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Abstract: Historical document analysis systems gain importance with the increasing efforts in the
digitalization of archives. Page segmentation and layout analysis are crucial steps for such systems.
Errors in these steps will affect the outcome of handwritten text recognition and Optical Character
Recognition (OCR) methods, which increase the importance of the page segmentation and layout
analysis. Degradation of documents, digitization errors, and varying layout styles are the issues
that complicate the segmentation of historical documents. The properties of Arabic scripts such as
connected letters, ligatures, diacritics, and different writing styles make it even more challenging
to process Arabic script historical documents. In this study, we developed an automatic system
for counting registered individuals and assigning them to populated places by using a CNN-based
architecture. To evaluate the performance of our system, we created a labeled dataset of registers
obtained from the first wave of population registers of the Ottoman Empire held between the 1840s
and 1860s. We achieved promising results for classifying different types of objects and counting the
individuals and assigning them to populated places.

Keywords: page segmentation; historical document analysis; convolutional neural networks;
Arabic script layout analysis

1. Introduction

Historical documents are valuable cultural resources that provide the examination of the historical,
social, and economic aspects of the past. Their digitization also provides immediate access for
researchers and the public to these archives. However, for maintenance reasons, access to them
might not be possible or could be limited. Furthermore, we can analyze and infer new information
from these documents after the digitalization processes. For digitalizing the historical documents,
page segmentation of different areas is a critical process for further document analysis [1]. Example
applications of historical document processing could be historical weather analysis [2], personnel
record analysis [3], and digitization of music score images (OMR) [4]. Page segmentation techniques
analyze the document by dividing the image into different regions such as backgrounds, texts, graphics,
and decorations [5]. Historical document segmentation is more challenging because of the degradation
of document images, digitization errors, and variable layout types. Therefore, it is difficult to segment
them by applying projection-based or rule-based methods [5].

Page segmentation errors have a direct impact on the output of the Optical Character
Recognition (OCR), which converts handwritten or printed text into digitized characters. Therefore,
page segmentation techniques for historical documents become important for the correct digitization.
We can examine the literature on page segmentation under three subcategories [5]. The first category
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is the granular-based techniques, which combine the pixels and fundamental elements into large
components [6–8]. The second category is the block-based techniques that divide the pages into
small regions and then combine them into large homogenous areas [9,10]. The last one is the
texture-based methods, which extract textual features classifying objects with different labels [11–13].
Except for the block-based techniques, these methods work in a bottom-up manner. The bottom-up
mechanisms have better performance with documents in variable layout formats [14]. However,
they are expensive in terms of computational power because there are plenty of pixels or small
elements to classify and connect. Still, the advancement of the technology of CPUs and GPUs alleviates
this burden. Feature extraction and classifier algorithm design are very crucial for the performance
of page segmentation methods. Although document image analysis started with more traditional
machine learning classifiers, with the emergence of Convolutional Neural Networks (CNNs), they are
commonly used in the literature [4,5,15,16]. Convolutional neural networks can successfully capture
the spatial relations in an image by applying relevant filters, which makes their performance better
when compared to the traditional classifiers [17].

Arabic script is used in writing different languages, e.g., Ottoman, Arabic, Urdu, Kurdish, Persian.
It could be written in different manners, which complicate the page segmentation procedure. It is a
cursive script in which connected letters create ligatures [18]. Arabic words could further include dots
and diacritics, which causes even more difficulties in the page segmentation.

In this study, we developed a software that automatically segments pages and recognizes objects
for counting the population registered in Ottoman populated places. Our data came from the first
population registers of the Ottoman Empire that were conducted in the 1840s. These registers were the
result of an unprecedented administrative operation, which aimed to register each and every male
subject of the empire, irrespective of age, ethnic or religious affiliation, or military or financial status.
Therefore, they aimed to have universal coverage for the male populace, and thus, these registers can
be called (proto-)censuses. The Ottoman state had registered selected segments of her population
for tax and/or conscription purposes for centuries. The first universal population census covering
the entire male and female population of the Ottoman Empire was conducted in the 1880s. Starting
from the 1840s and for the very first time, all males irrespective of age, ethnicity, religion, or economic
status were registered mainly for demographic reasons. This is the reason we call these registers
proto-censuses. The geographical coverage of these registers is the entire Ottoman Empire in the
mid-nineteenth Century, which encompassed the territories of around two dozen successor states
of today in Southeast Europe and the Middle East. For this study, we are focusing on two locations:
Nicaea in western Anatolia in Turkey and Svishtov, a Danubian town in Bulgaria.

In these censuses, officers prepared manuscripts without using hand-drawn or printed tables.
Furthermore, there was not any pre-determined page structure. Page layouts could differ in different
districts. There were also structural variations depending on the clerk. We created a labeled dataset to
give as an input to the supervised learning algorithms. In this dataset, different regions and objects
were marked with different colors. We then classified all pixels and connected the regions comprised
of the same type of pixels. We recognized the populated place starting points and person objects on
these unstructured handwritten pages and counted the number of people in all populated places and
pages. Our system successfully counted the population in different populated places.

The structure of the remaining parts of the paper is as follows. In Section 2, the related work
in historical document analysis will be reviewed. We describe the structure of the created database
in Section 3. Our method for page segmentation and object recognition is described in Section 4.
Experimental results and a discussion are presented in Section 5. We present the conclusion and future
works of the study in Section 6.

2. Related Works

Document image analysis studies started in the early 1980s [19]. Laven et al. [20] developed a
statistical learning-based page segmentation system. They created a dataset that included 932 page
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images of academic journals and labeled physical layout information manually. By using a logistic
regression classifier, they achieved approximately 99% accuracy with 25 labels. The algorithm for
segmentation was a variation of the XY-cut algorithm [21]. Arabic document layout analysis has
also been studied with traditional algorithms in the literature. Hesham et al. [18] developed an
automatic layout detection system for Arabic documents. They also added line segmentation support.
After applying Sauvola binarization [22], noise filtering (Gaussian noise filter), and skewness correction
algorithms (by using the Radon transform [23]), they classified text and non-text regions with the
Support Vector Machine (SVM) algorithm. They further segmented lines and words.

In some cases, the historical documents might have a tabular structure, which makes it easier to
analyze the layout. Zhang et al. [3] developed a system for analyzing Japanese Personnel Record 1956
(PR1956) documents, which included company information in a tabular structure. They segmented
the document by using the text region with a complex tabular structure and applied Japanese OCR
techniques to segmented images. Each document had five columns, and each column had a number of
rows. Richarz et al. [2] also implemented a semi-supervised OCR system on historical weather reports
with printed tables. They scanned 58 pages and applied segmentation by using the printed tables.
Afterward, they recognized digits and seven letters in the document.

After the emergence of Neural Networks (NNs), NNs were also tested on Arabic document
analysis systems. Bukhari et al. [8] developed an automatic layout detection system. The authors
classified the main body and the side text by using the MultiLayer Perceptron (MLP) algorithm.
They created a dataset consisting of 38 historical document images from a private library in the old
city of Jerusalem. They achieved 95% classification accuracy. The convolutional neural network is also
a type of deep neural network that can be used for most of the image processing applications [24].
CNN and Long Short-Term Memory (LSTM) were used for document layout analysis of scientific
journal papers written in English in [25,26]. Amer et al. proposed a CNN-based document layout
analysis system for Arabic newspapers and Arabic printed texts. They achieved approximately 90%
accuracy in finding text and non-text regions.

CNNs are also used for segmenting historical documents. As mentioned previously, historical
document analysis has challenges such as low image quality, degraded images, variable layouts,
and digitization errors. The Arabic language also creates difficulties for document segmentation due
to its cursive nature where letters are connected by forming ligatures. Words may also contain dots
and diacritics, which could be problematic for segmentation algorithms. Although there are studies
applying CNNs to historical documents [1,5,15], to the best of our knowledge, this study is the first
to apply CNN-based segmentation and object recognition in historical handwritten Arabic script
document analysis in the literature.

3. Structure of the Registers

Our case study focused on the registers of Nicaea and Svishtov district registers, with code
names NFS.d. 1411, 1452, and NFS.d. 6314, respectively, available at the Turkish Presidency State
Archives of the Republic of Turkey, Department of Ottoman Archives, in jpeg format, upon request.
We aimed to develop a methodology to be implemented for an efficient distant reading of similar
registers from various regions of the Empire prepared between the 1840s and the 1860s. As mentioned
above, these registers provided detailed demographic information on male members of the households,
i.e., names, family relations, ages, and occupations. Females in the households were not registered.
The registers became available for research at the Ottoman State Archives in Turkey, as recently as
2011. Their total number is around 11,000. Until now, they have not been subject to any systematic
study. Only individual registers were transliterated in a piecemeal manner. The digital images of the
recordings were 2210 × 3000 pixels in size.

As mentioned previously, the layout of these registers could change from district to district
(see Figure 1), which made our task more complicated. In some registers, there were lines between
households; some districts used color in numerals and row and column numbers; and shapes could
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vary from district to district. For example in some registers, households were separated with lines.
In another format, households were the same as individual objects with only one difference: in the
first line, “household” was written in Arabic. Furthermore, there was no standard in coloring and the
number of people per page. When the people density in a page was too high, objects were intertwined
and hard to separate. Such differences made it difficult to develop one strategy that would work for
information retrieval from all documents.

Figure 1. Three sample pages of the registers belonging to three different districts. The layout of pages
can change between districts.

In this study, we worked with the generic properties of these documents. The first property
was the populated place start symbol. This symbol was used in most of the districts and marked
the start of the new populated place (see Figure 2). It included the name of the populated place
(village or neighborhood). After this symbol, all men and their information were written one by one.
They included demographic information (name, appearance, job, age, family relations) about the
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male citizens. There were also updates in these registers that marked the individuals when they went
into the military service or died. The officers generally drew a line on the individual and sometimes
mistakenly connected the individual with an adjacent one, which could cause some errors in the
segmentation algorithm (see Figure 3).

Figure 2. Start of the populated place (village or neighborhood) symbol and individual objects are
demonstrated. When a new populated place is registered, its name is written at the top of a new page
(populated place start symbol). Then, all men in this place are written one by one (individual objects).
These objects include the name, age, appearance, and job of the individuals.

INDIVIDUAL OBJECTS

POPULATED PLACE START SYMBOL

UPDATES
Figure 3. Example updates of registers are shown. Some of them can connect two individuals and can
cause clustering errors. Green enclosed objects are individuals; red ones are populated place symbols;
and blue ones are the updates connecting two other object types.

4. Automatic Page Segmentation and Object Recognition System for Counting the
Ottoman Population

4.1. Creating a Dataset

To be able to use the dhSegment toolbox [15], we created a dataset with labels that belonged to
three different classes. The first one was the background, which was the region between the objects
and document borders. We marked this region as blue. The second one was the start of a populated
place object, and we colored it with red. The last one was the individual registers, and we marked
them with green. We marked 173 pages with the described labels. Fifty-one of them belonged to the
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Svishtov district, and one-hundred twenty-two of them belonged to the Nicaea district. An example of
an original image and of labeled version are shown in Figure 4.

Figure 4. A sample register page and its labeled version are demonstrated. Different colors represent
different object types. The background, which is the region between the objects and document borders,
is marked with blue. The start of a populated place object is colored with red. The individual objects
are marked with green.

4.2. Training the CNN Architecture

In order to train a CNN for our system, we used the dhSegment toolbox [15]. This toolbox
trains a system using the deep residual pretrained ResNet-50 architecture [27]. The toolbox has both
a contracting path (follows the deep residual network in ResNet-50 [27]) and an expanding path,
which maps low-resolution features to the original high-resolution features (see the terminology for
expanding and contracting paths in [28]) [15]. The expanding path consisted of five blocks and a
convolutional layer for pixel classification, and each deconvolution step consisted of upscaling of an
image, concatenation of a feature map to a contracting one, 3 × 3 convolutional, and one ReLU layer.

In order to train the model, the toolbox used L2 regularization with 10−6 weight decay [15].
Xavier initialization [29] and the Adam optimizer [30] were applied. Batch renormalization [31]
was employed to avoid a lack of diversity problem. The toolbox further downsized pictures and
divided them into 300 to 300 patches for better fitting into the memory and providing support for
training with batches. With the addition of margins, border effects were prevented. Because of the
usage of pre-measured weights in the network, the training time was decreased substantially [15].
The training process exploited a variety of on-the-fly data augmentation techniques like rotation
(from −0.2 to 0.2 rad), scaling (coefficient from 0.8 to 1.2), and mirroring. The system output the
probabilities of each pixel belonging to one of the trained object types. Detailed metrics of one of the
trained models by the integration of Tensorboard are shown in Figure 5.

We used a CPU for training a model. Training a model with 100 images took approximately 7 h.
Testing an image lasted for 8.35 s on average.
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Figure 5. Training metrics are demonstrated. In the top left, the learning rate, in the top right,
the loss function, in the bottom left, regularized loss, and in the bottom right, global steps per second
metrics are demonstrated. The subfigures are created with Tensorboard. The horizontal axis is the
increasing iterations.

4.3. Preparing the Dataset for Evaluation

We trained five different models for evaluating the performance of our system. Two models
were trained with a register of one district and tested with a completely different district’s register.
The other two models were trained and tested with the registers from the same district. For the last
model, we further combined our two registers and trained a combined model. The last three models
were tested with 10-fold cross-validation.

4.4. Post-Processing

In our problem, we had three different classes: background, individual registers, and separations
between regions. Therefore, we evaluated the probabilities of pixels that belonged to one of the classes.
For each class, there was a binarized matrix showing the probabilities that a pixel belonged to them.
By using these matrices, pixels should be connected, and components should be created. The connected
component analysis tool [15] was used for creating objects. After the objects were constructed for all
classes, the performance of our system could be measured.

4.5. Assigning Individuals to the Populated Places

This toolbox [15] found the objects in all pages by supporting batch processing. However, for our
purposes, we needed the number of people in any populated place. To this end, we designed an
algorithm for counting people and assigning them to the populated places.

Firstly, we recorded the x and y coordinates of the rectangles of the found objects. The object
could be of a populated place start or individual type. Furthermore, clerks divided each page into two
blocks, and we had to consider this structure also. We defined a center of gravity for each object. It was
computed by averaging all four coordinates of the rectangle surrounding the object. We used it for
comparing the positions of individual objects and populated place start symbols for assigning people
(see Algorithm 1 and Figure 6). Due to the structure of the Arabic language, if an object is closer to the
top of the page and right of the page compared to any other object, it comes before. However, if the
object is in the left block of a page, without looking at the distance from the top, it comes after any
object in the right block of the page. We first sorted populated place start objects. For all individual
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objects, we compared their position on the page and the page number with all populated place start
objects. If the individual object was after a populated place start object N and a before populated place
start object N + 1, we assigned the individual to populated place N.

Algorithm 1 The algorithm for assigning individuals into the populated places. Obj. stands for objects,
which could be an individual object or a populated place start object. CoG stands for the Center of
Gravity of the object.

1: procedure COMPARE_OBJECTS(Obj1, Obj2)

2: if Obj1.page < Obj2.page then

3: return Obj1, Obj2

4: else if Obj1.page > Obj2.page then

5: return Obj2, Obj1

6: else if Obj1.page = Obj2.page then

7: return COMPARE_OBJECT_POSITION (Obj1.position, Obj2.position)

8: end if

9: end procedure

10: procedure COMPARE_OBJECT_POSITION(Obj1, Obj2)

11: if Obj1_CoG.width > Obj2_CoG.width AND Obj1_CoG.height < Obj2_CoG.height then

12: return Obj1, Obj2

13: else

14: return Obj2, Obj1

15: end if

16: end procedure

17: procedure FIND_POPULATED_PLACE

18: SORT_POPULATED_PLACE_LIST()

19: for individual_Objectk ∈ {1, ..., K} do

20: for pop_place_start_Objectx ∈ {1, ..., X} do

21: COMPARE_OBJECTS (individual_Objectk, pop_place_start_Objectx )

22: COMPARE_OBJECTS (individual_Objectk, pop_place_start_Objectx+1 )

23: if pop_place_start_Objectx < individual_Objectk < pop_place_start_Objectx+1 then

24: individual_Objectk BELONG_TO pop_place_start_Objectx

25: end if

26: end for

27: end for

28: end procedure
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Figure 6. Flowchart of our populated place assigning algorithm.

4.6. Baseline Heuristic Projection Profile Algorithm for Object Detection

We further implemented the heuristic projection profile algorithm for object detection since the
registers had tabular-like layouts. We used the results of this simple algorithm as a baseline and
compared it with the CNN-based approach. The heuristic projection profile object detection system
is shown in Algorithm 2. As shown in Figure 1, each page had left and right parts, which could
have different rows and columns. Therefore, we examined them separately. For each part, horizontal
profiles were applied. If there was a minimum of 50 consecutive black pixels between white pixels,
a new row was added. The coordinate of rows were recorded with this method. After that, for each
row, a vertical profile was applied. Since the objects in a row were closer vertically, we decreased the
consecutive black pixel threshold to 20 pixels. The detected object coordinates were recorded. We also
needed to distinguish the object types. We classified them by using the area of the object. The area
of population start objects was greater than individual count objects. We determined a threshold of
100,000 pixel squares and classified the object as a population start if it had an area greater than the
threshold. Otherwise, it was labeled as an individual count object.
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Algorithm 2 Detecting and counting objects belonging to different classes with the heuristic vertical
and horizontal projection profiles.

1: procedure HORIZONTAL_PROFILE(page_image)

2: if 50 Pixels-Long Zero-Pixel Areas FOUND then

3: ADD ROW

4: end if

5: return ROWS

6: end procedure

7: procedure VERTICAL_PROFILE(row)

8: if 20 Pixels-Long Zero-Pixel Areas FOUND then

9: ADD OBJECT

10: ObjectCount = 20PixelAreaCount +1

11: end if

12: return ObjectCount, OBJECTS

13: end procedure

14: procedure CALCULATE_AREA(object) return AREA

15: end procedure

16: procedure DETECT_COUNT_OBJECT_TYPE(object)

17: AREA = CalculateArea (object)

18: if AREA > 100.000 PixelSquares then

19: ObjectType = PopulatedPlaceStart

20: PopPlaceStartCount ++

21: else

22: ObjectType = Individual

23: IndividualCount ++

24: end if

25: return IndividualCount, PopPlaceStartCount

26: end procedure

27: for page_imagek ∈ {1, ..., K} do

28: ROWS = HORIZONTAL_PROFILE(page_imagek)

29: for rowj ∈ {1, ..., J} do

30: OBJECTS = VERTICAL_PROFILE (rowj)

31: for objecti ∈ {1, ..., I} do

32: (IndividualCount, PopPlaceStartCount) = DETECT_COUNT_OBJECT_TYPE (objecti)

33: end for

34: end for

35: end for
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5. Experimental Results and Discussion

In this section, we first define the metrics used for evaluating our system. We then present our
results and discuss them.

5.1. Metrics

To evaluate our system performance, we used five different metrics. The pixel-wise classification
accuracy, pixel-wise precision, recall, Fmeasure, and intersection over union metrics are low-level
evaluators, and they are widely used in object detection problems [32]. We also defined high-level
counting error metrics to evaluate the accuracy of our system.

5.1.1. Pixel-Wise Classification Accuracy

The first metric is the pixel-wise accuracy. It can be calculated by dividing the accurately classified
pixels in each document by the number of all pixels (for all object types). Note that it was calculated
for each page and averaged over all pages in the test set.

5.1.2. Pixel-Wise Precision, Recall, and Fmeasure

We further calculated pixel-wise True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) metrics for the object detection problem. Note that these metrics were
for the two-class classification of objects (individual and populated place start) versus background
individual objects versus background and starting symbols versus background. By using these metrics,
we calculated pixel-wise precision, recall, and Fmeasure for the object detection problem as:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Fmeasure =
2× Precision× Recall

Precision + Recall
(3)

Note that these metrics were calculated for each page and averaged over all pages in the test set.

5.1.3. Intersection over Union

The Intersection over Union (IoU) metric was also calculated. For this metric, there were the
ground-truth components and the predicted components from our model. This metric could be
calculated by dividing the intersection of regions of these two components by the union of regions of
these two components (for all object types).

5.1.4. High-Level Counting Errors

These metrics were specific to our application for counting people in registers. For counting the
individuals, the first high-level metric could be defined as the predicted count errors over the ground
truth count. We called this metric Individual Counting Error (ICE).

ICE =|| PredictedIndividualCount− Ground− TruthIndividualCount
Ground− TruthIndividualCount

|| (4)

We further defined a similar high-level metric for populated place start objects, which was named
the Populated Place Start Counting Error (PPSCE).

PPSCE =|| PredictedPopPlaceStartCount− Ground− TruthPopPlaceStartCount
Ground− TruthPopPlaceStartCount

|| (5)
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5.2. Results and Discussion

5.2.1. Results from the Heuristic Baseline Projection Profile Technique

We first extracted results by using the baseline projection profile technique. After applying
horizontal and vertical projection profiles consecutively, we applied an area-based object classification
on detected fields. We changed the parameters for Zistovi registers, because they were tightly placed
and default parameters caused errors. The error rates are provided in Table 1. The errors were generally
caused by intertwined individual objects and closely written individual and populated place symbols
(see Figure 7). Since we used an area-based object classifier, when two or more individual objects were
counted as one, they were classified as a populated place start symbol since the area of the detected
object passed the threshold for object detection. The errors in Nicea registers were higher because
individual objects and populated place start symbols intertwined more often.

Figure 7. Examples of intertwined rows and columns are shown. They are counted as one since there
are not any empty pixels in between.

Table 1. Results with different metrics are presented for five different models. ICE, Individual Counting Error.

Tested with PPSCE(%) ICE (%)

Nicaea 10 2.927

Svishtov 3.703 2.412

5.2.2. CNN-Based Page Segmentation and Object Detection

We had two registers from the Nicaea district and one register from the Svishtov district. In Model
1, we trained with Nicaea registers and tested with the Svishtov registers. In Model 2, we trained
a model with the Svishtov district register and tested with the Nicaea registers. We further tested
10-fold cross-validation on registers in the same district. In Model 3, we trained and tested the model
on the Svishtov registers, and in Model 4, we trained and tested on Nicaea registers with 10-fold
cross-validation. In Model 5, we combined the whole dataset and evaluated the model with 10-fold
cross-validation. The pixel-wise accuracy, IoU, Fmeasure, and counting error results are provided in
Tables 2–5. In Table 2, the results for all object types are presented. Note that the combined objects
versus background classification results are provided in Table 3, whereas separate objects versus
background classification results are provided in Tables 4 and 5. From these tables, we can see
that the individual object detection results were better than the starting symbol detection results.
The error of finding the number of individuals and the populated place start objects is provided in
Table 2. We further provide correctly predicted and mistakenly predicted raw binarized images in
Figures 8 and 9, respectively. The best ICE results were obtained when the Svishtov registers were
used for the training. The worst accuracy was obtained when the system was trained with Nicaea
registers and tested with the Svishtov register. Furthermore, the populated place start counting error
was 0% for all models, which meant that our system could recognize populated place start objects
perfectly in the considered experiments.
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Table 2. Results with different metrics are presented for five different models.

Trained on Tested with Pixel-Wise Acc.(%) IoU (%) ICE (%) PPSCE (%)

Nicaea Nicaea 91.53 80.91 1.65 0

Nicaea Svishtov 90.35 73.6 11.57 0

Svishtov Svishtov 93.39 72.29 0.76 0

Svishtov Nicaea 91.92 47.95 0.27 0

Mixed Mixed 92.54 48.54 2.26 0

Table 3. True positive, true negative, false positive, false negative, precision, recall, and Fmeasure

results are presented for the five different models. The results were obtained for combined objects
(populated place start and individual objects) versus background.

Trained on Tested with TP TN FP FN Recall Precision Fmeasure

Nicaea Nicaea 0.7463 0.169 0.1367 0.0702 0.913 0.981 0.9459

Nicaea Svishtov 0.7455 0.158 0.0125 0.0834 0.898 0.983 0.9386

Svishtov Svishtov 0.7769 0.157 0.0191 0.0469 0.942 0.975 0.9587

Svishtov Nicaea 0.7822 0.137 0.0596 0.0209 0.974 0.928 0.9499

Mixed Mixed 0.7824 0.143 0.0379 0.0366 0.955 0.953 0.9539

Table 4. True positive, true negative, false positive, false negative, precision, recall, and Fmeasure

results are presented for five different models. The results are obtained for populated place objects
versus background.

Trained on Tested with TP TN FP FN Recall Precision Fmeasure

Nicaea Nicaea 0.79517 0.18316 0.02138 0.00028 0.88576 0.99862 0.9376

Nicaea Svishtov 0.80640 0.17583 0.01751 0.00024 0.90168 0.99830 0.9469

Svishtov Svishtov 0.80089 0.17602 0.02302 0.00005 0.87563 0.99952 0.9319

Svishtov Nicaea 0.79172 0.19341 0.01381 0.00104 0.91688 0.99518 0.9528

Mixed Mixed 0.79934 0.18020 0.0204 0.00005 0.88005 0.99969 0.9341

Table 5. True positive, true negative, false positive, false negative, precision, recall, and Fmeasure

results are presented for five different models. The results are obtained for individual objects
versus background.

Trained on Tested with TP TN FP FN Recall Precision Fmeasure

Nicaea Nicaea 0.79458 0.16838 0.01506 0.02199 0.97252 0.98093 0.9766

Nicaea Svishtov 0.81280 0.17809 0.0902 0.0500 0.94681 0.98859 0.9639

Svishtov Svishtov 0.80669 0.15349 0.02259 0.17215 0.97867 0.97236 0.9754

Svishtov Nicaea 0.80168 0.12277 0.07160 0.00385 0.99514 0.91634 0.9537

Mixed Mixed 0.80000 0.16613 0.01413 0.01970 0.97581 0.98306 0.9794

As mentioned before, the layout of registers depended on the districts and the clerk. For our
registers, individuals in Nicaea were widely separated, whereas the distance between registers was
less in Svishtov registers. The average number of registered individuals in a Nicaea register page
was approximately 40 and 80 in a Svishtov register, which confirmed the above statement. Therefore,
when the system was trained with loosely kept Nicaea registers and tested in closely written clusters in
Svishtov, the counting error increased, and the number of mistakes for counting multiple registers as
one started to occur (see Figure 9). However, if we changed the training and test parts, the system error
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for counting objects approached 100%, as we expected. If we mixed the dataset and applied 10-fold
cross-validation, we achieved counting errors in between. For our purposes, although high-level
metrics were more crucial, low-level metrics showed the general performance of our system. They were
also beneficial for comparing the performances of different models. Furthermore, even though the
IoU metric results were low, our classification errors were close to 0%. It could be inferred that the
structure of the registers was suitable for automatic object classification systems. The documents did
not have printed tables, but their tabular-like structures made it easier to cluster and classify them.

Figure 8. A sample prediction made by our system. In the left, a binarized prediction image for
counting individuals, in the middle, a binarized image for counting populated place start, and in the
right, the objects, enclosed with rectangular boxes. Green boxes for individual register counting and
the red box for counting the populated place start object.

Figure 9. A sample counting mistake. All three individual registers are counted as one. This results in
two missing records in our automatic counting system.

We further compared our work with the segmentation techniques applied to different historical
Arabic script documents. The Fmeasure of our study was slightly higher than the best reported results in
the literature (see Table 6). However, because the different techniques were tried in different datasets
created for each particular study in the literature, one could not infer the success of a technique
over others. They were presented to give the reader a sense about the performance of the object vs.
background classification problem in historical Arabic script documents. Having said that, we could
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state that our results were aligned with the best reported results in the literature for historical Arabic
script document layout analysis.

Table 6. Comparison of our results with different studies on Arabic historical document layout analysis.
FCN stands for Fully-Convolutional Networks.

Study Dataset # of Pages Classifier Fmeasure

Bukhari et al. [8] (2012) Islamic manuscripts in Leipzig 38 MLP 0.9502

Hesham et al. [18] (2017) DARPA MADCATdataset 10 SVM 0.8514

Barakat et al. [16] (2018) Islamic manuscripts in Leipzig 38 FCN 0.95

Our study (2020) Ottoman Population Registers 173 CNN 0.9539 (Mixed)

6. Conclusions and Future Works

In this study, we developed an automatic individual counting system for the registers recorded in
the first censuses of the Ottoman Empire, which were held between 1840 and 1860. The registers were
written in Arabic script, and their layouts highly depended on the district and the officer in charge.
We created a labeled dataset for three registers and evaluated our system on this dataset. We further
developed an algorithm for assigning people to populated places after detecting individual people and
populated place start symbols. For counting the populated place start symbols, we achieved 0% error.
Furthermore, we achieved the maximum individual counting error of 0.27%. We inferred from these
results that the models should be trained with closely placed and noisy registers (Svishtov register in
our case study). When these models were tested with a clean and a loosely placed one (Nicaea register
in this case study), the system counted individuals accurately. However, if a model was trained with a
loosely placed register and tested with a closely placed one, the number of counting errors increased.
Our aim was to develop a generic system that could be implemented for efficient counting and distant
reading of all registers prepared between the 1840s and the 1860s. Since it is a very costly task to label
all registers, we will strategically label the closely placed and noisy ones to develop such a system.
As future works, we plan to develop an automatic handwriting recognition system for the segmented
individual register objects. We further plan to implement self-organization map and projection profile
algorithms to compare with the CNN in our dataset.
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