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Abstract: To achieve efficient lossless compression of hyperspectral images, we design a concatenated
neural network, which is capable of extracting both spatial and spectral correlations for accurate pixel
value prediction. Unlike conventional neural network based methods in the literature, the proposed
neural network functions as an adaptive filter, thereby eliminating the need for pre-training
using decompressed data. To meet the demand for low-complexity onboard processing, we use
a shallow network with only two hidden layers for efficient feature extraction and predictive filtering.
Extensive simulations on commonly used hyperspectral datasets and the standard CCSDS test
datasets show that the proposed approach attains significant improvements over several other
state-of-the-art methods, including standard compressors such as ESA, CCSDS-122, and CCSDS-123.

Keywords: predictive lossless compression; hyperspectral imagery; neural networks; onboard data
compression; spatial and spectral correlations

1. Introduction

Hyperspectral sensors collect data as a set of images with high spatial and spectral resolutions,
with each spectral band image being a narrow wavelength range of the electromagnetic spectrum.
The large quantities of hyperspectral data present great challenges in storage, transmission,
and analysis, as a consequence, data compression is becoming a common process for such imagery.
In general, compression can be either lossy or lossless. Lossy compression typically provides lower bit
rates but incurs loss on the original data. On the other hand, lossless compression guarantees perfect
reconstruction on the original data, albeit with higher bit rates. This work focuses on improving the
performance of onboard predictive lossless compression on hyperspectral imagery. The techniques are
useful for many precision-demanding applications where strictly no data loss is highly desirable [1-3].
Below is a brief survey on the existing work on the subject.

Lossless compression of hyperspectral images has been performed very successfully using
prediction-based methods. Context-based Adaptive Lossless Image Codec (3D-CALIC) [4] and its
variant M-CALIC [5] consider both interband and intraband correlations to reduce prediction errors.
The Lookup Table (LUT) approach in [6] exploits the calibration-induced data correlation specific
to hyperspectral imagery to facilitate accuracy prediction. This scheme was enhanced by a Locally
Averaged Interband Scaling (LAIS-LUT) approach using a band adaptive quantization factor [7].

Transform-based approaches such as Discrete Wavelet Transform (DWT) and Principal
Component Analysis (PCA), aim to exploit the relations in the spectral and spatial dimensions based

J. Imaging 2020, 6, 38; doi:10.3390/jimaging6060038 www.mdpi.com/journal/jimaging


http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0001-7265-2188
http://dx.doi.org/10.3390/jimaging6060038
http://www.mdpi.com/journal/jimaging
https://www.mdpi.com/2313-433X/6/6/38?type=check_update&version=2

J. Imaging 2020, 6, 38 2 0of 18

on a redundancy reduction transform. The problem of selecting an appropriate signal representation
for transform-based compression is equivalent to the feature extraction problem in machine learning.
Recently, Wavelet-based Regression Analysis (RWA) [8,9] was introduced for lossless compression
by exploiting the relationships among wavelet-transformed components, which outperforms the
traditional approaches.

Low-complexity filter-based compressors, such as the Fast Lossless (FL) [10] and Spectral-Oriented
Least Squares (SLSQ) [11], utilize linear models to de-correlate the co-located pixels from different
spectral bands. An optimized version of the Fast Lossless (FL) algorithm developed by the NASA
Jet Propulsion Laboratory (JPL) has been selected as the core predictor in the new Consultative
Committee for Space Data Systems (CCSDS) standard for multispectral and hyperspectral data
compression [12]. Besides, traditional Wiener filter, Kalman filter and least mean square filter,
were adopted for hyperspectral image compression. Examples include the Backward Pixel Search
(BPS) [13], Kalman Spectral Prediction (KSP) [14] and Maximum Correntropy Criterion based Least
Mean Square (MCC-LMS) [15] algorithms. Similar to linear predictors, nonlinear predictors such as
Context-based Condition Average Prediction (CCAP) [16] and Two-Stage Prediction (TSP) [17] have
also brought improvement in compressed bit rates.

High-complexity compressors such as Clustered Differential Pulse Code Modulation (C-DPCM)
have been studied in [18], which partitions the data into several clusters with similar statistics and
applies separate least-square optimized linear predictors to different clusters. [19] presents an Adaptive
Prediction Length C-DPCM (C-DPCM-APL) method, which is a brute-force variant of the C-DPCM
approach, in that the number of previous bands selected for prediction was determined by a brute-force
search ranging from 10 to 200 bands in steps of 10. Two other C-DPCM variants also use a large portion
of previous bands for prediction, including the Spectral Relaxation Labeled Prediction (S-RLP) and
Spectral Fuzzy Matching Pursuits (S-FMP) in [20]. However, the computational complexity of these
clustering-based compressors is very high.

Recently, Deep-learning based approaches have been widely utilized to lossy and lossless
hyperspectral data compression. For lossy compression, [21-24] focused on designing deep networks
to reconstruct the original imagery with a reasonable loss of information. Those models have an
encoder-decoder structure, where representative features are usually extracted by Autoencoder
network (AE) or Convolution Neural Network (CNN). Ref. [25] proposed an onboard CNN-based
lossy compressor, where the neural network is pre-trained on other datasets in a ground-based setting.
For lossless compression, deep neural networks [26,27] and recurrent neural networks (RNN) [28]
have been proposed to compress hyperspectral data by appropriately pre-training the networks.

Nonetheless, the above mentioned deep-learning methods are not suitable for the challenging
task of onboard lossless compression of hyperspectral images. The main reason is that deep learning
relies on the availability of data from all the spectral bands during the process of training or clustering.
However, either the entire original dataset or decompressed dataset is normally not available, or only
partially available in many real-time compression applications. Furthermore, a pre-trained model
can not in general adapt well for some new datasets, which necessitates model retraining for each
new dataset.

To address those limitations, we propose an adaptive filtering-based Concatenated Shallow Neural
Network (CSNN) model for predictive lossless compression. The contributions of the proposed method
are twofold: (1) The CSNN was designed as an adaptive prediction filter rather than as a training-based
network. Thus the model needs not be pre-trained before being used for pixel value calculation. To the
best of our knowledge, this might be the first neural network based method requiring no training
proposed for hyperspectral data compression. (2) The shallow two-hidden layer structure of the
proposed model is capable of capturing both spatial and spectral correlations to provide more accurate
pixel prediction, with only a few contexts from four previous bands. Consequently, computational
complexity is much lower than other deep-learning based methods.
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The rest of the paper is organized as follows. Section 2 discusses context selection for prediction
and provides an information theoretic analysis of the prediction performance. Section 3 describes the
proposed method in detail. Simulation results are given in Section 4. Finally, conclusions are drawn in
Section 5.

2. Context Selection and Prediction Performance Analysis

Let sy,. denotes the pixel value at line x and column y in band z of a hyperspectral image
cube. Rather than directly encoding the value of sy, ., a predictive compression algorithm uses
previously decoded pixel values to compute a predicted pixel value sy y .. Then the prediction residual,
(Sx,y,z — Sx;y,z), which is the difference between the actual pixel value and its estimate is encoded
losslessly using an entropy coder.

2.1. Context Selection

The predictor attempts to exploit correlations between the contexts and the current pixel value.
Thus, the first step is to select the contexts appropriately. Typically, the neighboring pixels tend
to have correlations. Considering the fact that spectral correlations tend to be much stronger than
spatial correlations, the FL. and MCC-LMS methods use only spectral contexts, while CCAP, TSP and
M-CALIC methods combine spatial context with spectral context for prediction. Following the practice
in [10], as a pre-processing step, we perform a simple local averaging to better exploit the spatial
correlations as follows:

_ 1
Sxyz = 1 (Sx—l,y,z + Sx—1y—1z + Sxy—1,z + Sx—l,y+1,z) (1)

Figure 1 shows an example of context selection. The spatial context was selected from the current
band and two previous bands. For each band, four neighboring pixels are reshaped into a 1-D vector
{Ex,y—l,z/ Sx—1y—1,2Sx—1yz Sx—1y+1z }, note the selected pixels are averaged values. Thus, the combined
spatial context, denotes as Ct, is a 3 x 4 matrix. If a pixel reaches the boundary of image, we can still use
the four nearest pixels to construct the context vector. For example, four previous pixels are selected as
context for pixels in the first row of image: {Ex,y_4,z,§x,y,3,z, Sxy—22/Sxy—1,z2 }, we repeat previous pixel
values to make the size of context vector equals to four even if y < 4. For pixels in the first column,
the spatial context vector becomes {gxfl,y,ngxfl,erl,z'gxfl,y+2,2r§xfl,y+3,2}- Similarly, context vector
for pixels in the last column of the image can be written as {§x1y,2,z,§x,y_1lz,Ex_lly_lrzﬁx_l,yfz}.
Besides, four pixels from previous bands co-located with the current pixel are chosen as the spectral
context, denotes as C; = {5.,,.—4,5xy,2-3,5xy,2-2,5xy,—1}. Note for prediction of the pixels in the
spectral bands where z < 4, we use spatial contexts only.
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Figure 1. An example of context selection scheme for predicting the current pixel (in red), which consists
of spatially neighboring pixels from the current band and two previous bands (in blue), as well as
spectrally co-located pixels from the four previous bands (in green).
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2.2. Prediction Performance Analysis

The performance of the prediction based algorithms largely depends on the choice of the context.
Information theoretic analysis can provide an upper bound on the amount of compression achievable
based on the specific context. The analysis employs the concept of conditional entropy, as a measure of
information gain, based on a simple model of prediction process [29].

Let X; be a two-dimensional spectral image of the hyperspectral dataset, and i € {1,2,...,K},
where K is the total number of spectral bands in the data cube. We reshape pixel value of X; into
a vector, then the occurrences of pixels in the vector can be viewed as a random process. For a
hyperspectral image having 16 bits/pixel, the first order statistical properties of X; is defined in terms
of the probabilities p; = P(x = j),j € ¢, where ¢ is the set of distinct pixel values in X;, with the range
(0,216 — 1]. Then the entropy of the source can be written as [30]:

H(X;) = —)_ pjlog, pj, 2)
jEP

where H(X;) is the minimum bit rate that lossless compression can possibly achieve using an ideal
entropy coder.

The information gain of X; can be further reduced by exploiting the first-order statistical
information of contexts. The entropy scheme H(X;) can be easily extended to conditional entropy of
band X; given spatial context C; and spectral context C;:

H(Xi|C, C) = =) pjic,c, - log, {Pj\cf,c,] , 3)
je¢

where pj|c, ¢, is the conditional probability pjc,c, = P(x = j|C;, C;). By applying the chain rule,
the conditional entropy can be further rewritten as:

H(X;|C:, C) = H(X;,C,Cp) — H(C, Cp). 4)

The conditional entropy gives the minimum achievable bit rate of X;, given the context C; and C;.
In general, by exploiting the spectral and spatial correlation, we will have H(X;|Cy, C;) < H(X;).

In practice, as stated in [14], the conditional entropy estimation becomes very inaccurate when
two or more previous bands are used for prediction. It is because the conditional entropy have to
estimate the joint entropy by calculating the occurrence frequencies on a very large alphabet space,
ie., (216) Nit-Nit1 in our case, where N; and N] is the number of bands used for selecting spatial and
spectral context. As a consequence, a band might not contain enough pixels to provide a statistically
meaningful estimation of the probabilities. [14] proposes to use the bit-planes of X; as a set of 16 binary
sources to greatly reduce the alphabet size. However, results obtained from the binary source might
not be representative of the actual alphabet sources, since the correlations between the bit-planes
cannot be ignored. To solve this problem, we propose to use a neural network to extract the features
from the selected contexts, which are more representative of the context sources.

3. Proposed Method

The proposed approach was motivated by the state of the art CCSDS-123 standard onboard
compressor [12], which has been proved very efficient in lossless compression [10,12]. In CCSDS-123,
the core algorithm FL is mainly a gradient-based adaptive filter. The predicted value 5; and error A;
can be expressed as:

=~ T
St - Wt Ut,

Ay = st —54,

©)
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where the W; and U are the weight vector and input context vector. Then the weight vector is updated
adaptively based on A;:

W1 = clip (Wt + B (sgn [Af] (e tl) g, 4 I)J ,{wmin,wmux}) , (6)

where clip denotes the clipping of the real number to the range {w,i,, Wmax }, and sgn is the sign
function defined as sgn = % |x|,x # 0. p; is the weight update scaling exponent, and ( is the
inter-band weight exponent offsets in the range —6 < < 5.

Our goal here is to improve the traditional gradient-based adaptive filter with a neural network.
The main idea is that the training a neural network can be interpreted as a nonlinear filtering procedure.
Compared to the FL algorithm, the corresponding prediction value and error can be rewritten in a
neural network setting:

5t = Fuet (Uy),

- )
Ay = Floss (Sfrst) ’

Fyet and Fy,g4 are the designed network and the loss function. Then weights and bias are updated by
the batch gradient decent with a small learning rate:

oA

Wig1 = Wr — ﬂaTNt-

®)
As we can see, the prediction and the updating scheme of the neural network are very similar to the
FL algorithm, which indicates that the neural network can play the role of a nonlinear adaptive filter.

With onboard data compression (with limited data for pre-training the network) in mind,
we propose a filtering-based concatenated shallow network (CSNN) for predictive lossless compression.
The CSNN behaves as an adaptive filter, which updates the network parameters on-the-fly with the
incoming batch input. Specifically, the input samples (following a zigzag scanning order) flow through
the network for just one time. The prediction error of each sample is recorded simultaneously for
further mapping (to non-negative integers) and entropy coding. The weights and biases are adjusted
for each batch according to the prediction errors. Algorithm 1 provides more details of the proposed
adaptive scheme.

Algorithm 1 Algorithm for filtering based CSNN adaptive prediction.

1: Initialize the neural networks.
2: Calculate the local sample mean using Equation (1).
3: fort=1:N do %% N is the number of batch, and the batch size equals to the number of columns in

the spectral band.
4: Select the spatial and spectral contexts C; and C; for each pixels in batch, and prepare the data

pair { (Ct/ Cl) ’ eryrz}'

5: Extract spatial and spectral features F; and F; from the contexts using one-layer shallow neural
networks.
6: Concatenate the features: F = [F;, Fj].
7: Predict the pixel values based on F using Equation (11).
8: Calculate and record the prediction error ey y . for further mapping and coding.
9: Calculate the weight updates Aw using Equation (13).
10: Adjusting the parameters in every batch: w = w + Aw.
11: end for

We design the prediction method in such a way that the training procedure associated with most
conventional neural networks based algorithms is not required. The filtering-based network aims to
get the losses of each input sample rather than a well-trained network. Also, training a neural network
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relies on the availability of a large amount of training data, as well as an iterative optimization process
of high computational complexity. In contrast, the proposed method filters each input sample only
once, with a zigzag scanning order band by band. Thus, the computational time of filtering-based
network is significantly lower than the conventional training-based neural network. In a nutshell,
the filtering-based CSNN provides a more robust solution for a wide variety of hyperspectral datasets,
without any pre-training or prior knowledge needed.

3.1. Concatenated Shallow Neural Network (CSNN)

Figure 2 illustrates the framework of the proposed method. The processing flow of the proposed
method consists of two channels, i.e., the spatial channel and spectral channel. Both channels extract
representative features from the corresponding contexts. The features from these two channels are
then combined to obtain the final predicted pixel values.

Spatial weight adaptation
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Spectral weight adaptation

Figure 2. Framework of the proposed method.

The spatial contexts and spectral contexts tend to correlate with the current sample pixel to be
predicted in a very different way. Conventional prediction methods either directly combine these two
types of contexts, or use the spectral contexts only. In this work, we introduce two parallel shallow
neural networks to learn the spatial and spectral correlations separately, in light of the good ability of
neural networks for many ill-posed tasks.

Figure 3 shows the structure of the concatenated shallow neural network for pixel prediction.
To extract spatial correlations, the hidden neurons connected with spatial context converts the input
into a series of feature maps via a non-linear process,

F; = ReLU (w; - Ct + by), )

where F; is the extracted spatial features, and w; and b; denote the corresponding weight and bias.
A Rectified Linear Unit, ReLU = max (0, x), is used as the activation function for spatial channel.
In this work, a 3 x 4 spatial context matrix is converted to a 1 x 5 feature vector by means of five
connected neurons.
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Figure 3. Structure of the concatenated shallow neural network.

For the spectral channel, exactly the same number of hidden neurons are used for extracting the
spectral feature, however, the ReLU activation function is not used here to obtain the spectral feature
F, below, based on our observation in extensive empirical study that the spectral contexts tend to be
correlated in a less non-linear fashion than the spatial contexts.

F=w;-C/+b. (10)

Similarly, w; and b; in the equation above denote the corresponding weights and biases.

Note that the neural networks are employed for both channels as opposed to deep neural networks.
Although deep networks are capable of capturing high dimensional features, they might suffer from
the overfitting problem. To predict a spectral band whose context changes rapidly, optimization of
the deep network might be trapped by local optima and thus fail to react promptly. Besides, since a
large number of the weights and biases need be adjusted by prediction errors using back propagation,
training of deep network may be time consuming.

The extracted features from two channels are concatenated together denote as F = [F;, F].
The combined features jointly decide the final predicted pixel value with a linear output layer,

§=ws F+by (11)

where w; and by are the weights and biases for the final layer. Thus, the CSNN model contains
two hidden layers: the first hidden layer extracts spatial and spectral features, and the second
concatenated hidden layer for final pixel value prediction. Figure 4 shows the first-order entropies
of the prediction residuals for a segment of the IP dataset, with the joint spatial /spectral contexts
and spectral contexts only, respectively. We can see that combined contexts allow for more accurate
prediction (i.e., low entropy values). The improvement in prediction is especially pronounced for band
images with large pixel-intensity variations, for example, entropy reduction by 0.6 bit for band 148
and 0.9 bit for band 154.

The CSNN is a typical end-to-end fully connected neural network, with the weights and biases
being updated by the Adadelta optimizer [31] with the L; loss function:

1

N
Lr = N n;l ‘Sx,y,z - é\x,y,z’ . (12)
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Note that the L; loss function was adopted since our study found that it can lead to lower residual
entropies than the L, loss function, which favors quality assessment based on the mean square errors.
If we set g = OLe(t)

Jw t

to be the gradient of the parameters at {-th input data, the update Aw; can be
calculated as follows:

Ay —  RMS[Bw, ]

W - 8t (13)

where RMS is the root mean square, which is defined as RMS[g;]

= /E[g?] +e. E[g?] is an
exponentially decaying average of the squared gradients:

Elgf] = pE[gi 1] + (1 —p)gt, (14)
where p is a decay constant and € is added to the numerator of RMS to ensure progress continues to

be made even if the previous updates become small. We set p = 0.95 and € = e~ in the simulations.
The code of CSNN model can be found at [32].

E ----- Concatenated context _é‘
6 e .3', ---------- Spectral contextonly | i
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=
a54r
ol
< 5
ws2r £:
14
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51
481
46
4.4 . L L L
100 110 120 130 140

Spectral Bands

Figure 4. Entropy of the prediction errors across spectral bands 100 to 160 of the IP dataset, using the
proposed concatenated contexts (in red) and the spectral contexts only (in blue) for prediction.

3.2. Entropy Coding

After prediction, all the residuals are mapped to non-negative values [33] and then coded into
bitstream losslessly using a Golomb Rice Codec (GRC) [34]:

2n, n>0
f(n):{—Zn—l, n<0 (15

where 1 refers to the value of the prediction residual. Note GRC is selected as the entropy coder due to
its computational efficiency. We observed that arithmetic coding [35] can offer slightly lower bitrates,
albeit at a much higher computational cost.

Besides the GR codewords, there is other side information that needs to be transferred to the
decoder in order to recover the original data losslessly. For example, the weights and biases that
initialize the neural networks need to be encoded too. Since the CSNN model has less than 20 neurons,
such side information becomes negligible and thus it is not included in the total bit rates reported in
the following.
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4. Simulations Results

We tested the proposed method on five public hyperspectral datasets [36] and the standard
CCSDS test datasets. We selected 20 datasets from the CCSDS test sets with different collecting
instruments: Atmospheric Infrared Sounder (AIRS), Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), SWIR Full Spectrum Imager (SFSI), and Compact Airborne Spectrographic Imager (CASI).
The test results are compared with the state-of-the-art CCSDS-123 method. Before presenting the
results, we first provide a convergence analysis on the proposed model, and discuss the sensitivity of
parameter initialization on the compression result.

4.1. Convergence Analysis and Parameter Sensitivity

Deep neural network is the mainstream technique for many machine learning tasks. Despite its
success, theoretically explaining why deep neural networks can be efficiently trained in practice using
simple gradient-based methods is still an open problem. Filtering the input data by the CSNN model
is similar to the training process, which requires optimizing a complex non-convex problem. Over the
past few years, much research has been devoted to this problem [37-41]. Based on these existing work,
we found that the convergence of the neural network is closely related to the choice of hyperparameters
such as the number of hidden layers, the number of hidden units and the learning rate. Although training
a network seems intractable, [37] provides some tricks to determine the hyper-parameters in the model.

The convergence of neural networks is studied in [39,40]. An early convergence of filtering-based
network can provide much smaller prediction loss, and lower compression bitrates as a return.
To demonstrate the convergence of filtering-based CSNN model, we perform the filtering-based CSNN
on four public hyperspectral datasets: Indian Pines (IP), Pavia University (PU), Salinas (SAL), and Botswana
(BOT). Figure 5 shows the prediction loss in Mean Square Error (MSE) across all the spectral bands.

400 Prediction Loss Across All The Bands. 200 Prediction Loss Across All The Bands.
350
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300
5 5 200
is 250 .
2 o
] g
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] 7]
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50 Prediction Loss Across All The Bands. 200 Prediction Loss Across All The Bands.
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Figure 5. Variation of mean square errors across all the spectral bands on four hyperspectral datasets
using filtering-based CSNN.
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Clearly, the prediction loss curves of four datasets show convergence to relatively small error
values. For example, the losses of the PU dataset decrease to a very low level after filtering the first
20 bands. For other datasets, even if the losses fluctuate intensely at the beginning like IP dataset,
the losses converged to small values after half of the data have been filtered. This demonstrates the
ability of the proposed CSNN model to find a fairly good solution with only a single iteration on the
data. We believe that the similarity (correlation) of data samples among different spectral bands helps
accelerate the convergence of the model.
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Figure 6. Variations of the mean square errors (left side) and compressed bitrate (right side) with

different weight initialization values on the four datasets using filtering-based CSNN. Two figures in

the first row is the variation of IP dataset, the remaining rows are PU, SAL and BOT, respectively.
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Another factor that can influence the convergence is the initialization of parameters in the network.
In our simulations, we select Xavier initialization [42], which is one of the most commonly used
initialization methods for the neural network. In Xavier, all the weights initialize independently from
a zero-mean, unit variance distribution. It is interesting to see how different weight initialization
methods would affect prediction loss and entropy. Thus, we conduct several experiments by assigning
network with weight values ranging from 0.1 to 0.9. Figure 6 shows the variations of MSE values and
compression bitrates on four different datasets using proposed method. Note the weight parameters
include the weights and biases in each layer.

We can see that the MSE values and compressed bitrates do not appear to be very sensitive to
change of weight parameters. For example, the MSE values of IP dataset range from 89 to 90 with
different initialized weight values. For other datasets, the value of MSE and bitrate all fluctuated within
a small range. The testing results are consistent with the conclusion in [40], where the gradient-based
linear neural network has a strong convergence ability. It also indicates the filtering-based CSNN is
robust to the initial condition.

4.2. Simulations on Five Public Hyperspectral Datasets

The five hyperspectral image datasets include IP, PU, SAL, BOT and Kennedy Space Center (KSC).
All these datasets contain 12-bits non-calibrated raw images. More detailed information of these data
sets are given in Table 1.

Table 1. Detailed information of public hyperspectral image data sets.

Dataset Size Bit-per-Pixel Sensor
P 145 x 145 x 200 16 AVIRIS
PU 610 x 340 x 103 16 ROSIS

SAL 512 x 217 x 204 16 AVIRIS
KSsC 512 x 614 x 176 16 AVIRIS
BOT 1476 x 256 x 145 16 AVIRIS

We select three representative adaptive filtering methods to benchmark the proposed method:

o The conventional Least Mean Square (LMS) filter, widely used for lossless compression of
hyperspectral data due to its simplicity.
o  The MCC-LMS filter proposed in [15], which replaces the LMS cost function with the correntropy

function, and achieves significant compression on regions of interest in hyperspectral images.
e  The state-of-the-art Fast Lossless (FL) method, firstly proposed in [10], and then adopted by the

new CCSDS standard for lossless hyerpsectral data compression.

As we can see in Table 2, the proposed CSNN method achieves the lowest bitrates on all five
hyperspectral image datasets, where the LMS method has the highest bitrates. Specifically, the CSNN
method improves by nearly 0.2 bit/pixel and 0.25 bit/pixel on average on the FL. and MCC-LMS
methods, respectively, with a more significant reduction of 0.58 bit/pixel over the LMS method.
The CSNN seems to provide more efficient compression by exploiting jointly the spatial and spectral
correlations from the contexts.

Table 2. Lossless compression bitrates (in bits/pixel) on five hyperpsectral data sets.

Dataset LMS MCC-LMS FL CSNN

1P 6.69 6.64 6.58 6.38
PU 6.66 6.58 6.55 6.40
SAL 4.94 492 4.87 4.73
KSC 6.31 4.82 4.74 4.36
BOT 6.58 6.54 6.50 6.38

Average 6.23 5.90 5.85 5.65
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In terms of the prediction residuals, Figure 7 shows that the CSNN method consistently achieves
the lowest entropies on the most of bands of IP, PU, SAL and BOT datasets, with more obvious
improvement for the last 50 bands. For example, in Figure 7b, the curves of the last 50 bands of
MCC-LMS and FL methods almost overlap, while the CSNN curve goes much lower. The curves
for the KSC dataset in Figure 7d exhibit significant fluctuations for all three methods. This data set
contains a substantial amount of impulse noise, which might cause many sudden changes of the
contexts. For example, the residual entropy fluctuates rapidly after band 100. But still, the proposed
method seems to be the most stable one among the four methods. By considering also the compression
bitrates of the KSC dataset in Table 2, we can see that the adaptive filtering methods (including the
proposed method) are not robust enough to data with noise.

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120
Spectral Bands Spectral Bands

(a) IP (b) PU

Entropy

0 50 100 150 200 250 0 20 4 6 8 10 120 140 160 180 0 50 100 150
Spectral Bands Spectral Bands Spectral Bands

(c) SAL (d) KsC (e) BOT
Figure 7. Entropy of the prediction residuals across all the spectral bands of five hyperspectral datasets.

4.3. Simulations on CCSDS Test Datasets

The CCSDS hyperspectral and multispectral test corpus [43] has been publicly available for
hyperspectral images compression testing and evaluation. The corpus includes images from many
different instruments. To diversify the testing datasets, we selected 20 hyperspectral datasets from
instruments AVIRIS, AIRS, SFSI and CASI for further evaluation of the algorithms. Seven hyperspectral
images are from AVIRIS instrument, which includes five 16-bit non-calibrated Yellowstone scenes and
two 12-bit scenes. The AIRS instrument has ten scenes, each scene has 1501 spectral bands and 90 lines
with a width of 153 pixels. The remaining three images are from instruments SFSI and CASI. Table 3
provides detailed information about the selected datasets. As an example, The grayscale versions of
the five AVIRIS Yellowstone scenes are shown in Figure 8.

Lossless hyperspectral image compression techniques can be separated into two main categories:
transform-based compression and prediction-based compression. Transform-based techniques achieve
compression by taking advantage of frequency domain representation of images (e.g., based on wavelet
transforms). On the other hand, predictive compression performs directly on pixel domain, followed by
entropy coding on the prediction residuals (e.g., by using the Golomb-Rice codes). We selected
a total of seven lossless compressors from both categories: JPEG2000 [3], JPEG-LS [2], LUT [6],
European Space Agency (ESA) [44], CCSDS-122 [45], MCC-LMS [15], CCSDS-123 [12]. Note the
state-of-the-art predictive compressor CCSDS-123 is also provided for comparison.
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(a) Scene 0 (b) Scene 3 (c) Scene 10 (d) Scene 11 (e) Scene 18

Figure 8. Some scenes in the 16-bit uncalibrated “Yellow Stone” hyperspectral images of the AVIRIS
2006 dataset.

Table 3. Dataset information for AVIRIS, AIRS, SFSI and CASI sensors. z is the number of spectral
bands, y is the height, x is the Width. bpppc is bits per pixel per component, and “raw” is image type.

Instrument Images
AVIRIS (16 bpppc, raw) Yellowstone Scene: 0, 3, 10, 11,18
z =224,y =512 Hawaii (x = 614, 12bpppc)
x = 680 Maine (12 bpppc)
AIRS-gran9

AIRS-granl6
AIRS-gran60

AIRS (12-14 bpppc, raw) AIRS-gran82
z = 1501 AIRS-gran120

y =90 AIRS-gran126

x =153 AIRS-gran129

AIRS-gran151
AIRS-gran182
AIRS-gran193

SFSI (12 bpppc, raw)
z =240,y = 496, x = 140

CASI (12 bpppc, raw)  CASI-t0477£06 (yy = 406, x = 1225)
z2="72 CASI-t018007 (y = 405, x = 2852)

Mantar scene

Table 4 provides the lossless coding results for all the images in terms of the bit rate (in bpppc).
The compression efficiency of each algorithm can be appreciated by observing the degree to which
its resulting bit rate falls below the bit depth of the original images. We can see that the overall
performance of the proposed filtering-based CSNN method exceeds other state-of-the-art methods
included in the comparison.

For 16 bpppc non-calibrated AVIRIS Yellowstone scenes, the filtering-based CSNN model
outperforms CCSDS-123 and MCC-LMS by 0.12 bpppc and 0.17 bpppc on average, respectively.
When compared with the transform-based compression, the coding gain of CSNN is larger than
JPEG2000 and CCSDS-122 by 0.52 bpppc and 0.60 bpppc, respectively.

For 12 bpppc non-calibrated AVIRIS scene (Hawaii and Maine), the coding performance of
proposed model is comparable with CCSDS-123. Specifically, the compressed bitrate of CSNN is
0.03 bpppc higher than CCSDS-123, but much lower than other methods. Compared with other
12 bpppc images with different instruments, the Hawaii and Maine scenes have relatively smaller
pixel values. For example, the average pixel value of Hawaii and Maine scene is 267.10 and 328.75,
respectively. But for AIRS-gran9 image, the average pixel value is 2091. This indicates that the
filtering-based CSNN would obtain more compression gain for images with higher pixel values.
These results are also consistent with the property of the gradient-based network, where the neural
network can make a quick response for large variations in the data. However, linear predictors, such as
CCSDS-123, might be more suitable for slowly changing data with small values.

For other images from AIRS, SFSI and CASI instruments, the filtering-based CSNN model
also provides superior performance compared to other prominent predictive coding techniques.
To summarize, the results show that the proposed filtering-based CSNN yields the best overall
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achievement as compared to other predictive-based compressors. It offers additional desirable features
such as no pre-training involved in compression procedure, thereby making it an appealing approach

for lossless hyperspectral image compression.

Table 4. Lossless compression bitrates (in bits/pixel) for JPEG2000, JPEG-LS, LUT, ESA, CCSDS-122,
MCC-LMS, CCSDS-123 and filtering-based CSNN on CCSDS test datasets.

Data Set JPEG2000 JPEG-LS LUT ESA CCSDS-122 MCC-LMS CCSDS-123 CSNN
AVIRIS 16 bpppc
AVIRIS-YS 0 6.65 6.95 715 645 6.70 6.25 6.19 6.05
AVIRIS-YS 3 6.47 6.83 693 6.30 6.54 6.11 6.06 5.92
AVIRIS-YS 10 5.80 6.16 623  5.62 593 5.62 5.58 5.58
AVIRIS-YS 11 6.27 6.48 6.80 6.03 6.36 5.88 5.83 5.75
AVIRIS-YS 18 6.71 6.94 722 639 6.76 6.31 6.21 6.01
Average 6.38 6.67 6.87 6.16 6.46 6.03 5.98 5.86
AVIRIS 12 bpppc
Hawaii 2.99 3.27 338 294 3.29 3.15 2.62 2.67
Maine 3.09 3.36 351 3.07 3.36 3.16 2.73 2.75
Average 3.04 3.32 344 301 3.33 3.15 2.68 2.71
AIRS
AIRS-gran9 4.58 447 553 459 494 4.67 422 4.09
AIRS-granl6 452 4.68 541 453 4.90 4.63 420 4.04
AIRS-gran60 4.80 4.98 585 4.81 5.16 4.80 4.38 4.27
AIRS-gran82 4.40 4.56 521 4.38 4.79 472 413 3.97
AIRS-gran120 4.65 4.80 549 4.66 5.01 4.64 4.29 417
AIRS-gran126 481 4.99 582 4.79 5.16 4.82 440 4.28
AIRS-gran129 443 4.53 532 445 4.80 4.53 414 3.96
AIRS-gran151 4.80 495 590 4.81 5.14 4.80 441 4.32
AIRS-gran182 4.85 4.96 6.26  4.90 5.21 4.83 4.43 4.29
AIRS-gran193 4.83 4.99 575 4.84 517 472 442 4.29
Average 4.67 4.82 566 4.68 5.03 471 4.30 417
CASI
casi-t018007 5.16 5.23 549 496 5.30 4.84 4.86 4.68
casi-t047706 5.57 5.44 582 5.23 5.61 5.08 5.18 4.90
Average 5.37 5.33 565 5.10 5.46 4.96 5.02 4.79
SFSI
Mantar 4.56 5.02 543 491 490 481 4.67 4.54

Figure 9 shows the residual entropy variations of the “Yellow Stone” scenes. It is interesting to
observe that five distinct scenes seem to follow a similar trend spectral band around 160 are almost the
same. This indicates the robust prediction performance that can be achieved by jointly considering
both the spatial and spectral contexts using the proposed method. There is the potential to use transfer
learning to exploit such a similarity to further improve the compression performance.
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Entropy

0 50 100 150 200 250
Spectral Bands
Figure 9. Entropies of prediction residuals of the proposed method on 16-bit uncalibrated “Yellow
Stone” hyperspectral datasets.

4.4. Computational Complexity

The computation of the proposed CSNN method includes feed-forward propagation and back
propagation. Note the filtering of CSNN model is mainly implemented with multiplication of matrices.
Assume there are i nodes in the input layer, corresponding to i context pixels being fed to the network,
and j and k denotes the number of nodes in the two hidden layers, and I denotes the number of nodes
in the output layer. In a four-layer neural network, there are three weight matrices to represent weights
between these layers. For example, Wj; is a weight matrix with j rows and i columns, which contains
the weights going from layer i to layer j. In a feed forward pass, propagating a sample from layer
i to layer j takes O(j - i) time complexity, thus the overall time complexity from the input layer to
the output layer becomes O(j - i + k- j + 1 - k). The back propagation starts from the last layer of the
model. Similar to the feed forward pass, the time complexity of the back propagation is given by
O(l-k+k-j+j-i). We can see that the computational complexity of the neural network largely
depends on the number of hidden layers and the number of nodes in each layer. Also, as shown
in Equations (9) and (10), activation function is only needed for the spatial channel, with very light
computation required for the ReLU function. The computation time for compressing the IP dataset
takes 0.8 seconds/band, the experiments were carried out on a Thinkpad laptop with Intel Core i5
CPU and 8GB installed memory, running Windows 7 Professional (64-bit operating system). Note the
matrix operations can be greatly parallelized by GPUs to further reduce the computation time.

5. Conclusions

Hyperspectral imaging has found increasingly widespread applications in a growing number of
fields. Data compression especially the lossless compression plays a key role in efficiently transmitting
and storing the hyperspectral data.

In this paper, we design a shallow neural network to extract and combine spatial and spectral
contexts to improve predictive coding. The filtering-based neural network requires no training and
has low computational complexity. Extensive simulation results on public hyperspectral images and
the standard CCSDS calibrated and uncalibrated test datasets demonstrate that the proposed method
provides higher compression than several other state-of-the-art methods.

The proposed method provides a tradeoff between computational complexity and coding
performance that makes it an appealing approach for hyperspectral lossless data compression.
Further research will study how to take advantage of the similarity between different scenes to
further improve the compression efficiency.
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