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Abstract: The problem posed by complex, articulated or deformable objects has been at the focus
of much tracking research for a considerable length of time. However, it remains a major challenge,
fraught with numerous difficulties. The increased ubiquity of technology in all realms of our society
has made the need for effective solutions all the more urgent. In this article, we describe a novel
method which systematically addresses the aforementioned difficulties and in practice outperforms
the state of the art. Global spatial flexibility and robustness to deformations are achieved by adopting
a pictorial structure based geometric model, and localized appearance changes by a subspace based
model of part appearance underlain by a gradient based representation. In addition to one-off
learning of both the geometric constraints and part appearances, we introduce a continuing learning
framework which implements information discounting i.e., the discarding of historical appearances
in favour of the more recent ones. Moreover, as a means of ensuring robustness to transient occlusions
(including self-occlusions), we propose a solution for detecting unlikely appearance changes which
allows for unreliable data to be rejected. A comprehensive evaluation of the proposed method,
the analysis and discussing of findings, and a comparison with several state-of-the-art methods
demonstrates the major superiority of our algorithm.
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1. Introduction

Succinctly put, video tracking concerns the process of determining the location of a moving
object as it changes over time. While early tracking research focused on rather specialized domains of
application, such as military ones [1], often tracking points using infrared cameras, with the expansion
of computer vision, research on the employment of cameras that use visible light has dramatically
increased since for two main reasons:

1. Ubiquity
Video cameras have rapidly increased in availability and image quality, while also decreasing in
physical size and cost. Advances in hardware have enabled applications that were previously too
expensive, practically cumbersome, or reliant on high fidelity. This includes systems designed for
real time and embedded usage.

2. Practical potential
Video tracking is a cornerstone of computer vision. In order for machines to interact with their
environment, they must be able to detect, classify, and track distinct objects much like humans do.
Hence, the practical importance of this problem domain is likely to continue increasing artificial
intelligence becomes further embedded with everyday life and routine tasks.
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The imperative of the aforementioned is easily illustrated by a quick glance at just some of the
application domains, the manner in which tracking is employed within them, and the impact that
reliable tracking can have. We do this next.

1.1. Tracking in Entertainment

Video tracking is widely used in the film industry as a necessary step before combining real
imagery with computer generated graphical content (e.g., buildings or crowds of people) that move in
coordination with the camera to create a realistic, consistent scene. Another pervasive use of video
tracking in films concerns motion capture. Motion capture is the process of translating the pose of
a person or an animal to a 3D model corresponding to a structurally similar but possibly imaginary
entity, which is then used for animation. Motion capture is typically performed using a great number
of physical and easily distinguishable tracking markers (e.g., white dots). This is a laborious and
cumbersome process, which is why much of the current work in the field is aimed at achieving marker
free tracking. Athletes can be tracked during sports coverage to provide real-time statistics (e.g., the
total distance a player has travelled throughout the match) [2]. Interactive systems (e.g., Microsoft
Kinect [3]) utilize real-time video tracking to map intuitive gestures to commands [4].

1.2. Tracking in Health and Fitness

Video tracking is already widely used to assist medical practitioners. For example, the gait of
a patient can be tracked and analysed to instruct rehabilitation or guide instructive intervention.
Similarity, athletes’ movement can be tracked to reveal weaknesses and inefficiencies in their technique
and direct training efforts [5]. Trackers are also used in precision surgery, allowing for accurate
placement and orientation of instruments such needles and bronchoscopes in real time [6].

1.3. Tracking in Security

Video tracking is also extensively employed in security applications, often as a pre-processing
stage [7,8] to more sophisticated analysis of data. For example, individuals’ movements can be tracked
as a means of detecting suspicious and potentially malicious behaviour [9,10]. Video tracking can be
used in these situations to draw an observer’s attention to a specific scene, which is particularly useful
if one person is tasked with observing multiple screens or areas at once. Pan-tilt-zoom (PTZ) cameras
and unmanned aerial vehicles (UAVs) use video tracking to locate people or vehicles (e.g., military
convoys or vehicles in high traffic urban areas) [11,12].

1.4. Tracking in Scientific Applications

Last but not least, the use of automatic visual tracking is abundant in a wide range of core
scientific research. In biology, for example, on the microscopic level, cell tracking is of major
interest in different contexts [13,14]. On the macroscopic scale, the tracking of animals (for the
study of migration, interaction, or feeding patterns, etc.) is frequent [15]. Particle accelerators
(such as synchrotrons) also make extensive use of computer vision tracking, amongst others as a
means of studying spatio-temporally varying phenomena, and for accurate sample placement and
manipulation [16].

2. Previous Work

As noted already, the problem of tracking is pervasive in computer vision and posed in general
terms it is a very general challenge, in that it can take on a wide variety of forms depending on the
nature of task under the consideration. Hence, a comprehensive review of this extremely broad area
of research is well beyond the scope of the present article. Having said that, we would like to start
with a general summary of the key considerations that are universally present, both because this
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helps with the conceptualization of any method as well as because this systematicity is important in
understanding where precisely the key novelties and contributions are.

Specifically, the general process of object tracking can be thought of as comprising five stages
(though it should be noted that these do not necessarily occur in a clearly delineated form or strictly
sequentially). The first four stages are repeated for each video frame processed and concern the actual
tracking of objects. The final of extracting useful information from the metadata generated during
tracking occurs at the end but is important to include in analysis because it is this ultimate aim of the
entire process that contextualizes and gives meaning to what accurate tracking is in a given application.
The stages are:

1. Feature extraction
The data in the given video frame is processed to obtain information useful for detection and
tracking. This could involve analysing low-level features [17,18]—such as colour or brightness—to
detect edges or interest points. Colour layout descriptors (CLDs) and histograms of oriented
gradients (HOGs) [19] are examples of feature detectors. This step may utilize a separate
object detector.

2. Object representation
The shape, appearance, and location of the target are encoded in the target state. The state
should balance accuracy with invariance: an accurate model will ignore clutter, reducing
false-positives; an invariant model will allow for variable perspectives or illumination levels,
reducing false-negatives.

The shape is usually modelled as a centroid (e.g., a radar response), bounding rectangle (e.g., an
approximation of the outline of a vehicle), bounding ellipse (e.g., the outline of a ping pong ball),
chain of points/contour (e.g., the outline of a person), or constellation (e.g., the eyes, eyebrows,
nose, mouth, and ears of a face) [20].

If the model’s shape does not exactly fit a given object, then parts of the background will be
included, or parts of the object will be excluded. If the model is fixed to a precise shape then it
will be inflexible: if the tracked object changes shape, or the video changes perspective, then the
model will no longer be representative.

3. Trajectory formation
The current and previous states of the tracked object are used to predict its future trajectory.
This estimate can then be used to help locate the same object in the next video frame. Trajectories
can be used to distinguish between neighbouring or occluding objects.

4. Metadata transformation
The metadata generated during tracking (e.g., the number of objects tracked, and the lifetime
of each object) is processed to generate useful information. For example, a tracker used in a
retail environment could output the number of customers (i.e., the number of moving objects
tracked, excluding employees), and the length of time each customer spends in the store (i.e., the
lifetime of each moving object, excluding employees). A CLD could be used to exclude objects
that have a similar colour distribution to the employee uniform. It could be assumed that only
employees would stand behind the store counters, allowing the tracker to exclude all objects
behind the counters.

2.1. Overview of Tracking Models

The state of a target comprises its representation and location. A target representation is a model
of the object that is being tracked, specifying by such characteristics as the object’s shape and/or
appearance. The model can be user-defined prior to tracking, a snapshot of the target, or learnt
from training samples (as in the present work). A robust model will continue to be representative
of the target despite the presence of extrinsic changes, such as illumination variation or viewpoint
drift. It is useful to distinguish between three categories of shape representations: basic, articulated,
and deformable.
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2.1.1. Basic Shape Bound Models

Basic models treat objects as points [21], 2D regions (e.g., rectangles or ellipses), or 3D volumes
(e.g., cuboids or spheres), as illustrated in Figure 1a–c. Single point based models inherently do
not account for the size of objects, and therefore cannot detect occlusions. Nevertheless, they are
frequently used in radar trackers, as the objects being tracked (e.g., submarines or planes) are unlikely
to experience occlusion together for extended periods of time.

The appearance of a basic model may be represented by a variety of means, for example
by the corresponding colour distribution, simple appearance, or intensity gradient distribution.
Neighbouring locations in successive frames are then searched for the best match to this pattern
(representation). Using more than one camera can provide multiple views of the same target and
enables volume-based models.

(a) Bounding box (b) Bounding ellipse

(c) Object contour (d) Constellation

Figure 1. Examples of some common tracking models.

The use of more complex shapes (e.g., the precise 3D shape of a car) can reduce the chance of
false positive matches by virtue of greater robustness to clutter e.g., by excluding confounding image
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content that a simple model such as a bounding box would necessarily include. However, complex
shapes can be less capable of handling occlusions and changing perspectives, and may increase the
probability of rejecting the correct tracking hypothesis i.e., the false negative rate. Trackers relying
on specific shapes are also limited in flexibility and inherently specific to a particular domains: an
object can only be tracked successfully if there exists a correct shape model in the tracker database of
possible shapes.

2.1.2. Articulated Models

An articulated model comprises a set of simpler, more compact basic models related by geometric
constraints. Constellations are a typical articulated model (see Figure 1d), composed of a central, key
object element, lined to and “surrounded” by other, peripheral elements. A geometric constraint on
a constellation may for example force the peripheral elements to stay within a certain distance from
the central one. Motion capture trackers model each part separately, forming a constellation of the
complete skeleton.

2.1.3. Deformable Models

Deformable models are used when no or little prior knowledge of the target’s characteristics is
available, making them widely useful as general object trackers. They are also used when the target’s
shape may change in unpredictable ways. A deformable model tracks the individual parts of objects,
similarly to articulated models.

While articulated models match the individual components of the target against the corresponding
statistical models (e.g., of appearance and shape), deformable models select and then track contiguous
interest regions or neighbouring salient points. An interest region could be a large region of
homogeneous colour (e.g., a pair of trousers); a salient point could be a small region with a steep
intensity gradient. By the very nature of the model, i.e., its deformability, these components are not
strongly restricted by motion or distance constraints.

2.1.4. Appearance Models

The precise appearance of a target is usually unique to that specific target instance rather than,
say, to a class of targets that it belongs. For example, consider a situation where many people are being
tracked. While humans as a class may be considered to have roughly similar shapes due to their shared
anatomical structure, there is significant variability due to differing colours of skin, hair, or clothing.

Changing illumination, viewpoint, and clutter, amongst other confounding extrinsic factors also
alter the appearance of a tracked object. Models can be updated over time to account for appearance
changes. However, this can lead to the model drifting whereby the model gradually becomes less
representative of the target’s true appearance due to a gradual inclusion of extrinsic variability. To a
degree, this can be ameliorated by incorporating the original model in all incremental updates.

2.2. Articulation in Tracking

Considering the focus of the present work and its contributions, we would like to discuss the
most relevant work on articulated tracking in some more detail. As the starting point and for the
sake of clarity, it is worth emphasising the difference between the tracking of articulated objects and
tracking using articulated models. As noted earlier, the former describes models which comprise
a set of simpler, more compact basic models (themselves usually rigid) constrained by geometric
and kinematic assumptions. In contrast, the tracking of articulated objects may in fact employ
non-articulated models [22]—the articulation in this case refers to the nature of the tracked objects
itself. Thus, for example, while the human body itself is articulated (limbs move relative to the torso
and to each other, but each, say, forearm it itself rigid), the tracking of humans can in many applications
be satisfactorily accomplished using non-articulated models such as point clouds [21], silhouettes [23],
or deformable templates [24,25].
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Having noted that articulated objects can be successfully tracked using non-articulated models,
an important benefit conferred through the use of articulated models lies in the explicit recovery
of articulation parameters. While not universally this information often is of interest. For example,
the articulation of a human hand is useful for hand gesture analysis, of the human body for action
recognition [26], and of the spine for time lapse registration of anatomical structures [27]. Indeed, a vast
majority of work in the field focuses on the human body [28]. Thus, early and arguably some of the
simplest articulated models employed stick figure based models [29,30], which reasonably well suit the
shape of humans. However, these fail to generalize, in that they are unable to capture well the shape
of a wider range of objects; equally, the absence of any appearance information makes stick models
insufficiently robust for most modern applications. Hence, all but without exception more recent
articulate tracking approaches employ both appearance and geometric information, and sometimes
kinematic constraints as well. Another method of tracking articulated objects using non-articulated
models worth mentioning is that of using template banks [31,32]. Rather than employing a generative
approach whereby articulation parameters are modelled and recovered implicitly, this approach
discriminative in nature—a fixed set of templates corresponding to different articulations is matched
against the observed data (video frames). Nevertheless, the vast majority of the work in the area is
model based with explicit inclusion of latent variables which capture articulation, and most of these
approaches can be seen as falling under the umbrella of pictorial structure based methods. As we will
expand upon in further detail in the next section (seeing that the proposed method belongs to this
group too), a pictorial structure is a part based model of an object with flexible connections between
some of the pairs of parts, encoding and enforcing spatial constraints and statistical relationships
between them [33]. Thus, in the influential work of Ramanan et al. [26], the entirety of the human
body is modelled as a concatenation of body parts represented by rectangles, the appearance of each of
which is modelled separately, and geometric constraints between them. More recent methods extend
this idea, employing geometrically more flexible part models [34]. Indeed, numerous variations on the
theme have been described in the existing literature, and from this body of work it can be distilled that
there are several key aspects which affect tracking performance in different contexts. The main ones
concern choices of (i) the extent of object coverage (whether the entirety of an object’s visual appearance
is modelled, or only a part thereof), (ii) the manner in which geometric or kinematic constraints are
imposed (probabilistic, spring like, etc.), (iv) the representation used to model the appearance of
different model parts, (v) if and how model adapts to new information, and (vi) novelty handling (e.g.,
in the context of occlusion, including self-occlusion). As we explain in the next section, and explore
further in the follow-up empirical evaluation, the method proposed in the present paper considers
carefully each of these in turn, making greater or lesser contributions, all of which cumulatively give
rise to a highly successful general tracker.

3. Proposed Method

In this section, we lay out the technical detail underpinning the proposed tracking approach.
Considering its nature, we proceed in a top-down fashion, focusing on the pictorial structure design
first and then lower and lower constituent elements thereof.

3.1. Pictorial Structures Based Modelling

A pictorial structure is a part based model of an object, with flexible connections between some
of the pairs of parts (encoding and enforcing spatial constraints and statistical relationships) [33],
as illustrated in Figure 2. The appearance of each part is modelled independently of all others,
as are the connections between different parts. The general pictorial structure framework is thus
highly flexible and does not itself inherently dictate a specific manner for modelling each part or
pairwise connection.
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Figure 2. Example of a pictorial structure used to track articulated human upper body motion.
The structure comprises seven parts (namely the head, shoulders, elbows, and wrists) and six
statistically constraining connections (namely between the head and the shoulders, the shoulders
and the elbows, and the elbows and the wrists).

As a semantic note included for the sake of avoiding confusion, the kind of tracker we propose
here is usually described as a model free tracker, even though it uses a model of a kind—namely a
pictorial structure. This is because this kind of model itself is only very loosely specified a priori.
Instead, the actual model is learnt from the given training data, learning on the fly the appearance and
spatial parameters suitable to the specific object being tracked.

The part configuration that is the closest match to a pictorial structure is found by minimising an
energy function. This energy function sums the total appearance costs and spatial costs of placing each
part, and each pair of parts, in a given configuration.

3.1.1. Part Representation

The role of the global pictorial structure described previously is that of constraining the extent
and nature of geometric distortions between different characteristic parts which themselves experience
little deformation but can nevertheless exhibit variability in appearance (e.g., due to illumination or
viewpoint change). Hence, ultimately, the primary tracking power rests of representing each part
in a manner which is robust enough to this variability. Clearly, for best tracking in any particular
application, the choice of representation should be domain specific. On the other hand, for a general
purpose tracker, the representation has to be able to capture appearance well enough over a wide
class of parts, the inevitability being that of sacrifice of best performance in a specific task for good
performance across a range of tasks. Hence, motivated by their performance in a wide variety of
recognition and tracking problems, herein we adopt the use of the histogram of oriented gradients
(HOGs) as a means of representing part appearances [19]. For future reference, we will denote by F
the dimensionality of HOGs representations.
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3.1.2. Feature Extraction and Displacement Estimation

To formalize the tracking setting, our method aims to track n distinct parts from frame to frame.
For example, in our experiments on the BBC Pose data set [35], n = 7 parts are tracked: the head (one),
shoulders (two), elbows (two), and wrists (two). The part locations in the first K0 frames are used for
training. Multivariate Gaussian distributions are used to model the statistical variability in appearance
and spatial relationships of the parts. The index of the current frame being used for training or tracking
is denoted by the index f ∈ Z≥0.

For each frame index f ≥ K0, the spatial configuration of the parts is extracted and herein

denoted by l( f ) =
[
l( f )
1 , l( f )

2 , . . . , l( f )
7

]T
, where lj =

[
x( f )

j , y( f )
j

]T
denotes the estimated Cartesian

frame coordinates of the j-th part in the f -th frame.
A square patch (a subset of the full RGB image matrix) with a side length of p pixels is centred at

each part location. The F-dimensional image vector of the j-th part’s patch in the f -th frame, computed
using a HOG, is denoted by i(l( f )

j ).
The displacement vector of the j-th and k-th parts in the f -th frame is:

d
(

l( f )
j , l( f )

k

)
=

l( f )
j − l( f )

k , if j < k

l( f )
k − l( f )

j , otherwise
(1)

Note that the inequality j < k is required because the spatial correlation of the parts, based on
displacement, incorporates both the direction and the distance between parts. Arbitrarily taking the
displacement in both directions would give an erroneous spatial correlation.

Prior to training, the ground truth part locations are loaded into an array for constant-time
access. The first K0 training frames are then iterated over. For each part, the vectorized image patch
is computed. For each pair of parts, the displacement vector is computed. An appearance training
matrix Aj ∈ RK0×F is built for each part, and a spatial training matrix Sjk ∈ RK0×F is built for each pair
of parts. The f -th row in Aj is (i(l( f )))T , while the f -th row in Sjk is (d(l( f ), l( f )))T . These matrices
contain the observations used for maximum likelihood estimation.

In order for the HOG to be computed, the frame must first be converted to its corresponding
colour matrix. As HOGs are computed multiple times in each frame, a considerable optimisation is
obtained by pre-converting each image frame to its colour matrix. These colour matrices are stored in
an array for repeated constant time access.

3.1.3. Statistical Model Fitting

Maximum likelihood estimation uses observations to estimate the parameters of a statistical
model. Herein, appearance is modelled with an F-dimensional Gaussian distribution, and spatial
correlation is modelled with a two-dimensional Gaussian distribution. Note that each part (and each
pair of parts) is modelled using a different Gaussian distribution, with its corresponding mean and
covariance independent of others.

To contextualize the idea, in our case, an appearance observation is an F-dimensional
representation of an image patch (corresponding to a part image region), while a spatial observation is
a two-dimensional displacement. Thus, matrices Aj and Sjk contain these observations.

3.1.4. Appearance Parameter Estimation

The appearance parameters of each part comprises its mean, µj ∈ RF , and covariance, Σj ∈ RF×F.
Once Aj has been constructed, µj and Σj can be estimated using maximum likelihood estimation.
Thereafter, to ensure robust estimation, the SVD of Σj is computed to give ŪjL̄jŪT

j , where Ūj, L̄j ∈ RF×F.
Intuitively, Σj captures the distribution of a part’s appearance in the original HOG space. However,
as widely recognized in the literature, only some of this appearance—i.e., a subspace of the original
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subspace—can be considered reliable, with the remainder of the variation more appropriately treated
as noise [36,37]. The dimensionality of this subspace, m, inherently depends on the complexity of
the appearance variation of a specific part (we analyse this empirically in Section 4. Thus, L̄j is then
truncated to the m greatest eigenvalues by discarding rows from the bottom and columns from the
right. Ūj is correspondingly truncated to the m leftmost columns. These truncated matrices are
denoted by Lj ∈ Rm×m and Uj ∈ RF×m, respectively. The inverse covariance is approximated using
Σ−1 ≈ UjLjUT

j .
To account for appearance changes during tracking, Uj and Lj are used for incremental updating

of the covariance in an efficient manner. The matrix Σj itself is not used in any computations, so it can
be discarded [38]. However, Σ−1

j is used to calculate the squared Mahalanobis distance, and so it is kept.
Previous work has explored the possibility of enriching Σj with a latent random variable but found that
doing so does not improve tracking significantly. Therefore, herein Σj is used without modification.

3.1.5. Spatial Parameter Estimation

As noted earlier, the statistics of the spatial relationship between of each pair of parts is modelled
with a separate multivariate Gaussian distribution. The distribution for the j-th and k-th parts is
captured by its mean, µjk ∈ R2, and covariance, Σjk ∈ R2×2. Both µjk and Σjk are learnt using
maximum likelihood estimation, with Sjk being the observation matrix.

The spatial correlations can be considered as edges in the complete graph of parts, as shown in
Figure 2. The weight wij of the edge between the j-th and k-th parts is found by taking the product of
the squared Mahalanobis distances of the training displacements:

wij =
K0−1

∏
f=0

(
d(l( f )

j , l( f )
k )− µjk

)T
Σ−1

jk

(
d(l( f )

j , l( f )
k )− µjk

)
(2)

Not all of the spatial correlations are required for tracking—hence by design our method imposes
a tree-like structure, with the correlations only between parts which neighbour each other (i.e., which
are connected by an edge) in the tree being captured. The weight of each edge is computed, and then
the optimal tree is found using Prim’s minimum spanning tree (MST) algorithm.

The aforementioned design facilitates fast parameter computation and efficient model
representation. For example, in our experiments on the BBC Pose data set, the node corresponding
to the interpreter’s head is chosen as the initial vertex (the 0-th part). When an edge is to be added
to the tree, the node currently in the tree stores the new node as its child. The child node stores the
mean and covariance for the spatial correlation with its parent. Additionally, each node stores its
own appearance parameters. This allows the part configuration to be estimated by performing a tree
traversal. Once the MST is complete, the unused spatial correlations (corresponding to edges absent
from the MST) can be discarded.

3.1.6. Part Configuration Estimation

At this stage, we are considering the operation of our algorithm when training is completed
and the aim is to perform updating tracking of parts in a given video. Herein, we employ recursive
configuration estimation (RCE) which is a type of energy minimisation algorithm. While RCE is not
guaranteed to produce a globally optimum solution, it has proven to be highly successful in practice
and is more efficient than alternatives explored by others [39].

RCE performs a depth-first search of the parts tree introduced earlier. When a node is visited,
the corresponding cost function is minimised to estimate the best location for the respective part.
The search begins at the initial, root node or part (e.g., in our experiments on the BBC Pose data
set, this node corresponds to the interpreter’s head). Its optimum location can be computed using a
minimization procedure which can be formally succinctly expressed as follows:
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l( f )
0 = arg min

l̄∈range
(

l̄( f−1)
0

) a0(l̄), (3)

where

range(l) =
{
[x, y]T ∈ R2 : |x− xl |, |y− yl | ≤ r

}
and l = [xl , yl ]

T . (4)

Once the root location is determined in a frame, the best locations of the roots’s children are found
using a related minimization process. In particular, the important difference is that when estimating
the location of children, the spatial cost in relation to the parent location is included:

l( f )
j = arg min

l̄∈range
(

l̄( f−1)
j

) [aj(l̄) + sjk

(
l̄, l( f )

k

)]
, (5)

where the j-th part is a child, and the k-th part the parent. Note that this minimization relies on the
parent’s location in the current frame: our depth-first search ensures that each node is only reached
once its parent has been visited. In other words, a part’s location estimation is performed only after its
parent’s location estimate is already done.

3.1.7. Incremental Appearance Update

The appearance of each part changes between frames as the interpreter changes pose. In order to
account for these changes, the appearance parameters of each part, namely µj and implicitly Σj (recall
from Section 3.1.4 that it is Σ−1

j which is what our algorithm uses directly and not Σj which is why an
estimate thereof is not kept), are incrementally updated.

To be precise, µj ∈ RF, Uj ∈ RF×m, Lj ∈ Rm×m, and Σ−1
j ∈ RF×F updated in each frame,

immediately after the new part configuration has been computed. The new parameters are denoted by
µ̂j, Ûj, L̂j, and Σ̂−1

j .
In order to update the appearance parameters of a part, the vectorized image patch (at the new

location, in the current frame, computed as described previously) is extracted first: Ij = i(l( f )) ∈ RF.
The component of Ij orthogonal to Uj is then Gj = Ij −UjUT

j Ij ∈ RF.
When m is small, the appearance parameters change substantially in each increment. This has the

effect of capturing the appearance of a part in recent history (i.e., the most recent frames) and rapidly
discounting past appearance information [40]. Equivalently, the appearance parameters model an
incomplete representation of the part. To ameliorate this weakness, GT

j Ij is divided by the appearance
divisor, δ ∈ R≥1 when constructing Rj. Herein, we used δ = 1 + (F−m)2.

Thus, the updating process begins by singular value decomposition of the matrix Rj

Rj =

[
Lj UT

j Ij

0 GT
j Ijδ

−1

]
∈ R(m+1)×(m+1), (6)

thus giving Rj = ŨjL̃jŨT
j where Ũj, L̃j ∈ R(m+1)×(m+1).

The new covariance is given by:

Σj = XjRjYj = (XjŨj)Rj(ŨT
j Yj), (7)

where:

Xj =
[
Uj, Gj

]
∈ RF×(m−1), (8)

thus resulting in Ûj = XjŨj and L̂j = L̃j. Note that Ûj ∈ RF×(m+1) and L̂j ∈ R(m+1)×(m+1), so the
bottom row of L̂j is discarded, as well as the rightmost column in each of Ûj and L̂j. The new inverse
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covariance is then simply Σ̂−1
j = ÛjL̂jÛT

j . Finally, the new mean becomes the weighted mean of µj
and Ij as follows:

µj =
f µj + Ij

f + 1
(9)

Achieving Additional Robustness

As we noted previously, a problem inherent in tracking with continuing appearance learning is
that of ephemeral occlusions. Here, we introduces a method for detecting these which consequently
avoids the incorporation of erroneous information in our part appearance representation, which further
distinguishes our contribution from the related ones in the existing literature [39].

In order to detect if a part is occluded, the distortion increment, zj ∈ R, is calculated immediately
after the new parts configuration is computed, and before any parameter update takes place.

Denote the index of the most recent frame where an appearance parameter update took place by
fprevious. The distortion increment is computed as follows:

zj = aj

(
l( f )

j

)
− aj

(
l
( fprevious)

j

)
. (10)

Note that both of these appearance costs are calculated using the appearance parameters from
the fprevious-th frame. Intuitively speaking, zj quantifies how well i

(
l( f )

j

)
(i.e., the representation of

the image patch corresponding to the j-th parts’s new location) fits that part’s previous appearance
model. The appearance of a part usually changes smoothly with a small viewpoint or illumination
changes, with limited appearance variability between successive frames [41]. Therefore, zj ought to be
low-valued. If a part is occluded, then its appearance will experience a sudden change, and this will
be reflected by zj taking on a large and positive value. The appearance parameters of the j-th part are
therefore only updated when zj < t, where t ∈ R>0 is the occlusion threshold.

For convenience and quick reference, the key variables and model parameters are summarized in
Table 1.

Table 1. Summary of key variables underlying the functioning of the proposed algorithm. For full
details, please see the main text.

Symbol Summary Explanation

l f
i Cartesian frame coordinates of the j-th part in the f -th frame.

p Width in pixels of the square image patch used for the representation of parts’ appearances.

µj Mean of the j-th part’s appearance (HOGs space).

Σj Robust covariance of j-th part’s appearance (HOGs space).

m Dimensionality of the linear subspace representing the j-th part’s appearance (HOGs space)

wi,j Weight the connection between the j-th and k-th parts in the parts tree.

r Maximum frame to frame displacement of a part in pixels.

δ Appearance divisor, used to control the rate of discounting of historical data.

z Distortion increment, quantifying the novelty in a part’s appearance observed in the current frame.

t Occlusion threshold, used to control the extent of permissible novelty in appearance updates (see z above).



J. Imaging 2020, 6, 61 12 of 19

4. Evaluation

4.1. Evaluation Corpus—the BBC Pose Data Set

The BBC Pose data set is well-known and widely used public data set suitable for evaluation of
the evaluation of algorithms for tracking articulated objects [35]. It contains a broad range of challenges
including occlusions, variable and dynamic backgrounds, and rapid movement of objects (or parts
of objects) of interest. However, it should be noted that the nominal ground truth labelling is not
error-free, as illustrated in Figure 3. Therefore, any results or comparative analysis using this data set
should be caveated by noting that the actual ground truth is not known—rather, what is available is
quasi-ground truth. Indeed, as we will shortly show, in some instances, our algorithm produces better
localization of parts than the provided quasi-ground truth.

(a) (b)

Figure 3. Examples of incorrect labelling in the BBC Pose data set used in our experiments. In (a), the
marker corresponding to the presenter’s right wrist is misplaced, whereas, in (b), the same is the case
with presenter’s left elbow as well as the right shoulder.

4.2. Results and Discussion

We started out evaluation by looking at the overall performance of the proposed method and its
comparison with the existing, state-of-the-art-tracker in the literature. As noted in the previous section,
BBC Pose data set is used extensively, which facilitated a straightforward, like for like comparison.

The key results are summarized in Figure 4. The plot characterizes the empirical performance
(taken as reported in the literature) on the BBC Pose data set of eight different methods (see
the legend above the plot), namely the Spatio-Temporal Context Learning (STCL) tracker [42],
the Structure-Preserving Object Tracker (SPOT) [24], the Incremental Visual Tracker (IVT) [38], the Fast
Compressive Tracker (FCT) [43], the Discriminative Fast Scale Search (DSST) tracker [44], the Clustering
Model Tracker (CMT) [25], and the Incremental Pictorial Structure Tracker (IPST) [39] as well as the
proposed method (our experiments). Table 2 lists the values of our algorithm’s parameters. These were
chosen as sensible values based on our understanding of the application domain. In practice, in cases
when no similar information is available, the parameter values can be learned using the standard
training-validation-test protocol.
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Table 2. The values of our algorithm’s parameters used in our first set of experiments (also see Figure 4).

Parameter F m r K0 p t

Value 324 324 5 20 80 2000
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Figure 4. Empirical performance on the BBC Pose data set of six different state-of-the-art methods
and the proposed method (see the legend above the plot). The abscissa (i.e., the x-axis) shows the
average pixel error in the location of different model parts, whereas the ordinate (i.e., the y-axis) shows
a cumulative distribution of frames corresponding to a specific error. The vastly superior performance
of our solution is readily apparent.

In the plot shown in Figure 4, the abscissa (i.e., the x-axis) corresponds to the average pixel error in
the location of different model parts, whereas the ordinate (i.e., the y-axis) the value of the cumulative
distribution of frames corresponding to a specific error. The superior performance of our solution and
IPST that is the two pictorial structures based methods is readily apparent. All of the other trackers
exhibit similar performance (though with a clear and consistent ranking amongst them) across different
error magnitudes with roughly linear dependency of the cumulative proportion of frames. In contrast,
both our method and IPST show markedly better behaviour for small errors which gets particularly
rapidly distinct up to the error magnitude of 15 pixels, thereafter maintaining a roughly constant
(or somewhat increasing) margin of improvement. The difference between the two pictorial structures
based methods is interesting and insightful. In particular, in the region of the plot corresponding to
small tracking errors (up to 8 pixels), note that IPST tracks in more frames with a very small error, thus
exhibiting somewhat better performance than our method on approximately quarter of the frames.
However, thereafter, the situation reverses with our algorithm managing to track much better in the
majority of the frames. For example, while IPST tracks only about half of the frames with an error
smaller than about 13 pixels, our method manages the same with nearly three quarters. The likely
reasons for this interesting behaviour stem from several key differences between the two approaches.
The most important of these concerns the updating of parts’ appearances, namely our discounting of
historic information and rejection of likely occlusions. These make our algorithm more “reluctant” (in a
manner of speaking) to the inclusion of new information. Thus, in the presence of appearance changes,
the approach is more prone to small, transient errors, which are eliminated once sufficient evidence for
novelty is accumulated. Equally, it is exactly the same mechanism that prevents large errors from being
introduced by transient occlusion—temporary occluding (mis)information is never incorporated in the
model, limiting tracking error both in magnitude and duration. The difference in the manner that the
search for optimal parts configuration is estimated is also likely a contributing factor. When conditions
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are challenging (changing illumination, viewpoint, occlusion), our computationally more efficient
search is good enough in the sense that, in this context, it is the other factors that are the greatest
source of error. On the other hand, when appearance change is limited, the slower but more exhaustive
algorithm used in IPST is better at finding the actual global optimum, absolutely minimizing the
invariably error. This observation provides potentially useful insight for future research in that it
opens the possibility of choosing on the fly which of the two search algorithms should be employed at
a specific point in tracking.

Parameter Sensitivity Analysis

Following our initial experiment which demonstrated our method’s vastly superior performance
in comparison with the state of the art, in our next set of experiments, we sought to gain further insight
into the sensitivity of the algorithm’s performance to the values of its parameters. Our findings are
summarized in Figure 5.

As expected, increasing the value of the parameter m produced more accurate tracking results,
as demonstrated by the plot in Figure 5a. Recall that m determines the dimensionality of the subspace
used to capture each part’s appearance [37]. Consequently, our finding can be seen to make intuitively
sense: a higher value of m leads to a more complex and expressive model appearance model, with less
information being discarded. This of course comes at a cost. Increasing m increases the size of
matrices Uj and Lj, thereby imposing greater storage requirements and increasing the time needed
to calculate Σ−1

j . Thus, in practice, a balancing act needs performed, with the exact trade-off being
highly dependent on the nature of the objects being tracked as well as the environmental context.
For example, in Figure 5a, the usual phenomenon of diminishing returns is clear, the change from
m = 5 to m = 50 effecting greater performance differential than from m = 50 to m = 324.

The effects associated with varying the parameter r are similar, both phenomenologically and
conceptually. As demonstrated by the plot in Figure 5b, increasing its value improves tracking.
Recalling that r governs the breadth of the spatial search region in the search for the optimal part
location in a frame, the reasons behind this observation are clear: excessively small r limits the
maximum speed of motion too much, thus not allowing for the correct localization to take place
when this speed is exceeded (e.g., in our experiments, this most notably applied to the interpreter’s
wrists/hands). Similarly, in line with expectations, increasing r past a certain point fails to effect further
improvement—this happens when the maximum search window is in excess of the highest rates of
movement of tracked parts. Hence, much like in the case of the previous parameter, the optimal value
is application dependent. In some cases, depending on the type of objects tracked, the speed at which
different parts move is greater and in others lesser. An overly high value of r imposes an unnecessary
computational cost during the search, whereas an overly low value fails to track correctly.

The behaviour of our algorithm for different values of K0, i.e., the number of initial frames used
for training, is more interesting; see Figure 5c. Increasing the number of training frames from a
small number results in more accurate tracking, as expected (in our experiments up to K0 = 20).
Clearly, using too little training data leads to overly simplistic initial model and this oversimplification
propagates through time because it limits the ability of the model to adapt appropriately as new
information is encountered. However, as the number of training frames is increased past a certain point,
contrary to what one may expect at first, a decrease in tracking the accuracy is observed. Though this
may seen counter-intuitive, it is in fact something that the theoretical underpinnings of our method
predict well. In particular, during training, all frames—that is, all the information on parts’ appearance
variation—are used on par with one another, not taking advantage of our information discounting
(purposeful ‘forgetting’ of overly old data) which takes place during steady state tracking i.e., the
incremental updating stage. As a practical note, as was the case with the previously considered
parameters, it should be born in mind that the optimal value of K0 is application dependent.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. (a–f) Summary of parameter sensitivity assessment. The x-axis values are thresholds for
the mean Euclidean distance (measured in pixels) of each part’s tracked location from the ground
truth. The y-axis shows the proportion of frames in which the mean distance is within the threshold.
For example, when m = 50 (top-left), the mean distance is less than 10 pixels in 60% of the frames.

The size p of the image patch treated corresponding to a part in our pictorial structure is clearly
an important parameter, see Figure 5d. The smaller the size, the more local the corresponding part
appearance model is and, conversely, the greater the size, the greater its spatial extent is. Here,
we face another, well-known balancing act. The use of smaller, more localized image regions for
the representation of parts has an important advantage of being less susceptible to the inclusion of
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confounding, spatially proximal (in image plane) information (for example from the background).
It also inherently has a more constrained appearance which allows for easier and more accurate
representation of the corresponding variability. These advantages carry a fundamental cost. Notably,
the more constrained appearance and thus lower information content can lead to increased difficulty
in precise localization of a part between successive frames. On the other hand, less local, larger
image patches make the corresponding modelling of possible appearance changes more difficult, thus
requiring more data and more complex models if unwanted appearances are not to be captured too (for
example, as may be the case with linear subspace models [45,46]). Equally, there is a greater chance that
surrounding, irrelevant information is incorporated in the model. However, the increased information
content can lead to better localization performance. As before, the trade-off is invariably application
domain specific; for example, in our experiments, we found that the patch size of p = 80 offered a
suitable compromise between the two extremes and resulting in best tracking, as demonstrated by the
plot in Figure 5d.

Lastly, the impact of continuing appearance learning i.e., incremental model adaptation and the
corresponding robustness parameter t are summarized by the plots in Figure 5e,f. At this point, it is
worthwhile reminding the reader of our note as regards the quality of ground truth, that is, what we
described as quasi-ground truth, provided with the BBC Pose data set. In particular, we observed that,
in some cases, our tracker produced better estimates of parts’ locations than the quasi-ground truth.
Examples are shown in Figure 6. This can be attributed precisely to the intelligent continuing learning
strategy we employ, and its ability to reject unreliable measurements, allowing the method to make
sensible choices in periods of transient self-occlusion.

Figure 6. Examples illustrating our observation that in some cases our tracker (right-hand frame)
produced better estimates of parts’ locations than the quasi-ground truth (left-hand frame) provided
with the BBC Pose data set (see Figure 3). This phenomenon can be attributed to the intelligent
continuing learning strategy we employ, and its ability to reject unreliable measurements, allowing
the method to make sensible choices in periods of transient self-occlusion. In this particular instance,
observe the localization of the presenter’s right shoulder.

5. Summary and Conclusions

In this article, we proposed a novel method which systematically addresses the well-known
difficulties in tracking complex, articulated or deformable objects—a highly relevant problem in an era
of ubiquitous technology in all realms of our life. On the global label, spatial flexibility and robustness
to deformations are achieved by its pictorial structure based geometric model. Appearance description
is localized to regions which exhibit little deformation (pictorial structure’s parts) and whose breadth
of appearance variability is captured by a linear subspace model in a histogram of oriented gradients
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space. What makes the proposed method particularly successful is its continuing learning framework
of both the geometric constraints and part appearances, which builds upon the usual one-off learning
taking place at the onset of tracking. The continuing is achieved through incremental updates of parts’
models that is the corresponding subspace representations, and is made particularly robust through
the implementation of occlusion detection and information discounting i.e., the discarding of historical
appearances in favour of the more recent ones. Lastly, we described a set of comprehensive empirical
experiments in which we compared the proposed method with several state-of-the-art methods in the
literature and demonstrated its advantages.
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40. Sharma, R.; Arandjelović, O. Information and knowing when to forget it. In Proceedings of the 2017
International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017;
pp. 3184–3190.

41. Arandjelovic, O.; Cipolla, R. An illumination invariant face recognition system for access control using
video. In BMVC 2004: Proceedings of the British Machine Vision Conference; BMVA Press: London, UK, 2004;
pp. 537–546.

42. Zhang, K.; Zhang, L.; Liu, Q.; Zhang, D.; Yang, M.H. Fast visual tracking via dense spatio-temporal context
learning. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12
September 2014; pp. 127–141.

43. Zhang, K.; Zhang, L.; Yang, M.H. Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2014,
36, 2002–2015. [CrossRef] [PubMed]

44. Danelljan, M.; Häger, G.; Khan, F.; Felsberg, M. Accurate scale estimation for robust visual tracking.
In Proceedings of the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014.

45. Arandjelovic, O.; Hammoud, R. Multi-sensory face biometric fusion (for personal identification).
In Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06),
New York, NY, USA, 17–22 June 2006; p. 128.

46. Arandjelovic, O.; Cipolla, R. Face set classification using maximally probable mutual modes. In Proceedings
of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August
2006; Volume 1; pp. 511–514.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.imavis.2005.08.002
http://dx.doi.org/10.1007/s10994-013-5380-5
http://dx.doi.org/10.1007/s11263-007-0075-7
http://dx.doi.org/10.1109/TIP.2018.2816121
http://www.ncbi.nlm.nih.gov/pubmed/29993804
http://dx.doi.org/10.1109/TPAMI.2014.2315808
http://www.ncbi.nlm.nih.gov/pubmed/26352631
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Tracking in Entertainment
	Tracking in Health and Fitness
	Tracking in Security
	Tracking in Scientific Applications

	Previous Work
	Overview of Tracking Models
	Basic Shape Bound Models
	Articulated Models
	Deformable Models
	Appearance Models

	Articulation in Tracking

	Proposed Method
	Pictorial Structures Based Modelling
	Part Representation
	Feature Extraction and Displacement Estimation
	Statistical Model Fitting
	Appearance Parameter Estimation
	Spatial Parameter Estimation
	Part Configuration Estimation
	Incremental Appearance Update


	Evaluation
	Evaluation Corpus—the BBC Pose Data Set
	Results and Discussion

	Summary and Conclusions
	References

