
Supplementary Material

1 Introduction

This document provides supplementary material for the original paper, entitled as �Spectral Pro-
cessing for Denoising and Compression of 3D Meshes using Dynamic Orthogonal Iterations". At
the following sections, we present extra experiments and discussion which are not included in the
main manuscript.

2 Evaluation of di�erent alternative steps that could be used

during the coarse reconstruction approach

2.1 Di�erent forms of weighted Laplacian matrices

In this paragraph we investigate the performance of di�erent weighted kernels, which have been
suggested by the literature, as they will be used for the creation of the weighted Laplacian matrix.
More speci�cally, the used kernels are:

� A = cot(θaij
) + cot(θbij )

� A = e‖vi−vj‖22

� A = 1
‖vi−vj‖22

In Fig. 1, we present the reconstructed results of di�erent models, using the aforementioned
weighted Laplacian matrices. Additionally we provide heatmaps visualizing the Hausdor� distance
between the reconstructed and the ground truth models. As we can see, the perceptual di�erence
between these methods is very small and in some examples barely noticeable (especially between
the cotangent approach and ours).

2.2 Di�erent approaches to eliminate the edge e�ect problem

In the next Figs. 2-3, we present the coarse reconstructed results of di�erent reconstruction
approaches. We assume that the used model (fandisk) has been a�ected by di�erent levels of
Gaussian noise (i.e., σE = 0.1, σE = 0.2). Also, it has been used in di�erent segmentation
scenarios. As we can see, observing the results, the edge e�ect is apparent in areas where submeshes
are connected, especially for the non overlapping case. In the simple overlapping case, the edge
e�ect has been mitigated but has not been eliminated yet. In the weighted overlapping case, the
results seem to be independent and una�ected of the partitioning. Finally, in the overlapping case,
taking into account the highest value, the results are similar or worse of the simple overlapping
case.
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Figure 1: Reconstructed results and heatmaps of Hausdor� distance for di�erent weighted Lapla-
cian matrices (a) cotangent weight, (b) exponential weights, (c) our approach.
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Figure 2: Coarse reconstructed results of Fandisk model a�ected by Gaussian noise σE = 0.1.
(a) Metis segmentation in 10, 15 and 20 submeshes respectively, (b) non overlapping case, (c)
overlapping case, (d) weighted overlapping case (e) overlapping case taking the highest value.

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Figure 3: Coarse reconstructed results of Fandisk model a�ected by Gaussian noise σE = 0.2.
(a) Metis segmentation in 10, 15 and 20 submeshes respectively, (b) non overlapping case, (c)
overlapping case, (d) weighted overlapping case (e) overlapping case taking the highest value.
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(a) (b) (c) (d)

Figure 4: (a) Original mesh, (b) l0 minimization [2], (c) guided normals �ltering [5], (d) our
approach.

3 Experimental Results

One signi�cant advantage of our method, in contrary to the other methods, is the fact that it
does not negatively a�ect the relative position of vertices. Fig. 4 shows the reconstructed results,
emphasizing at the triangulated faces for di�erent denoising methods. It can be easily observed
that other state-of-the-art approaches signi�cantly modify the relative position of the vertices, even
in cases where the reconstructed quality is considered acceptable. On the contrary, our approach
provides both accurate reconstruction preserving the real distance between adjacent nodes.

In Fig. 5, we present the reconstructed results of noisy models (i.e., block and fandisk with
Gaussian noise N (0, 0.7)) for di�erent state-of-the-art methods with (second row) and without
(�rst row) using our proposed method as a preprocessing step. The results verify our assumption
that the proposed OI approach can optimize both the reconstruction quality and the computa-
tional complexity of these methods since the use of the coarse step signi�cantly accelerates the
convergence of the �ne denoising step, reducing the vertex update iterations required for achieving
a speci�c reconstruction quality.

The experiments have shown that the reconstructed results are a�ected by the number of
iterations or/and the power z of matrix R. In Fig. 6, we present the coarse denoised results
of �Twelve" model using OI with di�erent values of z. Higher values of z are related to higher
accuracy. As we can see, the results seem to be identical with this of the direct SVD for OI
with z > 4. In Table 1, we present the reconstruction quality, evaluated by the metric θ,
and the execution times (lower value of z results in faster executions) between the direct SVD
implementation and di�erent approaches of OI using di�erent power z of matrix R.

Our method provides high quality reconstruction results even in cases where the noise and
features are extremely di�cult to be separated, as presented in Fig. 7.

Fig. 8 presents the NMSVE metric for the reconstructed models while the remaining number
of eigenvalues changes. Similar conclusions with the compression use case, we can draw in this
denoising application too. More speci�cally, it seems that the OI can achieve almost the same
reconstructed quality with the direct SVD method but very faster (almost 24 times).
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Figure 5: [First lines] Original reconstructed denoising results and [Second lines] reconstructed
denoising results after applying the proposed Graph Spectral Processing (GSP) as a pre-processing
step, for di�erent methods: (i) bilateral mesh denoising[1], (ii) non-iterative feature preserving
smoothing [3], (iii) fast and e�ective feature preserving denoising [4], (iv) bilateral normal �ltering
[6], (v) guided normal �ltering [5].
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(e) (f) (g) (h)

Figure 6: Reconstructed models, after the coarse denoising step, using di�erent types of Rz, (a)
z = 1, (b) z = 2, (c) z = 3, (d) z = 4, (e) z = 5, (f) z = 6, (g) z = 7, (h) SVD.
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(a) (b) (c) 

Figure 7: Denoising results for a variety of noise patterns (a) σE = 0.05, (b) σE = 0.10, (c)
σE = 0.15 in 3D models (armadillo and tyra) consisting of many and di�erent-scaled geometric
features.
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Twelve Fandisk

t θ t θ

R1 0.031 11.57 0.077 16.36

R2 0.049 10.26 0.110 14.75

R3 0.099 13.97 0.170 14.54

R4 0.114 13.84 0.202 14.54

R5 0.136 13.7 0.242 14.44

R6 0.142 13.59 0.297 14.5

R7 0.157 13.57 0.313 14.52

R8 0.184 13.55 0.355 14.84

R9 0.201 13.53 0.407 15.6

SVD 0.901 9.83 1.953 14.56

Table 1: Execution times and corresponding values of the metric θ using di�erent types of Rz and
SVD.
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Figure 8: NMSVE of the reconstructed models per di�erent remaining number of eigenvalues for
di�erent compared approaches.
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