevant electromagnetic phenomena
of the problem [5,11]. In the past, different MWI techniques have utilized tailored optimization
algorithms with various functionals. Some of the most prominent techniques have been the Distorted
Born Iterative Method [34], Gauss–Newton Inversion [35], the Levenberg–Marquardt method [36]
and the Contrast Source Inversion technique [6]. Innovations on these foundational algorithms have
allowed improvements to the obtainable imaging accuracy and resolution, especially in the area of
breast imaging, e.g., [37,38]. Being an ill-posed problem, regularization techniques are required to
solve the inverse scattering problem [39,40].

As previously mentioned, to solve the electromagnetic inverse scattering problem associated
with microwave breast imaging we employ the CSI method. The numerical inversion model utilized
within the CSI algorithm is based on a full-vectorial 3D electromagnetic model of the MWI system
that includes a quasi-resonant flat-faceted chamber [41,42]. The 3D FEM-CSI algorithm is utilized
with prior information in the form of an inhomogeneous background as was done in [27]. Breast
images reconstructed from both synthetic and experimental scattered-field data are utilized in this
work. The experimental data is collected using the same air-based quasi-resonant imaging chamber
described in [27]. Thus, the forward model for creating the synthetic data and the inversion model,
both utilize a 3D finite element model of the same imaging chamber.

We consider both synthetic and actual experimental breast phantoms with three tissue types: fat,
fibroglandular and tumor. These breast phantoms are formed using a simple outer fat layer, and an
interior fibroglandular region that contains one or more embedded tumors. The breast phantoms are
positioned within the chamber as depicted in Figure 1.

The phantoms are interrogated using microwave energy with magnetic-field probes located on the
conductive chamber walls. The same probes are used as those in receivers. As described in [42], the 24
transmitters and receivers are φ-polarized. Data were collected at single frequencies and for every
transmitter, 23 magnetic fields were recorded at the receiver locations. Thus, 552 complex numbers
(magnitude and phase) were utilized to reconstruct the breast phantom that was located within the
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chamber. That is, the real and imaginary parts of the complex permittivity of the breast phantom were
reconstructed using the CSI algorithm.

The forward data were obtained using a 3D-FEM electromagnetic field solver. Before inverting
the data using the FEM-CSI algorithm, we added 5 % noise as is usual in creating synthetic
data [8]. This procedure was performed at individual frequencies and for the work considered herein,
the frequency band of 1.1 GHz to 1.5 GHz was used. It has been shown that reconstruction artifacts
appear at different locations of the imaging domain when different frequencies are used, whereas the
tumor is typically reconstructed at approximately the same location [27]. In that work, it was shown
that this feature can improve the tumor detection by using the intersection of thresholded images.

For the synthetically generated data and inversions, the permittivity was assumed to be constant
over frequency. The complex permittivity values that were used are given in Table 1. For the
experimental test case considered herein, the permittivities of the utilized tissue-mimicing liquids do
vary with frequency (see [27] for details).

Table 1. Complex permittivity for different tissues.

Permittivity

Air Fat Fibroglandular Tumor
1 − 0.001j 3 − 0.6j 20 − 21.6j 56.3 − 30j

It has been shown that successful CSI reconstructions can be obtained if one introduces a fat and
fibroglandular region as prior information in the CSI algorithm. This prior information is in the form
of an inhomogeneous numerical background against which the contrast is defined. That is, if εn(r)
and ε(r) represent the background information and the desired complex permittivity, as functions
of position, then the contrast χ(r) = (ε(r)− εn(r))/εn(r) is one of the variables solved for in the CSI
algorithm (the other variable being the contrast sources generated for each transmitter). Full details of
the CSI algorithm, used in this way, are provided in [9,10].

Introducing an inhomogeneous background in this way is a form of regularizing the inverse
problem, but as was already mentioned, various reconstruction artifacts are still present in the
CSI-reconstructed images. These artifacts increase the false-positive and reduce the true-positive
tumor detection rates. For the case of 2D imaging, it was recently shown that using a deep-learning
technique ameliorates this problem [25]. This has motivated the interest in using a similar deep-learning
technique to improve 3D MWI. However, in addition to artifacts, 3D MWI also suffers from the
problem of producing reconstructions that do not reach the maximum permittivity values of the true
phantom model. This was noted in [27] and therefore the detection threshold was based on 85% of
the maximum reconstructed value. Fortunately, the tumor permittivity values are at the extreme end
of the scale, so such a procedure is successful. Improving the CSI reconstructions by correcting the
reconstructed permittivity values, in addition to removing artifacts is the sought after goal of using a
deep learning technique.

Figure 1. Simulated Breast Model. Gray, blue, green, and red regions represent air, fat, fibroglandular,
and tumor, respectively.
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2.2. Machine Learning Approach to Reconstruction

Combining the CSI technique with a deep learning approach is accomplished by learning a
data-driven mapping, G, from a CSI reconstruction to the true permittivity (G : εCSI → εtrue).

In this study, we learn a mapping from the real and imaginary parts of the permittivities in CSI
reconstructions at several frequencies to a single real permittivity image. Thus, if the CSI complex
permittivity map is an L × M × N 3D image, and reconstructions at five frequencies are utilized,
then each of the learned functions maps 5× L×M× N complex domain to L×M× N real domain
(e.g., GR : C5×L×M×N 7→ RL×M×N). The complex output of CSI at the five selected frequencies can be
treated as a 10-channel image. We realized this mapping through a deep neural network as follows.

The desired mapping for our task at hand is an image-to-image transformation; there are multiple
neural architectures that can implement this mapping. For instance, a naive choice could be a
fully-connected single layer neural network which takes in CSI reconstruction as input and is trained
to output the ground truth permittivity. However, such an architecture would be very prone to
overfitting [12]. We, therefore, use a hierarchical convolutional neural network for our image-to-image
transformation task. A good template for such a task is the U-Net architecture which is one of the
most successful deep neural networks for image segmentation and reconstruction problems [13].
The architecture consists of successive convolutional and downsampling layers, followed by successive
deconvolutional and upsampling layers. Moreover, the skip connections between the corresponding
contractive and expansive layers keep the gradients from vanishing that helps in the optimization
process [13,43]. To use a U-Net for reconstruction, the original objective of the U-Net is replaced with
the sum of pixelwise squared reconstruction errors between the true real part of permittivity and
the output of U-Net [13]. In our problem, the network input is the 3D CSI reconstructed complex
images (after 500 iterations). Thus, there are two options for choosing the U-Net architecture, U-Net
with complex weights and U-Net with real weights. Very few studies have been done on the training
of U-Net with complex weights, although very recently Trabelsi et al. tried to train the neural
network with complex weights for convolutional architectures [44]. In this paper, we decided to
use a U-Net architecture having real-valued weights. A schematic representation of our architecture
is shown in Figure 2. The motivation for choosing the neural network parameters (the number of
convolutional layers, size and number of filters) is as follows. In a hierarchical multi-scale CNN,
the effective receptive field of the convolution filters is variable at each layer, i.e., through successive
sub-sampling it is possible to have a larger receptive field even by using filters of smaller kernel
size [12,45]. As mentioned above, the input to our neural network is L×M× N × 10; in particular,
for each frequency, the dimension of our input image volume is 64× 64× 64 (i.e., L = M = N = 64).
If we start with a 3D receptive field of 3× 3× 3, after four layers of successive convolutions and
subsampling (by a factor of 1/2), the receptive field would effectively span the entire image volume.
We, therefore, use four convolutional layers with a 3D filter kernel size of 3× 3× 3. Since after each
convolutional layer the size of the image volume is reduced, we can increase the number of filters at
each successive layer to enhance the representational power of the neural network [12]. In particular,
we start with 32 filters for the first layer and successively double the number of filters after each layer
(number of filters after the fourth layer is 512). This defines the encoder part of the U-net i.e., the part of
a neural network consisting of contractive convolutions. For the decoder part, we follow a symmetric
architecture consisting of expansive convolutions [13].
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Figure 2. Schematic for the proposed U-Net to reconstruct the real part of permittivity. The input to the
network is the 3D Contrast-Source Inversion (CSI) reconstruction, and the network is trained to output
the corresponding true 3D permittivity map.

3. Numerical Experiments

3.1. Datasets

While we tested our neural network on both experimental and synthetic data, for training we
only used a synthetically generated dataset. The training dataset consisted of 600 numerical breast
phantoms; tumors were randomly generated within the fibroglandular region of the phantom. Starting
from a random initial position, tumor pixels were grown randomly until the maximum diameter
reached a threshold. To have variability in the dataset, the threshold for the maximum diameter was
also randomly sampled from the range: 1.1–1.5 cm. One half the dataset consisted of breast phantoms
with one tumor, while the other half had phantoms with two tumors. We then employed a forward
solver [8] to generate the scattered field data corresponding to the phantoms. CSI reconstructions
were performed at five frequencies: 1.1, 1.2, 1.3, 1.4, and 1.5 GHz. These CSI reconstructions together
with the corresponding ground-truth permittivity values for the phantoms formed our training data
for the U-Net input and output respectively.

3.2. Network Training

All the CNNs were implemented using Python 3.6 and Keras 2.0.6 with Tensorflow backend.
We used a Windows 10 computer with a Tesla P100-PCIE-12GB graphic processor and Intel(R)
CPU(3.50 GHz). We used the popular Xavier initialization for the convolutional layer weights to obtain
an appropriate scale [46]. We trained with a batch size of 10, for 200 epochs with Adam optimization.
Four-fold cross-validation strategy has been utilized to evaluate the proposed deep neural network for
all experiments. The U-net wastrained using the real and imaginary parts for five different frequencies
as inputs. With 600 phantoms in our dataset, each fold in four-fold cross-validation consisted of
150 examples. For every fold, training was done using 450 cases, while the testing set consisted of the
held-out 150 examples. Thus all 600 cases featured as test examples when they were not part of the
training set. For the loss function, we use pixel wise mean squared error between the ground truth 3D
image and the CNN 3D reconstructed image as follows:

RMSError =
1

LMN

L

∑
x=1

M

∑
y=1

N

∑
z=1

(IGT
x,y,z − ICNN

x,y,z )2 (1)

where ICNN
x,y,z represents a 3D image reconstructed by the CNN and IGT

x,y,z represents a 3D ground
truth image.
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3.3. Quantitative Assessment

The CNN-enhanced reconstruction performance and the subsequent tumor segmentation based
on thresholding was evaluated quantitatively. The Root Mean Squared (RMS) reconstruction error
between the network output and the true permittivity values was used to evaluate the reconstruction
quality. The performance of a detection algorithm is often assessed in terms of two types of error
i.e., False Positive Rate (FPR) and False Negative Rate (FNR). FPR and FNR will vary depending on
the decision threshold used on the output score of the detection algorithm. To quantify the ability of the
output score to separate the two classes, we need to analyze the two errors for all possible thresholds.
In particular, we performed Receiver Operating Characteristics (ROC) analysis to assess the ability of
the reconstructed complex permittivity to distinguish between tumor and non-tumor pixels. The ROC
curve is a plot of True Positive Rate (TPR = TP

TP+FN ) against the False Positive Rate (FPR = FP
FP+TN ) for

all thresholds. The Area Under the Curve (AUC) for the ROC is a metric quantifying the separability
between tumor and non-tumor pixels [47]. For comparison we also computed RMS reconstruction
error and performed ROC analysis on CSI-only reconstructions. ROC carries information about the
relation of the true positives vs. the false positives. However, the information about the distributions
of thresholds at which the different ratios fall would be lost in this curve. Therefore, the distance from
any location on the ROC curve to the top-left corner of the plot is also an informative metric (we call
this the “Distance-to-MaxTD” or “DMTD” plot). We use the DMTD curve as a complementary metric
to display/analyze the relation between the true positive detection as well as the threshold at which
a certain true positive to negative ratio happens. This will especially help us better understand the
performance of the overlapping (or very similar) ROC curves for different scenarios. The depth of the
curve tells us about the quality of the reconstruction; the lower the dip, the better the performance of
the algorithm. The location of the dip carries information about the separation of the tumor relative
to the background; for instance, the further the dip of the DMTD curve is to the left, the higher the
separation between the background and tumor. Additionally, the width of the dip gives us information
about the robustness of the algorithm; the wider the dip of the curve, the higher the chances of having
a tumor with no artifacts (false positives) for the proper reconstruction of the tumor size and shape.
The results of this quantitative evaluation by using four-fold cross-validation strategy for all 600 images
are shown in Figure 3 and Table 2.

Figure 4 illustrates the performance of the trained U-Net in comparison with CSI reconstruction for
an arbitrary example with two tumors. Based on the AUC and RMS error metrics, it could be concluded
that the proposed CNN is successful in term of reconstruction and tumor detection. However, in a
previous study [27], it was shown that taking the intersection of multi-frequency thresholded 3D
images performs the best at detecting tumors. Therefore, we compared our trained CNN with the
intersection of multi-frequency thresholded 3D images in terms of detection. The superiority of the
trained CNN to CSI results as well as to multi-frequency thresholded results are shown in Figure 3.
For this same example, the CSI reconstructions at the remaining four other frequencies are shown
in Figure 5. The resulting images for the real and imaginary parts of the permittivity after taking
the intersection of the reconstructions that were thresholded at 85% of the maximum reconstructed
permittivity value are also shown in the figure. Note that results using a CNN trained to reconstruct
the imaginary part of the complex permittivity (not shown) are very similar to those using the CNN
trained to reconstruct the real part in terms of tumor detection (ROC Curve) and reconstruction
performance (RMS error). Thus, the ROC curve in Figure 3 and RMS error in Table 2, were computed
using only reconstructions of the real part of the permittivity.
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Figure 3. The detection performance using the reconstructed outputs of the Convolutional Neural
Network (CNN) and CSI as well as the intersection of CSI reconstructions at the five chosen frequencies.
(a) Receiver Operating Characteristics (ROC) curves derived from the reconstructions. (b) The
DMTD curve.

a b

c d

Figure 4. Reconstruction results for a particular example with two tumors. The real (a) and imaginary
(b) part of CSI reconstruction at 1.1 GHz. (c) CNN reconstruction. (d) Ground truth.

Table 2. Comparison of reconstruction and tumor detection performance.

RMS Error AUC

CSI CNN CSI CNN
Synthetic Data 1.4356 1.161 0.935 0.957

Exprimental Data 1.250 1.172 0.794 0.938
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a b

c d

e f

Figure 5. CSI reconstructions at four remaining frequencies for the same example as in Figure 4
and resulting images after intersecting images thresholded at 85% of the maximum reconstructed
permittivity. (a–d) The real part of CSI reconstructions at 1.2, 1.3, 1.4, and 1.5 GHz. (e) Intersection of
real part of CSI reconstructions. (f) Intersection of imaginary part of CSI reconstructions.

3.4. Assessment of Robustness

It is important to assess the robustness of our trained neural network when being tested on
images different from those used during training. We investigate four aspects of variation in test data
as compared to the training data: (i) changes in frequencies used to generate CSI reconstructions,
(ii) changes in breast phantom geometry, (iii) changes in prior-information, and (v) breast phantom
with no tumor.

3.4.1. Robustness to Changes in Frequency

First, given that the CNN was trained utilizing images created at 1.1 GHz, 1.2, 1.3, 1.4, and 1.5 GHz,
the performance of the trained network was checked qualitatively by testing with CSI reconstructions
that were created using data obtained at five arbitrarily chosen frequencies: 1.05, 1.15, 1.25, 1.35 and
1.45 GHz. Therefore, CSI reconstructions at chosen frequencies for five different breast phantoms have
been created. These tests indicated that the trained U-Net was indeed superior to the CSI-only case.
Results for one test example of the CSI and CNN outputs, from data obtained at 1.05 GHz, are shown in
Figure 6. This suggests that the CNN is robust to testing images reconstructed using frequencies in the
same bandwidth as used for training (one does not have to rely on using the exact same frequencies).
As will be seen shortly, however, this is not the case once much higher frequencies are used.

3.4.2. Robustness to Changes in Breast Phantom Geometry

The next test for the network’s robustess is to check against geometric changes of the breast
phantom model. Thus, a new model which has the same dimensions for the fat region but has a smaller
fibroglandular region (the height of fibroglandular region is decreased by 0.9 cm) was generated.
By using this new small model, five different breast phantoms with a random tumor have been
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generated to evaluate the trained CNN. Figure 7 demonstrates the performance of the trained CNN
for a particular example when the input images were CSI reconstructed images for this new model.
As can be seen, the CNN significantly alters the CSI reconstructions (row 1) to bring them closer to the
ground truth (row 2).

3.4.3. Robustness to Imperfections in Prior Information

In order to understand the U-Net’s ability to remove artifacts, the next test case artificially induces
artifacts into the CSI reconstructions by utilizing incorrect, or imperfect, prior information. Clearly,
using perfect prior information results in very good CSI reconstructions; however, perfect prior
information regarding the structural shape of the fibroglandular region as well as the permittivity of
the fibroglandular tissue is difficult to obtain in practical circumstances. It is well known that using
CSI with imperfect prior information produces various reconstruction artifacts. To evaluate this aspect
of robustness we introduced 10% error in the permittivity of the fibroglandular tissue used as prior
information. Figure 8 shows the performance of the CNN when tested with CSI reconstructions using
imperfect permittivity in a structurally perfect fibroglandular region. The ROC curves created from
the CSI and CNN outputs corresponding to this case shown in the plots of Figure 9. From the green
colored curves we see that the CNN-enhanced reconstructions do provide an improvement over the
CSI reconstructions. The distance-to-maxTD curve in Figure 9 clearly shows that the range in the
threshold that could be used for good detection for the CNN-enhanced reconstructions is much wider
than that could be used for the CSI reconstructions. When imperfect structural prior was used for a
test case it was found that neither the CSI nor the CNN reconstructions performed well. This is the last
test performed using synthetically generated images.

3.4.4. Robustness to Breast Phantom with No Tumor

Lastly, given that the CNN was trained only on breast phantom in presence of tumor, the last
test in this section has been done to check the performance of the trained CNN for breast phantom
with no tumor. Note that to prevent having zero scattered field data, we have to use imperfect prior
information. We introduced 5% error in the permittivity of the fibroglandular tissue used as prior
information. Figure 10 demonstrates the performance of the trained network when the input images
were CSI reconstructed images with no tumor.

a b

c d

Figure 6. Reconstruction results for a particular example with one tumor at 1.05 GHz. The real (a) and
imaginary (b) part of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth.
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a b

c d

Figure 7. Reconstruction results for a particular example when the test images are CSI results for a
breast phantom having a smaller fibroglandular region than those of the training set. The (a) real and
(b) imaginary parts of the CSI reconstructions. (c) CNN reconstruction. (d) Ground truth.

a b

c d

Figure 8. Reconstruction results for a particular example with two tumor when the training images are
CSI results with perfect prior information, but the neural net was tested on imperfect prior information.
The real (a) and imaginary (b) part of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth.
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Figure 9. Detection performance based on the reconstructed outputs of CNN and CSI. (a) ROC curves
derived from the reconstructed real part of the permittivity from CSI and CNN. (b) The DMTD.
test cases are: synthetic: imperfect permittivity prior, and true breast phantom with elongated
fibroglandular region. Experimental: using data within the frequency band and much higher than the
training frequency band.

a b

c d

Figure 10. Reconstruction results for a particular example when the training images are CSI results
with one or two tumors but the neural net was tested on a phantom with no tumor. The real (a) and
imaginary (b) part of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth.

4. Experimental Tests and Results

The experimental setup described in [27,42] was used to collect data to test the described neural
network. A depiction of the imaging chamber and the breast phantom used in the experiment is shown
in Figure 11. This chamber has 44 facets and contains 24 magnetic field probes and the breast phantom
used in the chamber has three regions with similar sizes and properties to those of the numerical
breast phantom described earlier for the fat and fibro regions; a 2 cm spherical phantom was used as
the tumor region with properties similar to that of the tumor described in the numerical test cases.
To mimic the properties close to those of a realistic breast, the fat region was filled with canola oil while
a 20:80 ratio of water to glycerin is used to fill the fibroglanduar shell, and a 10:90 ratio of water to
glycerin is used to fill the spherical inclusion representing a tumor. For these ratios, the permittivities
of the canola oil and water/glycerin mixture are measured as 3.0 − j0.193, 23.3 − j18.1 and 50 − j25
respectively for fat, fibrogladular, and tumor at 1.1 GHz [27]. It is worth noting that this simplistic
phantom is used as a simple proof of concept target for inverting a high contrast multilayered medium
in an air background and not testing the system against realistic breast phantoms.
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Figure 11. The experimental system including the three region breast phantom (Diameter of fat,
fibroglanduar and tumor regions are 10 , 8 and 2 CM respectively).

In medical imaging, sometimes it is difficult to build a large experimental training data set.
Therefore, it is desirable that a neural network trained on synthetic data generalizes well when
tested on experimental data. To investigate this, we collected experimental data using a wide range
of frequencies (1.1 to 2.9 GHz). The performance of the trained network for experimental data is
evaluated and shown in Figure 12. Results illustrate that trained CNN improved the experimental CSI
reconstructed images when frequencies similar or close to those for training data were used. However,
when we tested the trained CNN with experimental images created with frequencies well beyond
the band of frequencies used to create the training data, it is observed that CNN is not able to detect
the tumor. Figure 13. One reason for this can be the significant change in the nature of the artifacts.
In general, for the results presented in this manuscript, the artifacts at almost all lower frequency
reconstructions have a lower permittivity compared to the value of the reconstructed tumor. However,
the permittivities of the reconstructed artifacts at higher frequencies are higher than those of the
reconstructed tumor.
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a b

c d

Figure 12. CNN performance for experimental result when the neural net was trained on Synthetic data.
The real (a) and imaginary (b) part of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth.

a b

c d

e f

Figure 13. Reconstruction results for a particular example when the test images are CSI results in high
frequencies but the neural net was trained on low frequencies. The real (a) and imaginary (b) part
of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth. (e) Intersection of real part of
CSI reconstruction at all frequencies.(f) Intersection of imaginary part of CSI reconstruction at all
frequencies(two intersection images are binary image).
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5. Conclusions

A deep learning technique using a 3D CNN was developed to improve the imaging performance of
3D MWI of the breast. The improvement manifests as the removal of artifacts in the 3D reconstructions
of the complex-valued permittivity of the breast being imaged. These reconstruction artifacts are
specific to the MWI system wherein the microwave scattered-field data is collected as well as to the
numerical inversion algorithm, in our case CSI, being used to create the images. Using synthetic 3D
images that take both these factors into account, a CNN was trained with the goal to reproduce the
true permittivity image of the breast from the artifact-laden 3D reconstructions. The trained CNN was
tested with synthetic images as well as with images created using experimentally obtained microwave
scattered-field data from an MWI system: the same MWI system for which a numerical model was
utilized in the creation of the synthetic 3D images.

The RMS error between the CNN-reconstructed images and the true images are improved over
the corresponding error between the CSI-only reconstructions and the true images. In addition,
tumor detection was evaluated using ROC-AUC metrics and these are much improved for the
CNN-reconstructed images over the ROC-AUC results for the CSI-only reconstructions. The results
show that this deep learning technique has the ability to improve 3D CSI reconstructions in three
interdependent ways. First, and foremost, the CNN has shown its ability to remove reconstruction
artifacts which are a great challenge for quantitative MWI. Secondly, the trained CNN successfully
corrects the permittivity values which tend to be undershot in the CSI reconstructions. Finally, from a
qualitative perspective, the tumor location is more accurately reconstructed with respect to its true
position and size.

There are several limitations of this work, but the most critical is that numerical phantoms with
a single, relatively simple, fibroglandular region were utilized for training and testing. This same
region was reproduced in the physical phantom utilized for the experimental results. Our experience
with utilizing a similar technique with 2D images showed that this limitation can be removed by
training with breast models having several types of fibroglandular regions. Similarly, this work
has shown that when the artifacts are due to reconstructions obtained from data generated with
MWI system parameters that were not utilized in the training set, for example artifacts generated
by using microwave frequencies that are much higher than what the MWI system was designed
for, then the trained CNN was not able to identify these as artifacts. In fact, some of these artifacts
were identified as tumors. This result limits the robustness of the trained CNN but this study has
provided a good understanding of that robustness. We further note that due to the significant level
of computational resources required during the generation of forward data and inverse 3D CSI
reconstructions, we generated only a moderately sized dataset consisting of 600 phantoms. Being
aware of the limited number of training examples, we made extensive use of cross-validation and
regularization techniques to avoid the possibility of model overfitting, which is evidenced by the
generalization our CNN demonstrates on unseen examples. That said, having more training data
would potentially help us to train a more robust CNN with better generalization properties. Techniques
for overcoming some of these limitations will be investigated in planned future work.
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