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Abstract: Pansharpening is a method applied for the generation of high-spatial-resolution multi-
spectral (MS) images using panchromatic (PAN) and multi-spectral images. A common challenge in
pansharpening is to reduce the spectral distortion caused by increasing the resolution. In this paper,
we propose a method for reducing the spectral distortion based on the intensity–hue–saturation
(IHS) method targeting satellite images. The IHS method improves the resolution of an RGB image
by replacing the intensity of the low-resolution RGB image with that of the high-resolution PAN
image. The spectral characteristics of the PAN and MS images are different, and this difference
may cause spectral distortion in the pansharpened image. Although many solutions for reducing
spectral distortion using a modeled spectrum have been proposed, the quality of the outcomes
obtained by these approaches depends on the image dataset. In the proposed technique, we model
a low-spatial-resolution PAN image according to a relative spectral response graph, and then the
corrected intensity is calculated using the model and the observed dataset. Experiments were
conducted on three IKONOS datasets, and the results were evaluated using some major quality
metrics. This quantitative evaluation demonstrated the stability of the pansharpened images and the
effectiveness of the proposed method.

Keywords: pansharpening; spectrum correction; intensity correction; model; relative spectral
response graph; IKONOS

1. Introduction

The optical sensor of an Earth observation satellite receives radiances in the visible to infrared
regions of the electromagnetic spectrum. The sensor simultaneously receives two kinds of data; the
multi-spectral (MS) image with high spectral resolution and low spatial resolution, and a panchromatic
(PAN) image with high spatial resolution and low spectral resolution. Satellites with such optical sensors
include the IKONOS, QuickBird, GeoEye, and WorldView. Satellite data are widely used for various
purposes such as change detection, object detection, target recognition, background for map application,
and visual image analysis. Pansharpening is an image processing technique that generates high-spatial
and high-spectral-resolution MS images using the spatial information from the PAN image and the
spectral information from the MS images. It can be used for preprocessing in the data analysis and
applications of satellite-image processing described above. The pansharpening methods can be divided
into four categories: component substitution (CS), multi-resolution analysis (MRA), machine learning,
and the hybrid methods. The CS methods substitute the spatial information of the MS images by the
spatial information from the PAN image and then generate the MS images with high spatial resolution.
This category of methods includes several techniques such as the intensity–hue–saturation (IHS)
transform [1], principal component analysis [2], Gram–Schmidt (GS) transform [3,4], and the Brovey
transform [2]. For these techniques, it is known that the difference in the spectral characteristics between
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the replaced spatial component and the original spatial component gives rise to spectral distortion.
The MRA class extracts the spatial information from the PAN image and then adds it to the MS image.
For these methods, several techniques such as the decimated wavelet transform [5], undecimated
wavelet transform [6], a “trous” wavelet transform [7], Laplacian pyramid [8], curvelet transform [9],
contourlet transform [10], nonsubsampled contourlet transform [11], and shearlet transform [12,13] are
used to extract the detailed spatial information. Although these methods increase the quality of the
spectral information, ringing artifacts called spatial distortion may occur. Machine learning methods
use techniques such as dictionary learning, sparse modeling [14], deep learning [15], and the Bayesian
paradigm [16]. The performance of these methods depends on the amount of the available data, and
their computational complexity is greater than that of the other methods. For example, sparse modeling
incurs a significant computational cost for creating a dictionary. The hybrid methods combine several
techniques to exploit their advantageous features and therefore can achieve higher performance than
the methods in other classes. Recently, machine learning techniques have been widely used. Wang
et al. [17] proposed a method using sparse representation and a convolution neural network. Fei et
al. [18] and Yin [19] proposed an improved Sparse Representation-based details injection (SR-D) [14].
For the CS-based category, Imani [20] proposed a method that removes the noise and redundant spatial
features to improve the band-dependent spatial detail (BDSD) [21].

Many methods have been proposed over the past several decades in order to reduce the spectral
distortion and to enhance the spatial resolution [22–24] and in particular, pansharpening includes
a process for correcting the image intensity. Two types of techniques are used for this process: the
first uses the relative spectral response graph, and the second uses an intensity model based on the
observed images. However, the numerical image quality of these methods depends on the image
dataset, and it is difficult to obtain consistent results.

In this study, we propose a technique for correcting the intensity based on the IHS method.
The IHS method is a known pansharpening method and substitutes the intensity of the red–green–blue
(RGB) images with the intensity of the PAN images. Since the intensity of the pansharpened (PS)
image is replaced by that of the PAN image, it contains a high level of spatial information. However,
the PS image exhibits spectral distortion (i.e., color distortion) because of the differences in the spectral
characteristics between the intensities of the RGB and PAN images [25]. To address this drawback,
several methods have been proposed. Tu et al. [26] proposed a generalized IHS (GIHS) transform that
transforms the IHS into a simple linear transform. Since GIHS can accelerate the calculations, it has
been frequently used as a framework for the development of other methods focusing on correcting
the intensity. Tu et al. [26] presented a fast IHS that corrects the intensity using the mean value of the
intensity of the MS images and also presented a simple spectral-adjustment IHS method (SAIHS) [27]
that corrects the intensity of the green and blue bands by exploring the best value from 92 IKONOS
images. Tradeoff IHS is a method that controls the tradeoff of the spectral characteristics between the
intensities of the RGB and PAN images [28]. Choi et al. [29] presented an improved SAIHS (ISAIHS)
that calculates the intensity correction coefficients of the red and near-infrared (NIR) bands using 29
IKONOS images in addition to SAIHS. These approaches have the advantage that strong outliers are
not generated because the correction coefficient is obtained from the images as a constant. However,
the values of the constant may not be optimal for the processed image. Audicana et al. [30] proposed
an expanded fast IHS with the spectral response function (eFIHS-SRF) method to correct the intensity
of the PS image using the mean value of the MS images and the fraction of the photons detected by
the sensors (i.e., the MS and PAN sensors). In this method, the correction is performed using the
correction coefficient obtained from the relative spectral response graph and the observation data.
However, the obtained results differ depending on the processed data. Garzelli et al. [21] presented the
BDSD method that applies the correction coefficients calculated by the minimum-variance-unbiased
estimator [31] to the MS images. The practical replacement adaptive CS (PRACS) [32] calculates the
correction coefficients using high-frequency information and the characteristics of the MS images for
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each image dataset. The fusion approach (IHS-BT-SFIM) proposed by Tu et al. [33] calculates the
intensity correction coefficients using the modeled low-spatial-resolution intensity of the MS images.

These methods use either unique or non-unique correction coefficients. In pansharpening, spectral
distortion may be caused by three different effects: the relative spectral response of the sensors [27],
aging of the optical and electronic payload [34], and the observation conditions [35]. Since the
observation conditions differ for each dataset, the correction coefficients must be calculated separately
for each image dataset. Even in the conventional methods, the correction coefficient is obtained from
the intensity modeled based on the image. However, the use of a model formula obtained by combining
the intensity with and without color information has not been considered. We estimate the PAN image
without color information using the intensity of the RGB image and the intensity of the NIR image,
and perform a detailed correction including the relative spectral response and observation conditions
at each intensity of the RGB image with color information. In this study, we propose a novel model for
low-spatial-resolution PAN images using MS images. Compared to other related methods for intensity
correction, our method showed consistently good performance in terms of the numerical image quality.
Therefore, it was concluded that unlike for the methods based on IHS, the proposed method can reduce
spectral distortion and obtain results that are independent of the processed image.

Note that there are multiple satellites that have sensors whose characteristics are similar to
those of IKONOS, such as Quick Bird and GeoEye. Therefore, experiments have been conducted on
IKONOS images in many studies in the literature. Our proposed method can also be applied to those
satellite images.

2. Materials and Methods

2.1. Image Datasets

The three image datasets from the IKONOS used for the experiments are listed in Table 1. The first
was collected in May 2008 and covers the city of Nihonmatsu, Japan. The second was collected in
May 2006 and covers the city of Yokohama, Japan. Both the Nihonmatsu and Yokohama datasets
were provided by the Japan Space Imaging Corporation, Japan. The third dataset covering Mount
Wellington in Hobart, Tasmania in Australia was collected in February 2003 and was provided by
Space Imaging, LLC. These datasets have PAN and MS images with the spatial resolutions of 1 m and
4 m, respectively. The original dataset contains: a PAN image with 1024 × 1024 pixels and MS images
with 256 × 256 pixels for the Nihonmatsu region, a PAN image with 1792 × 1792 pixels and MS images
with 448 × 448 pixels for the Yokohama region, and a PAN image with 12,112 × 13,136 pixels and MS
images with 3028 × 3284 pixels for the Hobart region in Tasmania.

Table 1. Characteristics of the original and test images of the image datasets. MS: multi-spectral,
PAN: panchromatic.

Image Nihonmatsu Yokohama Tasmania

Original image PAN image 1024 × 1024 1792 × 1792 12,112 × 13,136
MS image 256 × 256 448 × 448 3028 × 3284

Test image PAN image 256 × 256 448 × 448 3028 × 3284
MS image 64 × 64 112 × 112 757 × 821

To evaluate the quality of the PS image, we experimented with the test images and original images
according to the Wald protocol [36]. The test images were used to evaluate the numerical image quality,
and the original images were used as reference images for numerical and visual evaluation. We regard
the original images as ground truth images. The spatial resolution of the test PAN image was reduced
from 1 to 4 m and that of the test MS image was reduced from 4 to 16 m. Hence, the test image datasets
have a PAN image with 256 × 256 pixels and MS images with 64 × 64 pixels for the Nihonmatsu region,
a PAN image with 448 × 448 pixels and MS images with 112 × 112 pixels for the Yokohama region,
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and a PAN image with 3028 × 3284 pixels and MS images with 757 × 821 pixels for the Hobart region
in Tasmania.

2.2. Proposed Method

It is considered that a high-resolution PAN image can be estimated from the corresponding
high-resolution MS images. However, it is not obvious how to combine the MS images, and it may
differ depending on the spectral response and observation conditions. Based on this idea, we propose
a novel technique for correcting the intensity that can reduce the spectral distortion in each image by
modeling the PAN image. The technique does not require detailed knowledge of sensor characteristics;
in other words, it only requires the image dataset. The procedure of the proposed method includes a
technique for estimating the intensity correction coefficients and also a technique for image fusion.
The former method first models the PAN image with a low spatial resolution, using the MS images,
and the coefficients are then calculated using the method of least squares in the comparison between
the PAN image and the modeled PAN image. The latter method calculates the high-spatial-resolution
intensity of the RGB image and then generates a PS image using GIHS.

2.2.1. Notation

Ihigh(i) and Ilow(i) denote the i-th pixel intensities of the high- and low-spatial resolution RGB
images, respectively. PANhigh(i) and PANlow(i) denote the i-th pixel high- and low-spatial resolution,
respectively. MSlow

b∈B(i) denotes the i-th pixel low-spatial resolution MS image in the b band and
B =

{
red, grn, blu, nir

}
; red, grn, blu, and nir are the red, green, blue, and NIR, respectively. |B|

denotes the total number of MS bands. ′·′ denotes the scalar multiplication of matrices, ′×′ denotes
multiplication, and ′∗′ denotes a matrix product. N denotes the total number of the pixels in an image.

2.2.2. High-Spatial-Resolution Intensity of the RGB Image

The intensity of the RGB image is calculated by the IHS transform and is represented by
Equation (1).

Ilow(i) =
MSlow

red (i) + MSlow
grn(i) + MSlow

blu (i)

3
(1)

The intensity ratio between the PAN and RGB images is the same for the high- and low-spatial
resolutions. Thus, if we have both PAN and RGB images with high- and low-spatial resolutions with
the same number of pixels, this intensity relationship can be expressed as:

Ihigh(i) : PANhigh(i) = Ilow(i) : PANlow(i) (2)

The dimensions of the PAN and MS images used for the above process are the same as those of
the MS images before processing, RP×P. The PAN image is generated by down-sampling with
bicubic interpolation.

To obtain an expression for the high-spatial-resolution intensity of the RGB image, Equation (2)
can be rewritten as

Ihigh(i) =
PANhigh(i)
PANlow(i)

× Ilow(i) (3)

2.2.3. Low-Spatial-Resolution PAN Image Model

Since the observation wavelength range of the PAN sensor includes the wavelength ranges of all
of the MS sensors, we modeled the low-spatial-resolution PAN image using low-spatial-resolution MS
images. Based on the relative spectral response graph of IKONOS [37] depicted in Figure 1, we noticed
the following features:
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1. The relative spectral response of the PAN band shows low sensitivity from the blue to green
bands [27].

2. The relative spectral responses of the PAN band show low sensitivity in some regions of the red
and NIR bands.

3. The relative spectral responses of the red, green, blue, and NIR bands partly overlap with those
of their neighboring bands [4,27].

4. The PAN band includes the NIR band.

We design the low-spatial-resolution PAN image model including the above features as follows:

PANlow(i) = Ilow(i) + α·MSlow
nir (i) − β·MSlow

blu (i) − γ·MSlow
grn(i) − ξ·MSlow

red (i) (4)

where α, β, γ, and ξ denote the correction coefficients of the NIR, blue, green, and red bands, respectively.
For the right-hand side of Equation (4), the third and fourth terms are affected by feature 1, the second
and fifth terms are affected by feature 2, the second to fifth terms are affected by feature 3, and the
second term is affected by feature 4. The first and second terms on the right-hand side of Equation
(3) estimate the PAN image using the intensities of the RGB and NIR images. The third, fourth, and
fifth terms are considered to be the overflowing and overlapping parts of the MS bands in the relative
spectral response graph. The overflowing part of the NIR band is included in the coefficient α.

J. Imaging 2020, 6, 20 5 of 17 

 

3. The relative spectral responses of the red, green, blue, and NIR bands partly overlap with those 
of their neighboring bands [4,27]. 

4. The PAN band includes the NIR band. 

We design the low-spatial-resolution PAN image model including the above features as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖) = 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖) + 𝛼𝛼 ∙ 𝑀𝑀𝑀𝑀𝑛𝑛𝑖𝑖𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖) − 𝛽𝛽 ∙ 𝑀𝑀𝑀𝑀𝑏𝑏𝑙𝑙𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖) − 𝛾𝛾 ∙ 𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖) − 𝜉𝜉 ∙ 𝑀𝑀𝑀𝑀𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖) (4) 

where 𝛼𝛼 , 𝛽𝛽 , 𝛾𝛾, and 𝜉𝜉  denote the correction coefficients of the NIR, blue, green, and red bands, 
respectively. For the right-hand side of Equation (4), the third and fourth terms are affected by feature 
1, the second and fifth terms are affected by feature 2, the second to fifth terms are affected by feature 
3, and the second term is affected by feature 4. The first and second terms on the right-hand side of 
Equation (3) estimate the PAN image using the intensities of the RGB and NIR images. The third, 
fourth, and fifth terms are considered to be the overflowing and overlapping parts of the MS bands 
in the relative spectral response graph. The overflowing part of the NIR band is included in the 
coefficient 𝛼𝛼. 

 
Figure 1. IKONOS relative spectral response graph. 

2.2.4. Estimation of the Intensity Correction Coefficient 

The high- and low-spatial images observed under the same conditions have similar intensity 
characteristics, and the relationship between the high- and low-spatial resolution PAN images can be 
expressed as 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ(𝑖𝑖) ≃ 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖). Therefore, the intensity correction coefficients are obtained 
when the sum of the differences between the high- and low-spatial resolution PAN images reaches 
the minimum value, as expressed by the root mean square error that is computed as: 

argmin
𝛼𝛼,𝛽𝛽,𝛾𝛾,𝜉𝜉

�
1
𝑃𝑃
� �𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ(𝑖𝑖) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖)�2

𝑁𝑁

𝑖𝑖=1
   𝑠𝑠. 𝑡𝑡.    𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝜉𝜉 ≥ 0 (5) 

Equation (5) is used with the observed data—that is, the PAN and MS images, because the 
observed data include the relative spectral response of the sensors and the observation conditions. In 
practice, we use Equation (6) instead of Equation (5). The term �𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ(𝑖𝑖) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖)�  in 

Equation (5) can be rearranged as �𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ(𝑖𝑖) − 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖)� + �−𝛼𝛼 ∙ 𝑀𝑀𝑀𝑀𝑛𝑛𝑖𝑖𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖) + 𝛽𝛽 ∙ 𝑀𝑀𝑀𝑀𝑏𝑏𝑙𝑙𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖) + 𝛾𝛾 ∙

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖) + 𝜉𝜉 ∙ 𝑀𝑀𝑀𝑀𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖)�. 
To express the above formula in matrix representation, we define  

Figure 1. IKONOS relative spectral response graph.

2.2.4. Estimation of the Intensity Correction Coefficient

The high- and low-spatial images observed under the same conditions have similar intensity
characteristics, and the relationship between the high- and low-spatial resolution PAN images can
be expressed as PANhigh(i) ' PANlow(i). Therefore, the intensity correction coefficients are obtained
when the sum of the differences between the high- and low-spatial resolution PAN images reaches the
minimum value, as expressed by the root mean square error that is computed as:

argmin
α,β,γ,ξ

√
1
N

∑N

i=1

(
PANhigh(i) − PANlow(i)

)2
s.t. α, β,γ, ξ ≥ 0 (5)

Equation (5) is used with the observed data—that is, the PAN and MS images, because the observed
data include the relative spectral response of the sensors and the observation conditions. In practice,
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we use Equation (6) instead of Equation (5). The term
(
PANhigh(i) − PANlow(i)

)
in Equation (5) can be

rearranged as
(
PANhigh(i) − Ilow(i)

)
+

(
−α·MSlow

nir (i) + β·MSlow
blu (i) + γ·MSlow

grn(i) + ξ·MSlow
red (i)

)
.

To express the above formula in matrix representation, we define

A =


−MSlow

nir (1) MSlow
blu (1) MSlow

grn(1) MSlow
red (1)

...
...

...
...

−MSlow
nir (N) MSlow

blu (N) MSlow
grn(N) MSlow

red (N)



c =


α
β
γ
ξ

,d =


Ilow(1) − PANhigh(1)

...

...
Ilow(N) − PANhigh(N)

, A ∈ RN×|B|, c ∈ R|B|, d ∈ RN

We compute the intensity correction coefficients using the least square method, as described in
Equation (6):

argmin
c
‖A ∗ c− d‖22 s.t. c ≥ 0. (6)

2.2.5. Fusion Process

The fusion process generates a PS image with GIHS, using the intensity correction coefficients
and the observed images. Since GIHS is a simple fusion technique, it is the optimal technique for the
evaluation of the image quality performance. The validity of the GIHS formula was rigorously proved
for RGB images in Tu et al. [26], and the extension to NIR images has been derived from the form of
the equation. Therefore, this time we applied it to RGB images. Figure 2 shows the procedures of the
fusion process, which are also listed below:

1. Change the MS images into the same size as that of the PAN image using bicubic interpolation,
and produce enlarged MS images MSlow

b∈B.

2. Calculate the enlarged low-spatial-resolution intensity Ilow from MSlow
b∈{red,grn,blu}, as expressed by

Equation (1).
3. Calculate the high-spatial-resolution intensity Ihigh of MSlow

b∈{red,grn,blu} using the estimated correction

coefficients, MSlow
b∈{red,grn,blu}, Ilow, and PANhigh using Equations (3) and (4).

4. Synthesize the PS image from Ilow, MSlow
b∈B, and Ihigh with GIHS, as expressed by Equation (7).

MSPS
red(i)

MSPS
grn(i)

MSPS
blu(i)

 =


MSlow
red (i) + Ihigh(i) − Ilow(i)

MSlow
grn (i) + Ihigh(i) − Ilow(i)

MSlow
blu (i) + Ihigh(i) − Ilow(i)

 (7)
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3. Results

3.1. Experimental Setup

The procedure of the proposed method used the image sizes listed in Table 2. Let the sizes of
the original PAN and MS images be RProw × RPcol and Prow × Pcol, respectively, where R is the ratio
of the number of vertical and horizontal pixels of the PAN image relative to that for the MS image.
Then, the size of the down-sampled test PAN image and test MS image used for the estimation
intensity correction coefficients in Table 2 is Prow

R ×
Pcol
R , and the size of the Test PAN image and the

up-sampled test MS image used for image fusion is Prow × Pcol. The test image was generated by
bicubic spline interpolation. Due to the possible loss of data, the procedure for the estimation of the
intensity correction coefficients does not use up-sampling. The correction coefficients were determined
by solving Equation (5) using the non-negative least-squares method. The correction coefficient is
the value for which the closest agreement is obtained between the spectral characteristics of the
high-resolution PAN image and those of the low-resolution PAN image. The bicubic interpolation
was used for down-sampling and up-sampling of the images used for the experiment of the proposed
method shown in Table 2. For a fair comparison, the up-sampling of the MS images of the related
works was also carried out using bicubic interpolation.
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Table 2. Image size for the estimation of the intensity correction coefficients and image fusion.

Image Estimation of Intensity
Correction Coefficients Image Fusion

PAN image
PANhigh

Down-sampled

Test PAN image
(
R

Prow
R ×

Pcol
R

) Test PAN image(
RProw×Pcol

)
MS images

MSlow
b

Test MS images(
R

Prow
R ×

Pcol
R

) Up-sampled test MS images(
RProw×Pcol

)
3.2. Image Quality Metric

3.2.1. Notation

Ob(i) and Ob denote the i-th pixel value of the b-band reference image and its mean value,
respectively, and PSb(i) and PSb denote the i-th pixel value of the b-band PS image and its mean value,
respectively. N and |B| are the total number of pixels in the entire image for each band and the number
of bands in the PS image, respectively. σOb and σPSb are the variances of the reference and PS images
in the b-band, respectively, and σOb,PSb

denotes the covariance of the reference and PS images in the
b-band. h and l denote the spatial resolution of the PAN and MS images, respectively.

3.2.2. Numerical Quality Metrics

To evaluate the numerical image quality, we employed four metrics: the correlation coefficient
(CC), university image quality index (UIQI) [38], erreur relative globale adimensionnelle de synthese
(ERGAS) [39], and the spectral angle mapper (SAM) [40]. All of the metrics measure the spectral
distortion, and UIQI, ERGAS, and SAM are global metrics.

The CC measures the correlation between the images and ranges from –1.0 to 1.0. A CC value
closer to 1.0 implies a stronger correlation between the spectral information of the PS image and the
original image. The CC is given by

CC = 1
|B| ×

∑
b∈B

CCb

CCb =
∑N

i=1(Ob(i)−Ob)×(PSb(i)−PSb)√∑N
i=1(Ob(i)−Ob)

2
×

√∑N
i=1(PSb(i)−PSb)

2

(8)

UIQI [38] comprehensively measures the value of the loss of correlation, intensity distortion,
and contrast distortion. The loss of correlation measures the degree of the linear correlation between
the images. The intensity distortion measures the closeness of the mean intensity values of the images.
Contrast distortion measures the similarity of the contrasts of the images. These values range from –1.0
to 1.0. A UIQI value closer to 1.0 implies smaller values of the loss of correlation, intensity distortion,
and contrast distortion, so that a higher UIQI value corresponds to a higher quality of the PS image.
UIQI is given by

UIQI = 1
|B| ×

∑
b∈B

UIQIb

UIQIb =
σOb,PSb
σOb
·σPSb
×

2·Ob·PSb

(Ob)
2
+(PSb)

2 ×
2·σOb

·σPSb
σOb

2+σPSb
2

(9)

ERGAS [39] measures the global image quality with a lower ERGAS value corresponding to a
higher spectral quality of the PS image, and it is given by

ERGAS = 100× h
l ×

√
1
|B| ×

∑
b∈B

(
(RMSEb)

2

(PSb)
2

)
RMSEb =

√
1
N ×

N∑
i=1

(Ob(i) − PSb(i))
2

(10)
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RMSEb is the root-mean-square error between the reference image and the PS image in the b-band.
SAM [40] measures the global spectral distortion with the value closer to 0.0 corresponding to

weaker spectral distortion, and is given by

SAM = 1
N

N∑
i=1

SAM(i)

SAM(i) = cos−1

 ∑
b∈B Ob(i)×PSb(i)√∑

b∈B(Ob(i))
2
×

√∑
b∈B(PSb(i))

2

 (11)

3.3. Experimental Results

The intensity correction coefficients were estimated using Equation (5). Table 3 lists the estimated
intensity correction coefficients for the three datasets, where α represents the fraction of the NIR
included in the PAN image, and β, γ, ξ are the fractions of the image where the intensity of the RGB
image that does not match the PAN image.

Table 3. Estimated intensity correction coefficients.

Correction Coefficient Nihonmatsu Yokohama Tasmania

α (NIR) 0.3857 0.3789 0.5734
β (Blue) 0.2199 0.2549 0.2310
γ (Green) 0.1980 0.1123 0.0000
ξ (Red) 0.0486 0.1099 0.1039

The PS image of the proposed method was compared to those obtained by the related methods for
intensity correction, namely fast IHS [26], SAIHS [27], ISAIHS [29], Tradeoff IHS [28], eFIHS-SRF [30],
PRACS [32], and Brovey Transform-Smoothing-Filter-based Intensity Modulation (BT-SFIM) [33].
PRACS [32] was performed using the code developed by Vivone et al. [23]. The detailed parameters of
the existing methods were as follows: the weight parameter for SAIHS was (Green,Blue) = (0.75,0.25),
the weight parameters for ISAIHS were (Red,Green,Blue,NIR) = (0.3,0.75,0.25,1.7), the tradeoff

parameter for the Tradeoff IHS was 4.0, the fraction of the number of photons in the MS band detected
by the PAN sensor of eFIHS-SRF was 0.8, and the mean filter kernel size and the weight parameter for
BT-SFIM were 7× 7 and (Red,Green,Blue,NIR) = (0.26,0.26,0.122,0.375), respectively. The numerical
image quality was evaluated using the CC, UIQI [38], ERGAS [39], and SAM [40] metrics. The sliding
window size of UIQI was 8× 8. Tables 4 and 5 summarize the image quality results for CC and UIQI,
and for ERGAS and SAM, respectively. It is observed that with the exception of the image of Tasmania,
ISAIHS gave good results. The proposed method gave the best UIQI and ERGAS values for all of the
images. The SAM values of eFIHS-SRF and the proposed method are not correlated with the size of
the processed image, while the values obtained by the other methods decrease with the increasing
number of pixels in the processed image. The Tradeoff IHS and the proposed method gave consistently
good results for all of the images. Figure 3 shows the ranking of the quality metric results for the
seven methods. Here, for each test image, the best result is worth three points, the second-best result
is worth two points, and the third-best result is worth one point. The maximum possible number
of points is 36, which is obtained when a method has the best values for all of the metrics. BT-SFIM
uses the coefficients estimated from a relative spectral response graph and does not give good results.
eFIHS-SRF using the coefficients estimated by the relative spectral response graph is the second-best
method after Tradeoff IHS. In contrast, ISAIHS and Tradeoff IHS use the coefficients estimated from
large image datasets and gave good results. These results show that techniques using image datasets
tend to perform better than those using the relative spectral response graph. This demonstrates the
need to consider other observation conditions in addition to the spectral response graphs, and it can be
concluded that the observation dataset contains this information.

Visual analyses are shown in Figures 4–6. In this evaluation, the PS images generated from the test
images were compared to the ground truth RGB images. In Figures 4 and 5, (d)–(l) are the expanded
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images corresponding to the area surrounded by the yellow box in (c). As shown in Figure 4, eFIHS-SRF
(Figure 4i), BT-IHS (Figure 4k), and the proposed method (Figure 4l) reproduced the color tone of the
forest (indicated by red arrows), while the color of the rice field in Figure 4i for eFIHS-SRF was darker
(indicated by green arrows). The green component of PRACS (Figure 4j) was brighter than expected
(indicated by white arrows). As shown in Figure 5, SAIHS (Figure 5f) and ISAIHS (Figure 5g) images
were generally brighter, and the eFIHS-SRF image (Figure 5i) was darker. In Figure 6, eFIHS-SRF
(Figure 6i) and the proposed method (Figure 6l) reproduced the overall color tone, while the PRACS
(Figure 6j) image had a brighter appearance than the images obtained using the other methods, which
were generally whitish. In summary, for the proposed method (Figure 6l), the color tone of the whole
image was consistent with the ground truth image for all images, and the resolution was also good.
The green component of the PRACS image (Figure 6j) is brighter. The results obtained by the other
methods differed depending on the image.

Table 4. Correlation coefficient (CC) and university image quality index (UIQI) quality metrics results.
IHS: intensity–hue–saturation, SAIHS: spectral-adjustment IHS method, ISAIHS: improved SAIHS,
eFIHS-SRF: expanded fast IHS with the spectral response function, PRACS: practical replacement
adaptive component substitution, BT-SFIM: brovey transform-smoothing filter based intensity
modulation. The first row indicates the ideal values. For each metric, the best values are given
in bold, the second-best values are underlined, and the third-best values are double underlined.

Method
CC UIQI

Nihonmatsu Yokohama Tasmania Nihonmatsu Yokohama Tasmania

Ideal value 1.0 1.0
fast IHS 0.783 0.914 0.934 0.717 0.901 0.686
SAIHS 0.830 0.928 0.936 0.743 0.905 0.638
ISAIHS 0.887 0.939 0.949 0.830 0.908 0.708

Tradeoff IHS 0.843 0.928 0.954 0.804 0.909 0.767
eFIHS-SRF 0.818 0.914 0.949 0.733 0.825 0.821

PRACS 0.867 0.865 0.862 0.808 0.791 0.508
BT-SFIM 0.879 0.930 0.952 0.851 0.908 0.760

Proposed method 0.883 0.928 0.966 0.864 0.910 0.935

Table 5. Erreur relative globale adimensionnelle de synthese (ERGAS) and spectral angle mapper (SAM)
quality metrics results.

Method
ERGAS SAM

Nihonmatsu Yokohama Tasmania Nihonmatsu Yokohama Tasmania

Ideal value 0.0 0.0
fast IHS 3.471 3.716 11.440 1.898 2.367 2.912
SAIHS 6.653 4.772 17.775 2.198 2.339 3.932
ISAIHS 4.258 4.470 15.612 1.861 2.297 3.643

Tradeoff IHS 2.910 3.175 8.617 1.783 2.246 2.650

eFIHS-SRF 6.407 7.647 4.578 1.638 2.251 2.102
PRACS 2.870 4.758 8.932 1.993 3.192 5.246

BT-SFIM 4.193 4.138 9.222 2.004 2.408 2.712
Proposed method 2.673 2.697 3.625 1.753 2.176 1.984
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Figure 4. Visual comparison of test Nihonmatsu images: (a) Test red–green–blue (RGB) image; (b) 
Test PAN image; (c) Ground truth RGB image (i.e., Original RGB image); (d) Ground truth RGB 
image of the yellow box area in (c); (e–l) PS images generated by various methods corresponding to 
the area of (d); The red arrow indicates where the forest colors are well reproduced. The green 
arrow indicates where the color of the rice field is dark. White arrows indicate where the green 
tones are light. 

 
(a) Test RGB image 

 
(b) Test PAN image 

 
(c) Ground truth RGB image 

Figure 4. Visual comparison of test Nihonmatsu images: (a) Test red–green–blue (RGB) image; (b) Test
PAN image; (c) Ground truth RGB image (i.e., Original RGB image); (d) Ground truth RGB image of
the yellow box area in (c); (e–l) PS images generated by various methods corresponding to the area of
(d); The red arrow indicates where the forest colors are well reproduced. The green arrow indicates
where the color of the rice field is dark. White arrows indicate where the green tones are light.
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Ground truth RGB image (i.e., Original RGB image); (d) Ground truth RGB image of the yellow box
area in (c); (e–l) PS images generated by various methods corresponding to the area of (d).
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area in (c); (e–l) PS images generated by various methods corresponding to the area of (d).

4. Discussion

The experimental results show that for SAM, only the proposed method and eFIHS-SRF for which
the coefficients are estimated by the relative spectral response graph do not depend on the size of
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the processed image. This indicates that the overall color was not destroyed. In other words, there is
little spectral distortion. Tradeoff IHS performs well on average for all images; however, it does not
exhibit best fitting for the processed images. Since each method has advantages and disadvantages,
we calculated the ranking of the quality metric. According to the results of this ranking, the proposed
method is the best, followed by Tradeoff IHS and eFIHS-SRF. Tradeoff IHS is a method of uniquely
calculating the correction coefficients from the image datasets included in the modeling method,
and eFIHS-SRF is a method of uniquely calculating the correction coefficients using the relative spectral
response graph. The techniques for intensity correction use two methods: the first uses the relative
spectral response graph and the other uses modeling of the obtained image datasets. The comparative
results show that the latter technique provides better performance. Since this method calculates the
intensity correction coefficients from the observed data that include the effect of all factors, it is able
to obtain a good result. For modeling techniques such as SAIHS [27], ISAIHS [25], and PRACS [31],
the modeled intensity is mostly expressed as Ilow =

∑
b∈B ωbMSlow

b or PANlow =
∑

b∈B ωbMSlow
b , where

ωb denotes the b-band correction coefficients; subsequently, some correction coefficients are acquired
by its formula. While the previously used modeling techniques generally obtain correction coefficients
by optimization using image datasets of satellites or observations, the proposed technique is optimized
using an image dataset. The proposed method obtains the best result in the quality metrics score for
all of the image datasets; in particular, the UIQI and ERGAS metrics gave consistently good results.
The results show that the proposed technique reduces the spectral distortion compared to other related
conventional techniques. This suggests that the model can be considered to be adequate. For the
estimation of the correction coefficients, the proposed technique calculates the intensity correction
coefficients for each of the observed data, thus obtaining the better numerical quality metrics than
some of the other modeling techniques that calculate the intensity correction coefficients separately for
each satellite. This suggests that the estimation of the correction coefficients for each image dataset is
adequate because of the different observation conditions and spectral characteristics of the PAN and
MS sensors.

5. Conclusions

This study proposed a novel model of low-spatial-resolution PAN images for pansharpening,
and the intensity correction coefficients were computed using this model and the obtained image
dataset. The PS image is generated using its coefficients and GIHS. The proposed model is formulated
according to the characteristics of the relative spectral response graph. Due to its inclusion of
subtraction, the design of this model is different from that of a conventional model. Therefore,
the correction coefficients calculated for each image correspond to the observation conditions and
sensor characteristics. Compared to other related methods, the proposed method demonstrated
consistently good performance. These results show that the proposed model is adequate and effective
for estimating the intensity of pansharpening. However, the experiments were performed only on the
images obtained from IKONOS; therefore, further verification experiments on images obtained from
other optical sensors are required. We would like to consider finding new application as an important
future work.
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