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Abstract: Crowd counting is a challenging task dealing with the variation of an object scale and a
crowd density. Existing works have emphasized on skip connections by integrating shallower layers
with deeper layers, where each layer extracts features in a different object scale and crowd density.
However, only high-level features are emphasized while ignoring low-level features. This paper
proposes an estimation network by passing high-level features to shallow layers and emphasizing
its low-level feature. Since an estimation network is a hierarchical network, a high-level feature
is also emphasized by an improved low-level feature. Our estimation network consists of two
identical networks for extracting a high-level feature and estimating the final result. To preserve
semantic information, dilated convolution is employed without resizing the feature map. Our method
was tested in three datasets for counting humans and vehicles in a crowd image. The counting
performance is evaluated by mean absolute error and root mean squared error indicating the accuracy
and robustness of an estimation network, respectively. The experimental result shows that our
network outperforms other related works in a high crowd density and is effective for reducing
over-counting error in the overall case.

Keywords: surveillance system; crowd counting; regression-based approach; skip connection;
dilated convolution

1. Introduction

In recent years, crowd counting has an important role in a wide range of applications (e.g., video
surveillance, traffic monitoring [1], public safety, urban planning [2], and so on). These applications
have the same goal of collecting statistical data (the number of objects). Then, this data is utilized in
further areas (e.g., crowd management, behavior observation, and so on). Therefore, crowd counting
must be accurate enough for a practical usage. With the increase of diversity, the crowd density is
dynamically varied in different locations and times. The video surveillance system usually captures
a large or small number of people at any time. This circumstance shows that crowd counting must
be able to count objects in different crowd density. On the other hand, the scaling problem should be
considered because of the different adjustments in camera viewpoints and varied sizes of objects.

It is well known that a detection-based technique is ineffective for counting several objects from
the crowd image because of occlusion problems. Therefore, numerous researchers have relied on a
regression-based technique. This technique emphasizes counting-by-density algorithms to predict
the crowd density, called ‘density map’. As we have already known, state-of-the-art approaches have
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utilized a deep learning-based technique with Convolutional Neural Network (CNN) to design an
estimation network and obtain a density map as shown in Figure 1. To solve the scaling problem,
estimation networks from previous studies have trended to implement with several image resolutions
and convolutional layers (Conv layers) for handling various object scales. However, their valuable
information could be lost by resizing crowd images and their results were limited by the network
configuration in different datasets. On the other hand, skip connections have been added to the
estimation network for reusing feature maps, rather than building other networks. This technique is
called ‘skip-network’ which is effective only on objects with large scales because high-level feature
maps are only emphasized.

In this paper, we propose a novel method for implementing an estimation network with
skip-network. Instead of using a normal skip connection or a forward connection, we propose a
backward connection which extracts feature maps from the deeper layer to a shallow layer. It helps
the shallow layer to recognize the characteristic of the target in advance. False positives can be
reduced before formulating the density map. In our expectation, objects with small and large scales
are corresponded to shallow and deep layers, respectively. Considering the quality of a density map,
feature maps in every layer should have the same resolution to prevent information loss from adjusting
their resolutions. Then, pooling layers are replaced with a dilated Conv layer. The receptive field with
a dilated Conv layer grows exponentially while keeping the resolution of a feature map [3]. In addition,
fewer model parameters are required without resizing feature maps. Therefore, our contributions are
summarized as follows:

• The proposed network utilized the backward connection for passing high-level features from
deeper layers to shallower layers and reducing false positives in crowd counting.

• Dilated convolution is introduced in skip-network to increase the receptive field sizes while
keeping the information of high-level features for a feature map integration in the skip connection.

Input image Estimation network Density map

Figure 1. A general flowchart of crowd counting using deep learning-based technique.

2. Related Work

Over the past decade, CNN has been utilized for designing estimation networks in crowd counting.
Their networks are categorized into 3 types, which are multi-column network, skip-network, and
multi-scale network as shown in Figure 2a–c, respectively. Their features are described as follows:

2.1. Multi-Column Network

The multi-column network is the first technique for handling the scaling problem. This network
consists of multiple CNNs extracting features in different scales as shown in Figure 2a. Their results
from each network were merged to improve the counting performance in various scales [4,5].
The network architecture was designed by adjusting its kernel size for a specific object size or scale.
Instead of relying on the various kernels, the number of the Conv layer was considered by [6]. On the
other hand, some related studies have trended to design a gate network for selecting the most optimal
CNN in [2,7]. These multi-column methods partially solve the scaling problem, however, their network
architectures consist of a large number of trainable parameters. In addition, their achievements were
limited by the number of networks and the size of the receptive field, depending on the scales of
objects in the dataset.
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2.2. Skip-Network

In recent years, the skip-network has been utilized in an estimation network. It reused
the intermediate layers for extracting various features of objects in different sizes. Skip-network
architecture is illustrated in Figure 2b, where it makes a connection between low and high-level
features from shallow to deep layers, respectively. The key concept of skip-network is to build various
receptive fields for handling objects in different sizes [8,9]. It is similar to the multi-column network,
but fewer model parameters are involved. Their counting performance was improved by adding a
multi-scale unit [10]. This unit is a structure of subset in skip-network which helps to increase more
receptive fields in one Conv layer. In addition, a Scale Focus Module (SFM) was inserted to enhance
the local feature in different scale. Even though the trainable parameter can be reduced, only high-level
features are emphasized by extracting low-level features from shallow layers. It means that the object
with a large scale is not effective by this technique.

2.3. Multi-Scale Network

In the multi-scale network, several crowd images are fed into an estimation network to learn the
characteristic of a crowd image in different conditions as shown in Figure 2c. A deep, single-column,
and fully connected network was utilized to predict crowd density maps. This method addresses the
issues of scale and perspective changes by feeding multiple scales of testing images into the estimation
network during the prediction phase [11]. On the other hand, the dataset was categorized by the
camera viewpoint. The input image in the different categories was trained to optimize an estimation
network [1]. Similar to a multi-column network, their performance is limited to a variation of an input
image in a different dataset.

This paper discusses a redesigned skip-net emphasizing high-level features represented in objects
with large scales by using the small number of input data and model parameters. The backward
connection with dilated convolution is proposed to optimize the weight in a shallow layer for objects
with small scales and reduce the counting error from resizing.

(a) (b) (c)
Figure 2. Illustrations of network architectures of (a) multi-column network, (b) skip-network,
and (c) multi-scale network.

3. Density Map for Object Counting

In general, a crowd image is annotated as a matrix containing the central location or the position
of the object. The matrix containing these annotations is called ’position map’ (H). This position map
is considered as a sum of the delta function (δ) calculated in Equation (1), where (x, y) is vertical and
horizontal coordinate, respectively, and (xi, yi) is vertical and horizontal positions for the ith object,
respectively. As far as we are aware, the ground truth or an actual density map (D) was prepared by
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a convolution between H and Gaussian kernel (G) formulated in Equation (2), where σi is a spread
parameter of the ith object.

H(x, y) =
N

∑
i=1

δ(x− xi, y− yi) (1)

D(xi, yi) = H(xi, yi) ∗ G(σi) (2)

In this paper, we have followed the technique from [4] to calculate an actual density map.
Since each region in a crowd image has a different crowd density, σi should be varied in each location
of the crowd image. The crowd density could be related to the distance between two object positions.
For each object in given images, the distance to its k nearest neighbor of the ith object is denoted
by { di

1, di
2, di

3, ..., di
k }. Therefore, σi is evaluated from an average distance between objects, which are

inversely proportional to crowd density, as depicted in Equation (3),

σi =
β

k

k

∑
j=1

di
j (3)

where β is a constant factor to control σi. In other words, each location has its kernel (σi) which is
adaptive to crowd density. In the experiment, β and k were set as 0.2 and 4, respectively. As a result,
the density map can be used for calculating the number of objects or an actual count (CA) from
Equation (4), where Sx and Sy are the vertical and horizontal dimensions of crowd images, respectively.

CA =
Sx

∑
x=1

Sy

∑
y=1

D(x, y) (4)

4. Estimation Network Architecture

As mentioned in Section 2, an estimation network plays an important role in crowd counting by
the regression-based method. This paper presents the skip-network with the backward connection for
crowd counting, where network architectures are described as follows:

4.1. Backbone Network

The backbone network is modified from our previous study [12]. Its sequences of Conv layers
were utilized in this paper as shown in Figure 3a, where Conv (3, 16, 1) is represented as a Conv layer
with 3× 3 kernel size, the number of filter = 16, and a dilated rate = 1. Our previous network is divided
into two parts, encoder and decoder. The encoder consists of Conv and pooling layers utilized for
extracting low-level features. Furthermore, the decoder consists of Conv layers and up-sampling layer
(Up) for recovering information lost by pooling layers and extracting high-level features. To limit the
network complexity, kernel sizes of all Conv layers were set as the smallest value (3× 3). In addition,
we found that a stack of 3× 3 Conv layers, called ‘Conv block’, gives higher counting performance in
prediction and classification [13].

The previous studies [14] found that resizing feature maps, with pooling and up-sampling layers,
may cause an error in object counting calculated in (4) because valuable information might be lost.
Then, only the Conv layer should be employed in the backbone network without resizing their
resolutions. However, the receptive field size is gradually increased by utilizing the sequence of Conv
layers only. It means that more parameters and layers are required for implementing an estimation
network. To solve this problem, pooling and up-sampling layers are replaced with dilated convolution
represented as yellow layers in Figure 3b. The dilation convolution is defined in Equation (5),

y(m, n) =
M

∑
i=1

N

∑
j=1

x(m + r× i, n + r× j)w(i, j) (5)
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where (m, n) is the location in terms of vertical and horizontal coordinates of the feature map and
y(m, n) is the output of a dilated Conv layer from their input features (x(m, n)) and weights (w(m, n))
with the height and width of M and N, respectively. The parameter r is the dilation rate, where the
normal convolution are assigned with r = 1. The dilated Conv layer is able to increase the size of
receptive field exponentially without resizing. In addition, the experiment from [14] has proved that
the quality of the density map is improved by using an estimation network with only normal and
dilated convolutions. Based on our experiment, a backbone network with a dilated rate = 2 is selected
because it gives the most optimal performance of the density map prediction. To keep a feature map
resolution, all Conv layers use zero-padding to maintain the previous size.

Input images

Conv (3, 16, 1)

Conv (3, 16, 1)

Conv (3, 16, 1)

pooling 2× 2

Conv (3, 32, 1)

Conv (3, 32, 1)

pooling 2× 2

Conv (3, 64, 1)

Conv (3, 64, 1)

pooling 2× 2

Conv (3, 128, 1)

Conv (3, 128, 1) Up 2× 2

Conv (3, 64, 1)

Conv (3, 64, 1)

Up 2× 2

Conv (3, 32, 1)

Conv (3, 32, 1)

Up 2× 2

Conv (3, 16, 1)

Conv (3, 16, 1)

Conv (3, 16, 1)

1× 1 conv 1

Predicted

density map

(a)

Input images

Conv (3, 16, 1)

Conv (3, 16, 1)

Conv (3, 16, 2)

Conv (3, 16, 1)

Conv (3, 16, 2)

Conv (3, 16, 1)

Conv (3, 16, 2)

Conv (3, 16, 1)

Conv (3, 16, 2) Conv (3, 16, 1)

Conv (3, 16, 2)

Conv (3, 16, 1)

Conv (3, 16, 2)

Conv (3, 16, 1)

Conv (3, 16, 1)

Conv (3, 16, 2)

Conv (1, 1, 1)

Predicted

density map

(b)
Figure 3. The backbone network architecture modified by (a) adding pooling and up-sampling layers
and (b) constructing only convolutional layers (Conv layers).

4.2. Backward Connection

As mentioned in Section 2, this paper confronts a scaling problem in the crowd counting. In our
hypothesis, the crowd image generally consists of objects with small scales or highly overlapping
regions which are represented as low-level features in shallow layers. Instead of relying a forward
connection in the previous skip-network, this paper implemented an estimation network with a
backward connection which has the following advantages:

• Shallower layers can recognize the characteristic of a feature map from the deeper layer to
emphasize low-level features, which can be considered as the main features of crowd images.

• Since CNNs have a hierarchical network architecture, the performance for crowd counting with
large object can be improved.

To design an estimation network with backward connections, high-level features need to be
extracted before passing information into shallow layers. However, if these high-level features are
simply added into shallow layers, it will create a cyclic loop in an estimation network. To solve this
problem, the master and slave networks were designed in this study as shown in Figure 4. These
two networks have the same sequence of Conv layers, but their weights are optimized independently.
Even though both master and slave networks are optimized by the same loss function, predicted
density from a master network is only extracted for calculating the number of object.

In the next step, a pair between deeper and shallower layers should be analyzed to optimize
the estimation network performance. Let K be the number of skipped Conv blocks in an estimation
network. Then, the the general formula for adding K backward connections as formulated in (6),
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Ym
L = Fm

L (Xm
L )⊕ Fs

L+K(Xs
L+K) (6)

where (Fs
L, Fm

L ) are the Lth of Conv blocks in slave (‘s’) and master (‘m’) networks with (Xs
L, Xm

L ) as
their input feature maps, respectively, and Ym

L is the output feature map from Fm
L . The examples of

backbone network with (K = 1 and 2) backward connections are shown in Figure 4a and Figure 4b,
respectively. In addition, all feature maps in each Conv blocks have the same dimension because
of dilated convolution. Any convolutional transformations to adjust dimension between lower and
higher-level feature maps is not required in this paper.
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Figure 4. The estimation network architectures of backbone networks with backward connections,
consisting of master (right) and slave networks (left) with (a) K = 1 and (b) K = 2 backward
connections.

5. Training Method

In this section, specific detail for training an estimation network with backward connections is
provided. Weight optimization and pre-processing of input data are concerned as follows:

5.1. Optimization of an Estimation Network

The trainable parameters of an estimation network were optimized by using a loss function.
During training, Euclidean distance was calculated to measure the loss function (L) between the
predicted and actual density maps (D). Even though an actual count could be set as the final
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output of an estimation network, we decided to select an actual density map instead because of
the following reasons:

• More spatial information is preserved in a density map. Even though a crowd image
contains the same number of objects, the pattern or spatial distribution can be different.
Therefore, an estimation network can be optimized or handled for various conditions of crowd
images.

• In the optimization process, the size of an object or Gaussian kernel is suitable for learning on
CNN. The spatial kernel in Conv layers can be adapted to different sizes whose perspective
effect varies significantly. Thus, spatial kernels are more semantic meaningful, and consequently,
they improve the accuracy of crowd counting.

As described in the previous section, the proposed estimation network consists of two networks,
slave and master networks. Their parameters of slave and master networks were optimized by their
loss functions in Equations (7) and (8), respectively,

Ls(Θs) =
1

2N

√√√√ N

∑
t=1

(Rs
t(It, Θs)− Dt)2 (7)

Lm(Θm) =
1

2N

√√√√ N

∑
t=1

(Rm
t (It, Θm)− Dt)2 (8)

where (Θs, Θm) and (Ls, Lm) are trainable parameters and loss functions of slave (‘s’) and master
(‘m’) networks, respectively. N is the number of training images. It is a crowd image with an index
‘t’. (Rs

t , Rm
t ) and (Ds

t , Dm
t ) are predicted and actual density maps with index ‘t’ in the slave (‘s’) and

master (‘m’) networks, respectively. Then, the total loss was calculated by Equation (9) for evaluating
validation images, where Θt is the total trainable parameters of an estimation network.

Lt(Θt) =
√
(Lm(Θm))2 + (Ls(Θs))2 (9)

5.2. Data Augmentation

Image resolution should concern with network optimization. Since the training images were
obtained from several sources, their image resolutions might be different. Therefore, the image must
be resized in the dimension before feeding into an estimation network. However, the object positions
may be changed after resizing images. To solve this problem, crowd images were divided into several
regions, each of which consists of size 256× 256 pixels. For regions located at the boundary of images,
zero padding was applied to increase the image size as shown in Figure 5. Then, the resolutions of
training and testing images are normalized into 256× 256 pixels.

Figure 5. The examples of regions located in the boundary of images (heat maps) after zero padding.

6. Experimental Results

The experiment was evaluated on 3 different datasets with the the same evaluation metric
(Section 6.1). In our experimental setup, an actual density map derived from Equation (2) was
calculated as the ground truth of an estimation network. The estimation network was optimized by
Equation (9) with learning rate = 1× 10−4.
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6.1. Evaluation Metric

Followed by the existing methods, the evaluation metric utilizes Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE) calculated by Equations (10) and (11), respectively.

RMSE =

√√√√ 1
N

N

∑
t=1

(Rm
t − Dt)2 (10)

MAE =
1
N

N

∑
t=1
|Rm

t − Dt| (11)

where N is the number of testing images. Rm
t and Dt are predicted and actual density maps from

a master (‘m’) network at a frame with index ‘t’, respectively. MAE is more significant than RMSE
for counting performance because RMSE is relative as the variance associated with the frequency
distribution of error magnitudes also increases while MAE describes average error alone. RMSE is
more difficult to tease out and understand. However, RMSE is utilized for evaluating the robustness of
an estimation network [15]. Even though the predicted density was utilized for optimization, predicted
count (CP) calculated by Equation (12) was analyzed.

CP =
Sx

∑
x=1

Sy

∑
y=1

Rm(x, y) (12)

6.2. Crowd Counting Dataset

To test our crowd counting, we decided to evaluate our estimation network with various datasets
and targets. The human counting was evaluated by ShanghaiTech and UCF_CC_50 datasets. On the
other hand, this proposed method was also evaluated for non-human counting by using the TRANCOS
dataset (vehicle counting). Their information is described as below:

6.2.1. Shanghaitech Dataset

It is the dataset for crowd counting, targeting on human in the crowd image. This large-scale
crowd counting dataset was introduced by [4]. It contains 1198 annotated images, with a total of
330, 165 people and the central coordinates of their heads. This dataset consists of two parts as follows:

• Part A: There are 300 training and 182 testing images collected randomly crawled from the internet.
• Part B: There are 400 training and 316 testing images taken from crowded scenes on

Shanghai streets.

6.2.2. UCF _CC _50 Dataset

Their crowd images were published by [16]. This dataset consists of 50 crowd images obtained
from the internet. It is a very challenging dataset because The number of images is limited and the
crowd count of the image changes dramatically. The total number of head (annotations) is 63,974 for
these 50 crowd images. The headcount range between 94 and 4543 with an average of 1280 individuals
per image. Since this dataset provides a small number of crowd images, this dataset was evaluated by
using estimation networks trained by ShanghaiTech dataset (Part A and Part B).

6.2.3. TRANCOS Dataset

This is a well-known dataset, for a vehicle counting, distributed by [17]. It represents crowd images
with various traffic density. This dataset contains different 1244 traffic images captured in various
locations. Their crowd images were divided into training, testing, and validation images, selected
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by the dataset owner. The training, testing, and validation samples contain 403, 421, and 420 crowd
images, respectively.

6.3. Ablations on Shanghaitech Part A

As described in Section 4.2, the estimation networks with various k backward connections are
formulated in Equation (6). To evaluate and choose the best configuration, ShanghaiTech Part A is
utilized because of the extremely congested scenes, the varied perspective, and unfixed resolution.
To show the advantage of our proposed networks, they are evaluated the counting performance
for testing estimation networks with pooling layers (Figure 3a), dilated convolutions (Figure 3b),
and forward connections. For network with forward connections, the master network from Figure
4b was only utilized and modified by reserving the direction of a skip connection as calculated by
Equation (13),

YL = FL(XL)⊕ FL−K(XL−K) (13)

where FL is the Lth of Conv blocks in estimation network with K forward connections. XL is assigned
as their input feature maps and YL is the output feature map from FL. Table 1 shows the performance
of our estimation networks with various configuration, where backward consisting of K = 1, 2, and 3.
The empirical result shows that dilated convolution overcomes estimation networks with pooling
layers. In overall case, the estimation network with a K = 1 backward connection overcomes other
configurations. Therefore, we decided to select this configuration for comparison with related work in
the next subsection.

Table 1. The performance by the proposed estimation network with different configurations on
ShanghaiTech Part A.

Estimation Network RMSE MAE

Estimation network with pooling layers (Figure 3a) 175.75 144.6
Backbone network (Figure 3b) 170.71 128.31
Backbone network with forward connections (K = 1) 166.53 116.66
Backbone network with forward connections (K = 2) 171.19 122.11
Backbone network with forward connections (K = 3) 176.04 130.21
Backbone network with backward connections (K = 1) 165.56 87.31
Backbone network with backward connections (K = 2) 172.22 123.96
Backbone network with backward connections (K = 3) 280.13 256.41

Even though estimation networks with forward and backward connections have similar
performance as shown in Table 1, the backward was designed for improving the estimation
performance in an earlier stage. This means that this technique reaches the most optimal parameters
faster than estimation networks without skip connections. Figure 6 shows the MSE from validated
images in each epoch, where networks with backward connections have a low error at the beginning
of training compared with the other two networks. This result indicates that estimation networks with
backward connections can be trained faster by optimizing the feature map in shallow layers.

6.4. Counting Evaluation and Comparison

In this subsection, the proposed method was evaluated and compared with other related works
using the evaluation metric described in Section 6.1. The experimental results were obtained from
their configurations. Table 2 illustrates the counting performance of the proposed method and other
estimation networks. The counting performance in each dataset are described as follows:
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Figure 6. Learning curve between Euclidean distance and epoch while training the network.

Table 2. Counting performance in ShanghaiTech, UCF_CC_50, and TRANCOS datasets.

Estimation Networks
ShanghaiTech A ShanghaiTech B UCF_CC_50 TRANCOS

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

MCNN [4] 173.2 110.2 41.1 26.2 509.1 377.6 18.28 11.05
CP-CNN [18] 106.2 73.6 30.1 20.1 - - - -
Switching-CNN [2] 135 90.4 33.4 21.6 - - - -
HSRNet [19] 100.3 62.3 11.8 7.2 - - - -
Deep-stacked [20] 150.6 93.9 33.9 18.7 - - - -
C-CNN [21] 141.7 88.7 22.1 14.9 - - - -
Rodriguez et al. [22] - - - - 487.1 493.4 - -
Lempitsky et al. [23] - - - - 541.6 419.5 - -
Hydra net [1] - - - - - - 16.74 10.99
TraCount [5] - - - - - - 11.85 8.12
Proposed method 165.56 87.31 19.41 15.76 507.96 358.83 10.65 7.38

6.4.1. Shanghaitech Dataset

The experimental process has analyzed this dataset into two groups (Part A and Part B). As shown
in Table 2, the performance from estimation networks in Part A is worse than that in Part B because the
crowd images obtained from part A have a wide range of a crowd density (from 0 to 1500 people) and
image resolution. Therefore, the estimation network trained by a crowd image in part B can achieve
more accurate results.

Compared with other estimation networks, our performance cannot overcome other estimation
networks, especially CP-CNN [18] and HSRNet [19]. Even though our result is not the best in the
overall performance, our estimation network is more effective in high crowd density (>500 people),
where HSRNet trends to have over-counting error shown in Figure 7. Similar with Part A, counting
performance from Part B is effective in high crowd density, but obtain over-counting error from frame
index 50 to 200 in Figure 8.
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Figure 7. Actual and predicted counts with various crowd densities in ShanghaiTech dataset Part A.
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Figure 8. Actual and predicted counts with various crowd densities in ShanghaiTech dataset Part B.

6.4.2. UCF_CC_50

As mentioned in Section 6.2.2, UCF_CC_50 contains a small number of crowd images. In the
experiment, we utilized pre-trained weights from ShanghaiTech Part A for evaluating the counting
performance in UCF_CC_50 because both crowd images in UCF_CC_50 and part A are obtained from
the different websites, where they have various resolutions and lighting conditions to handle the
testing data (UCF_CC_50). Table 2 shows that our performance outperforms other estimation networks
in MAE, but obtain lower robustness in RMSE. In addition, they cannot handle a large number of
people (>1500 people), as shown in Figure 9, which is out of range in crowd images obtained from the
ShanghaiTech dataset in Part A.
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Figure 9. Actual and predicted counts with various crowd densities in UCF_CC_50 dataset.

6.4.3. TRANCOS Dataset

For vehicle counting, it clearly shows that our network outperforms other estimation networks
in both RMSE and MAE as shown in Table 2. Since vehicle pattern might be similar to other objects
(e.g., traffic light, building, and so on) in crowd images, most of the errors occur as over-counting from
TraCount [5] in Figure 10. By knowing the characteristics of the target using the backward connection,
false positives were reduced and an over-counting error can be solved by the proposed method as
shown in Figure 10.
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Figure 10. Actual and predicted counts with various crowd densities in TRANCOS dataset.
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6.5. Density Map Assessment

The actual and predicted density maps were utilized for optimizing an estimation network.
Predicting the density map and the number of objects in a crowd images. Due to this, the quality of a
density map is the most important factor for counting performance. As far as we are aware, there are
no standard rules to measure density map quality. In this paper, the predicted density map was
evaluated by comparing with an actual density map and classifying the counting error which is either
over-counting or under-counting error. The region of a predicted density map which has a higher or
lower intensity than the actual density map is recognized as over-counting or under-counting error,
respectively. Our predicted density was observed in different aspects described as follows:

6.5.1. Object Scale and Crowd Density

As described in Section 1, we expected that the object size is proportional to the level of feature.
Low and high-level features are considered as features of objects with small and large scales that are
located in high and low crowd density, respectively. By improving low-level features with backward
connections, a high-level feature can also be enriched because of a sequential structure of CNNs.
Figure 11 shows examples of crowd images with their actual and predicted density map. The result
shows that predicted density maps have a similar pattern with an actual density map in various
crowd density, especially in low density (Figure 11a,b). However, our network is ineffective to objects
with small scales causing the under-counting error as shown in Figure 11c,d within the red circles,
because their resolutions might be too small for extracting their features or the number of their images
are insufficient.

(a) (b) (c) (d)
Figure 11. The examples of crowd images with different crowd density consisting of (a) 23, (b) 45,
(c) 131, and (d) 297 people, where their input images, actual density maps, and predicted density maps
by a proposed method are located in the 1st, 2nd, and 3rd rows, respectively.

6.5.2. Crowd Image Quality

It is obvious that the quality of predicted density map depends on the quality of the input image.
As described in Section 6.2, the crowd image might be obtained from several sources, similar with
ShanghaiTech Part A and UCF_CC_50, which have various conditions (e.g., image resolution, camera
viewpoints, and so on). In the previous section, it showed that our estimation network was not
effective on their crowd images. The variation of image resolution creates an ambiguity between
regions with high and low crowd density. Therefore, it causes under-counting and over-counting
errors as shown in Figure 12a, in the red circle. In addition, over-counting error might be occurred
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when non-target objects are formulated in the predicted density map because of object similarity in
different camera viewpoints as shown in Figure 12b. Since the crowd image is generally captured in
the outdoor environment, the adverse condition are mainly concerned, where it causes an crowd image
distortion in term of illumination and occlusion. As a result, objects located in this condition cannot be
formulated in a predicted density map as shown in Figure 12c and Figure 12d by dark environment
and occlusion from a mist, respectively, within red circles. The regions in these circles correspond as
an under-counting error. In addition, the number of crowd images with adverse conditions in the
experiment is insufficient. Then, their characteristics are hardly to predict the density map. It implied
that our network is sensitive to a variation of image quality and its density distribution.

(a)

(b) (c) (d)

Figure 12. The examples of crowd images with counting errors caused by (a) small-sized crowd image,
(b) object similarity, (c) dark illumination, and (d) occlusion of a mist, where their input images, actual
density maps, and predicted density maps by a proposed method are located in the 1st, 2nd, and 3rd
rows, respectively.

6.5.3. Effect on Dilated Convolution

With the advantage of a dilated convolution, it is expected to reduce information loss and increase
image quality in a density map. To prove our hypothesis, we evaluated two backbone networks with
and without dilated convolution as shown in Figures 3a,b, represented as network-A and network-B,
respectively. Both of them were added to a backward connection with K = 1 in Equation (6). In the
experiment, network-A and network-B were tested for vehicle and people counting as shown in Figures
13 and 14, respectively. These figures consist of input images (Figure 13a,b) and their predicted
density maps produced by network-A (Figures 13b and 14b) and network-B (Figures 13c and 14c) with
backward connections. For vehicle counting, empirical results show that dilated convolution generates
more detail in predicted density, especially in high crowd density with small vehicles within red
rectangular boxes. On the other hand, more people are formulated in predicted density by network-B.
Therefore, it indicates that the error from under-counting error is reduced in the proposed method.
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(a) (b) (c)
Figure 13. The example of effect on dilated convolution from vehicle counting where (a) input images
and their prediceted density maps generated by the backbone network in (b) Figure 3a and (c) Figure 3b
with backward connections.

(a) (b) (c)
Figure 14. The example of effect on dilated convolution from people counting where (a) input images
and their predicted density maps generated by the backbone network in (b) Figure 3a and (c) Figure 3b
with backward connections.

7. Conclusions and Future Work

In this paper, we have designed an estimation network to count objects in high crowd density.
Our main contribution is the redesigned skip-network utilizing backward connections and dilated
Conv layers. These connections help to improve the quality of feature maps in shallow layers by
inserting the high-level features from deeper layers. In our expectation, non-target can be removed
in the early stage by the enhancement in the shallow layer. Then an estimation network achieves
better counting performance. On the other hand, a dilated Conv layer is introduced in skip-network to
keep valuable information in high-level features, while the receptive field size can be exponentially
increased as the function of pooling and up-sampling layers. The estimation network consists of slave
and master networks for extracting high-level features and generating the final predicted density
maps, respectively. In the experiment, the proposed method was evaluated in three datasets for
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counting people and vehicles. The estimation network with backward connection overcomes other
configurations in counting performance. The empirical result shows that the proposed network is
effective in high crowd density, where they provide more semantic detailed information by using
dilated convolution. In addition, the proposed estimation network is able to remove false positive in
density maps for reducing over-counting error, especially in TRANCOS dataset.

Even though our network obtained less counting error, it is ineffective on very high crowd
density (>1500 people) increasing under-counting errors because of the low crowd image quality
(e.g., resolution, distortion, and so on). As a result, the proposed method cannot overcome the
performance of other estimation networks in the ShanghaiTech dataset and UCF_CC_50 containing
the variation of image quality. On the other hand, our network still suffers from outdoor environments
(e.g., lighting and weather conditions). According to these problems, it indicates that their number
is insufficient for a deep learning technique. As future works, more datasets containing high crowd
images (>1500 objects) and adverse conditions will be included to handle an object with small scale
and image distortion. In addition, we plan to explore the routing algorithm for a skip connection for
improving the quality of the predicted density map in various aspects.
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