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Abstract: A novel pulsed neutron imaging technique based on the finite element method is used to
reconstruct the residual strain within a polycrystalline material from Bragg edge strain images.
This technique offers the possibility of a nondestructive analysis of strain fields with a high
spatial resolution. The finite element approach used to reconstruct the strain uses the least square
method constrained by the conditions of equilibrium. This inclusion of equilibrium makes the
problem well-posed. The procedure is developed and verified by validating for a cantilevered
beam problem. It is subsequently demonstrated by reconstructing the strain from experimental
data for a ring-and-plug sample, measured at the spallation neutron source RADEN at J-PARC in
Japan. The reconstruction is validated by comparison with conventional constant wavelength strain
measurements on the KOWARI diffractometer at ANSTO in Australia. It is also shown that the addition
of a Tikhonov regularisation scheme further improves the reconstruction.

Keywords: energy resolved neutron imaging; finite element methods; tikhonov regularisation;
strain tomography

1. Introduction

Energy resolved transmission imaging using time-of-flight spectroscopy [1] of pulsed neutrons
can give high wavelength–resolution Bragg edge transmission spectra of polycrystalline materials [2–5].
In these experiments, the term Bragg edge [6,7] refers to a sudden increase in the relative transmission
of a neutron beam passing through polycrystalline solids as a function of wavelength. A neutron,
of wavelength λ, can be coherently scattered by crystal planes with lattice spacing d, provided that
the scattering angle θ satisfies Bragg’s law (λ = 2d sin θ). A sudden increase in transmission occurs
once λ = 2d is exceeded as a neutron cannot be scattered by more than 180◦ [3,8], so neutrons are
backscattered, and no further diffraction occurs from that particular plane [9,10].

While other approaches exist [2,11–13], the process of measuring Bragg edges we use here relies on
the measurement of the transmission spectra using the time-of-flight or energy-resolved techniques [14].
This method requires a pulsed neutron source. Such a pulsed neutron source can be found in Japan
(J-PARC) [15,16], UK (ISIS) [17], and USA (SNS). The greatest advantage of neutron strain tomography
is that the incident beam flux is fully utilised, helping to reduce the data collection time. Modern
technology uses a pixelated detector consisting of an array of up to 512× 512 pixels with spatial
resolution as small as 55 µm [18]. Such strain imaging raises the prospect of strain tomography,
and several attempts have been made to solve the resulting tensor reconstruction problem over the
past decade. Often the methods of reconstruction have revolved around special cases, for example,
axial-symmetry [19,20].
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It is essential to note that the inverse problem is ill-posed, and reconstruction of the strain is not
easy without imposing further conditions [21] or by making simplifying assumptions [22]. The question
of how best to impose these extra conditions has been the subject of intense debate, and different
approaches have been proposed in the literature. Recently, it has been shown that by applying the
condition of either equilibrium or compatibility, the reconstruction is possible [22,23] (we note that the
main difference between these works is the choice of basis functions which represent the strain field).

In this paper, we describe a method by which it is possible to tomographically reconstruct the
elastic strain from a series of Bragg edge strain measurements using a finite element discretisation
constrained by equilibrium. This condition fits naturally into the finite element framework.
This method offers several advantages over previous methods due to the very desirable properties
of the finite element method. In particular its ability to accurately represent highly spatially varying
functions. The proposed algorithm is tested on a cantilevered beam simulated data in two dimensions.
It is shown to be capable of reconstructing a strain tensor field after imposing the equilibrium
conditions [24,25]. The algorithm is then applied to experimental data for a ring-and-plug geometry.
We introduce a smoothing function to the minimisation problem with a regularisation parameter.
Hence, minimising the value of the objective function will give us a regularised resistivity update
equation to reduce the noise in the reconstructed images.

2. Longitudinal Ray Transform

We outline here the experimental technique which has recently been developed that provides
information on the average strain component in the direction of the incident beam [2]. As mentioned
earlier, Bragg edges are formed by backscattering radiation. Hence, relative shifts in their position
provide a measure of the average normal strain within a sample in the direction of the beam [26], i.e.,

ε =
λ− λ0

λ0
. (1)

Therefore, the average strain within a body as measured by Bragg edge neutron transmission can
be idealised as a line integral known as Longitudinal ray transform (LRT) which captures the average
component of strain along the line s in the direction of the unit normal n̂ = (ni, nj)

T = (cos ϑ, sin ϑ)T .
We define

Γε(x, y, ϑ) =
1
L

∫ L

0
ni εij(x(s, a), y(s, a)) nj ds, (2)

where εij is the component of tensor strain field ε ∈ R2×2, which is mapped to an average normal
component of a strain in the direction of n̂. The ray enters the sample at the position xa and L is
the ray length inside the sample for a particular angle ϑ. This configuration is shown in Figure 1.
This technique relies on the overall change in the lattice spacing along the ray [21,23]. Measurements
are taken in each orientation, ϑi, where a profile is measured of the form Γε(x, y, ϑi). While the inherent
symmetry of the transform implies 180◦ are sufficient, in practice, measurements need to be taken over
an entire revolution, i.e., 360◦.

Lionheart and Withers [21] demonstrated that the integral line LRT is a non-injective map from
ε → Γε(x, y, ϑ) and hence the strain field produced by any given set of projection is not unique [27].
As a consequence, it is not possible to reconstruct the strain distribution within a body in the general
setting. Hence, additional information (equilibrium or compatibility constraints) is required to ensure
it is the actual strain field which is recovered from all the possibilities.
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Figure 1. Two-dimensional representation of Longitudinal Ray Transform: showing a ray entering the
sample of the thickness L at the position a in the direction of n̂.

To this end, several prior approaches have been developed that rely upon assumptions of
compatibility or equilibrium to constrain the problem further. Compatible strain fields are those that
can be written as the gradient of a displacement field in a simply connected body (i.e., conservative
strain fields.). For Example, Abbey et al. [23] developed an algorithm using different radial basis
functions (since their problem was axisymmetric), and they enforced the compatibility constraints [22].
Special cases have been considered including axis-symmetric systems [19,20,23,28] and granular
systems [29] with equilibrium conditions imposed. The unknown strain can also be reconstructed by
using a machine learning technique known as Gaussian Process [25,30], where equilibrium is used as
a central technique to ensure that the strain is chosen uniquely. Furthermore, arbitrary strain fields
produced due to in-situ loadings have been reconstructed by using compatibility [22,31]. We present
here a reconstruction using the finite element method, noting that this method has proved itself to be
widely applicable.

3. Solution using Finite Element Basis Functions

In our numerical implementation, each component of the strain is approximated by a linear
combination of basis functions. These basis functions come from the finite element method. The line
integral (2) is solved in terms of the unknown strains, and it is equated to the Bragg edge measurement.
The uniqueness of the solution is guaranteed by the equilibrium equation, which is imposed on
the minimisation problem used to calculate the backward map for the strain, in the form of extra
constraints. We formulate the problem as follows

ε(x, y) =

[
ε11(x, y) ε12(x, y)
ε21(x, y) ε22(x, y)

]

is the symmetric strain tensor field, i.e., ε12(x, y) = ε21(x, y),

n̂ =
xb − xa

‖xb − xa‖
= (n1, n2),

is normal component, and L = length of a ray inside the sample/geometry. The main problem is to
find the ray transform of the components of strain aligned with the direction of projection n̂ defined in
Equation (2) rewritten in the form

Γε =
1
L

∫ L

0
∑

i,j=1,2
[ εij(xa + sn̂) ni nj] ds, (3)
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where xa = (xa, ya) and xb = (xb, yb) are the entry and exit points of the ray respectively.
The computational solution of the integral Equation (3) requires discretisation, i.e., the integral is
expressed in terms of finitely many unknowns. We discretise the sample by using a quadrilateral mesh
with m nodes and P elements. A visualisation of such a field over a rectangular sample discretised
into rectangles is shown in the Figure 2. A given ray can enter and exit the sample at arbitrary points.
Hence, by applying discretisation we obtain the approximate problem as follows

Γε ≈
1
L ∑

P

∫ 4LP

0
n̂TεP

ij n̂ ds, (4)

where P = {P1, P2, . . . , Pn} is the set of elements and 4LP is the length of the ray in each element.
Note that this length will be zero in many of the elements. An example of such a discretisation is
shown in Figure 2 where the first ray is intersecting with the elements 1, 2 and 5, whereas the second
ray is intersecting the elements 2, 3, 5 and 6. The strain in any element depends on the strain value at
the corner of the quadrilaterals which are the unknowns. In general each node strain will influence the
strain in four elements. The strain at each node has three components.

Figure 2. Finite element discretisation.

The strain is expressed using the standard basis function as follows, see Equation (5) and (7):

εP
ij(x, y) = βP

ij + γP
ij x + ηP

ij y + ζP
ij x y , i, j = {1, 2}, (5)

where, βP
ij, γP

ij , ηP
ij and ζP

ij are the coefficients which are determined from the nodal values of strain in
the element P. The measurement for the first ray in Figure 2 can be approximated by

Γε ≈
1
L

[ ∫ L1

0
n̂Tε1

ij n̂ ds +
∫ L2

0
n̂Tε2

ij n̂ ds +
∫ L5

0
n̂Tε5

ij n̂ ds

]
, (6)

where L = ∑
P

LP, LP is the segment of the ray inside the Pth rectangle where P = 1, 2 and 5 and εP
ij is

strain value in the element P. The value of βP
ij, γP

ij , ηP
ij and ζP

ij for each element can be found by solving
the following equation 

εP
ij(x1, y1)

εP
ij(x2, y2)

εP
ij(x3, y3)

εP
ij(x4, y4)

 =


1 x1 y1 x1y1

1 x2 y1 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4




βP
ij

γP
ij

ηP
ij

ζP
ij

 (7)

where xi and yi are the coordinates of the corner points of the quadrilaterals. In general, each element
P will have different ray entry and exit points. Using the above line integral expression and evaluating
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the basis functions for each element, the integral can be reformulated in terms of nodal strain and we
obtain a system of equations of the form

Γ1

Γ2
...

ΓN−1

ΓN

 = K

ε1
11
...

εm
22

 , m = number of nodes (8)

where N is the total number of projections, Γv, v = {1, ..., N}, is the value from each measurement, K
is the matrix derived from the integrals in Equation (4) expressed in terms of the nodal strain through
Equation (7). We can write this in compact form as

Γ = K ε, (9)

where Γ is a vector containing all of the Bragg edge strain measurements, K is the coefficient matrix
with elements that contain unit direction vector components and shape function evaluations which will

be a sparse matrix, and ε =
[
ε1

11 · · · εm
22

]T
is a vector containing all the unknowns for each element.

Once the matrix K and vector Γ have been formed, the problem is reduced to one of solving the
linear algebraic system of equations for the unknown coefficients represented by vector ε. In practice,
the system is usually over-determined since the number of unknown coefficients is relatively small
compared to the amount of experimental data available. Furthermore, the K matrix will be sparse.

As it was pointed out before by Lionheart and Withers [21] the strain field is not uniquely defined
within an object from these measurements. For this reason with apply the constraints to our problem
obtained by solving the equilibrium equations. From Hooke’s law, the equilibrium equation can
directly be written in terms of strain. Assuming plane stress condition, the equilibrium conditions can
be written as

∂

∂x
(ε11 + νε22) +

∂

∂y
(1− ν)ε12 = 0, (10a)

∂

∂y
(ε22 + νε11) +

∂

∂x
(1− ν)ε12 = 0, (10b)

where, ν is the Poisson’s ratio. To reconstruct the strain, the equilibrium Equations (10a) and (10b) are
integrated over each element P, which will lead us to the following equations using (5)

x

P

[
γP

11 + ζP
11y + ν(γP

22 + ζP
22y) + (1− ν)(ηP

12 + ζP
12x)

]
dxdy = 0, (11a)

x

P

[
ηP

22 + ζP
22x + ν(ηP

11 + ζP
11x) + (1− ν)(γP

12 + ζP
12y)

]
dxdy = 0. (11b)

This provides another set of a system of equations

Cε = 0, (12)

where C represents the equilibrium integral matrix, which has two rows. Solutions to the minimisation
problem were found by least-square fitting [32], where the problem is reduced to: find a vector ε

such that
min
Cε=0

‖Kε− Γ‖2, (13)

The minimisation problem (13) is solved straightforwardly using least squares.
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4. Cantilevered Beam

To demonstrate the performance of the proposed algorithm, a well-known 2D cantilevered beam
problem is studied, which was previously examined by Wensrich et al. [31]. We consider the 2D
strain field for beam geometry of the rectangle [0, 12]× [0, 10] with the load P of 2 kN displayed in
Figure 3. Material properties of the beam are representative of common steel, whereas other parameters
are mentioned below. This beam problem is excellent for testing the algorithm since the analytical
solutions to the strain field exist.

Assuming plane stress, the Saint-Venant approximation to the strain field is [33]:

ε(x, y) =

[
(L− x)y − (1+ν)

2 ((W
2 )2 − y2)

− (1+ν)
2 ((W

2 )2 − y2) −ν(L− x)y

]
P
EI

.

where I is the second moment of area, L is the total length of the beam, W is the width of the beam, t is
the thickness, E is Young’s modulus, ν is Poisson’s ratio, and the dimensions are shown in Figure 3.

Figure 3. Cantilevered Beam Geometry with L = 20mm, W = 10mm, t = 5mm, E = 200GPa, ν = 0.3,
I = tW3/12.

A finite element model of the system was constructed, with a rectangular mesh. The reconstructed
solution to the strain field for the cantilevered beam is shown in the Figure 4.

Figure 4. Beam solution (Top figure: Reconstructed solution εxx, εxy, εyy and lower figure: True solution
εxx, εxy, εyy).

We found that the proposed reconstruction algorithm is extremely effective in achieving strain field
reconstruction. A finite element model of the system was constructed, with a structured quadrilateral
mesh size 4× 4. Simulation results suggest that the reconstruction algorithm can converge to an
adequate reconstruction provided that measurements are taken over the entire 360◦ of a sample.
Problem discretisation and numerical errors can undoubtedly contribute to an imperfect reconstruction



J. Imaging 2020, 6, 13 7 of 13

(with more noise). Rapid convergence to the true solution was observed as the number of projections
was increased. This convergence provides confidence in the ability of the algorithm to converge to a
true solution in the presence of real experimental uncertainties.

5. Reconstruction of the Offset Ring-And-Plug

We now test the algorithm on experimental data for an offset ring-and-plug sample, which was
used previously [24]. The sample geometry of the offset ring-and-plug is shown in Figure 5.
The described sample contained a total interference of 40± 2µm produced through cylindrical grinding.
More details about the sample can be found in [24]. A steel bar EN26 was heated to relieve stress
and provide a uniform structure prior to the assembly. The final hardness of the sample was 290 HV.
The strain profile was measured on RADEN together with an MCP detector at a distance of 17.9 m
from the source of the beam. RADEN is an energy-resolved neutron imaging instrument at the Japan
Proton Accelerator Research Complex (J-PARC), Japan, [15,16] was used to obtain the relative shifts of
the Bragg edge corresponding to the lattice plane of the offset ring-and-plug steel sample. Neutron
strain scanning was carried out on KOWARI, a residual stress diffractometer at the Australian Nuclear
Society and Technology Organisation (ANSTO), Australia to provide independent validation of our
reconstruction. Sampling times on KOWARI were based on providing uncertainty in strain around
7× 10−5, which required around 30 h of beamtime per component. However, sampling times on
RADEN were based on statistical uncertainty of the order 1× 10−4. In total, 50 profiles were measured
at golden angle increments in ϑ with a sampling time of 2 h per projection.

Figure 5. Sample Geometry (all dimensions are in mm).

A finite element quadrilateral mesh is used to discretise the domain of the sample, as shown
in Figure 6. Two types of mesh patches have been considered: structured and unstructured meshes.
Reconstruction results can be seen with each mesh type in Figures 7 and 8. Again, as mentioned before
for the beam problem that the reconstructed strain field contains noise, which can be from numerical
discretisation or measurements. Some techniques are explained in the next section to cope up with
noise present in the strain field.
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(a) Structured Mesh (MT1) (b) Unstructured Mesh (MT2)

Figure 6. Mesh Patches.

Figure 7. Ring-and-plug reconstructed strain field εxx, εxy, εyy for mesh type MT1.

Figure 8. Ring-and-plug reconstructed strain field εxx, εxy, εyy for unstructured mesh type MT2.

Different type of the mesh has been shown variation results, which proves that our algorithm is
highly dependent on the mesh. It was observed that results with an unstructured mesh show better
agreement than the structured mesh in terms of noise. This is because the unstructured mesh is evenly
distributed throughout the sample domain, unlike the structured mesh, resulting in reduced numerical
noise. Results are then compared with the pointwise measurement of strain on KOWARI, the constant
wavelength diffractometer shown in Figure 9 with the reconstructed transmitted measurements of
strain on RADEN shown in Figures 7 and 8.
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Figure 9. Ring-and-plug strain images obtained from KOWARI.

6. Tikhonov Regularisation

Until this point our reconstruction does not involve any smoothing. As a result, reconstruction
images have noise which can arise from different sources such as from instrumental measurement noise
or the simulation procedure. To manage this noise, Tikhonov regularisation is used [34]. The Tikhonov
regularised estimate is defined as the solution of the following minimisation problem where the first
term is the same euclidean norm used before in Equation (13). The second term is known as the
regulariser which captures the prior knowledge and behavior of ε through an additional penalty term

εR = min ‖Kε− Γ‖2 + α‖Bε‖2
2, (14)

where ‖ · ‖2 is Euclidean norm, α > 0 is the regularisation parameter which specifies the amount of
regularisation. The effect of regularisation can be varied due to the scale of the matrix B. The matrix B
is a block diagonal matrix where the block diagonal entries can be chosen in several ways such as zero
matrix which will bring our problem back to unregularised least square problem, it can be identity
matrix shown in Figure 10. Hence, in our case, B is chosen as the block diagonal matrix as

B =

S 0 0
0 S 0
0 0 S

 ∈ R3n×3n,

where Sij =
∫

Ω Oφi ·Oφj for i, j = 1, 2, ..., n, and φi, ∀ i, are the standard basis functions for quadrilateral.
Numerically, the minimum is achieved by solving a linear least-square problem of the form:

εR = min

∥∥∥∥∥
(

K
αB

)
ε−

(
Γ

0

)∥∥∥∥∥
2

2

.

Above equation is solved in MATLAB with a built-in function "lsqlin". The main problem here is to
determine proper regularisation parameter α; if the parameter is significant, the solution will deviate
from the correct solution, and if the parameter is small, then there will not be any significant difference
in the noise. For now, we find this parameter by trial and error; however, it can also be achieved using
optimisation methods [35]. The effect of Tikhonov regularisation can be seen in the Figures 11–13,
where the difference is shown for different values of α.
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Figure 10. Regularised strain field εxx, εxy, εyy respectively for unstructured mesh type, with S as
identity matrix and α = 0.005.

Figure 11. Regularised strain field εxx, εxy, εyy respectively for unstructured mesh type, with S as
stiffness matrix and α = 0.001.

Figure 12. Regularised strain field εxx, εxy, εyy respectively for unstructured mesh type with S as
stiffness matrix and α = 0.005.
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Figure 13. Regularised strain field εxx, εxy, εyy respectively for structured mesh type, with S as stiffness
matrix and α = 0.005.

To summarise, in Tikhonov regularisation, we approximate the minimum norm by least squares.
Least square solution φR depends on Kφ, by a vector depending on the regularisation parameter α > 0.
Reconstruction is done on finite element rectangular mesh with 3688 elements for the unstructured
mesh and 3776 elements for structured mesh type. Minimisation problem for both cases (with and
without regularisation) is solved in MATLAB by using built-in function ’lsqlin’, which were then plotted
by using ’scatteredInterpolant’ with linear map fitting. The proposed algorithm does not solely depend
on the sample geometry and hence, can be extended to three-dimensional sample bodies. The true
difficulty will be the computational cost and time since the size of the problem will be larger.

7. Conclusion

The proposed method helps to reconstruct the entire strain field, satisfying equilibrium with no
assumptions of compatibility and hence is suitable for reconstructing residual strain fields. The KOWARI

strain and RADEN reconstructed strain field measurements show closer agreement with the inclusion
of regularisation. The proposed method was validated with simulated data and strain estimates
from experimentally measured data at J-PARC, Japan, which were compared to the strain calculation
from a conventional diffraction method obtained at KOWARI. In two dimensions, full strain fields
tomography using Bragg edge images can now be achieved using physical constraints as equilibrium.
This method opens up further research for future investigations, including extending this technique
to three dimensions. Furthermore, the proposed method allows us to use adaptive meshes that can
focus on the highly strained area in the sample, which can be achieved by calculating a gradient over a
sample.
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