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Abstract: This paper presents automated harmonic removal as a desirable solution to effectively
identify and discard the harmonic influence over the output signal by neglecting any user-defined
parameter at start-up and automatically reconstruct back to become a useful output signal prior to
system identification. Stochastic subspace-based algorithms (SSI) methods are the most practical tool
due to the consistency in modal parameters estimation. However, it will be problematic when applied
to structures with rotating machines and the presence of harmonic excitations. Difficulties arise
when automating this procedure without any human interaction and the problem is still unresolved
because stochastic subspace-based algorithms (SSI) methods still require parameters (the maximum
within-cluster distance) that are compulsory to be defined at start-up for each analysis of the
dataset. Thus, the use of image-based feature extraction for clustering and classification of harmonic
components and structural poles directly from a stabilization diagram and for modal system
identification is the focus of the present paper. As a fundamental necessary condition, the algorithm
has been assessed first from computed numerical responses and then applied to the experimental
dataset with the presence of harmonic excitation. Results of the proposed approach for estimating
modal parameters demonstrated very high accuracy and exhibited consistent results before and after
removing harmonic components from the response signal.

Keywords: harmonic removal; automated OMA (AOMA); operational modal analysis; stochastic
subspace identification; stabilization diagram; clustering

1. Introduction

The present structural modal identification method, operational modal analysis (OMA), is widely
and commonly used within various engineering fields, such as mechanical, aerospace, electrical and
civil, due to its capability to implement economical and fast tests that rely solely on structural
response signals induced by undetermined ambient excitations (operating loads, wind, turbulence,
traffic) without affecting its operating conditions [1,2]. This means that OMA techniques have major
advantages compared to classical experimental modal analysis (EMA), which requires input excitations
for structural modal identification [3,4].

In recent years, the development of automated procedures for identifying modal parameters in
operating conditions has become increasingly popular and stochastic subspace-based algorithms (SSI)
methods have been selected as the most practical tool for this procedure due to the consistency in modal
parameters’ estimation, especially under non-stationary noise excitations [5–15]. However, the use of
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subspace-based algorithms for OMA and structural health monitoring (SHM) will be problematic when
applied to structures with rotating machines, due to the harmonic excitations. Harmonic components
are sometimes considered as virtual modes in the identification and are potentially mistaken for being
structural modes [16], and thus might lead to potentially bias the estimation of the actual modes where
the standard automated OMA approaches cannot be applied in a straight-forward way [17,18].

It should be noted that harmonic components cannot, in general, be removed by simple filtering,
as this would in most practical cases significantly change the poles of the structural modes and thereby
their natural frequency and modal damping. Here, several indicators for the separation of structural
and harmonic modes in output-only modal identification are proposed in Table 1 below.

Table 1. Overview of methods for identifying harmonic components and structural modes.

Technique Description

Short-Time Fourier Transform (STFT)

Short-time Fourier transform (STFT) is one of the methods of
linear time-frequency domain analysis and display response in a
contour plot. For structural modes, the plot will indicate thick
vertical lines, while harmonic components are shown as thin
vertical lines for stable conditions.

Singular Value Decomposition (SVD) [19]

When SVD curves are plotted, the peaks will indicate whether
they are due to a harmonic component or a structural mode. If a
narrow peak is shown in more than one singular value, this will
indicate a harmonic excitation, while a peak of a structural mode
only appears in one singular value due to the rank of the matrix.

Visual Mode Shapes Comparison

Operating deflection shape (ODS) will be displayed with the
combination of several excited modes if the frequency of a
harmonic component appears far away from a structural mode.
Meanwhile, if the frequency of a harmonic component is near to
structural mode, the ODS of the harmonic component will be
similar to the mode shape and thus can be mistaken for being a
mode shape.

Modal Assurance Criterion (MAC) [20]

The MAC value plays a crucial role to determine whether they
are due to a harmonic component or a structural mode,
which will depend on the modes being excited. The MAC value
will produce a high correlation between a true mode shape and
an ODS of the harmonic component, while low correlation is
generated for closely spaced modes.

Stabilization Diagram [21,22]

A stabilization diagram can distinguish between stable,
unstable and noise modes based on the specific requirements of
the mode indicator and which one is respected to the set for
variation between models of consecutive orders thresholds.
Meanwhile, a stabilization criterion for harmonic components is
identified by adjusting the valid range of damping ratios.

Probability Density Functions (PDFs) [23]

The significant difference in PDF distribution of a harmonic
component and stochastic input can be used as a harmonic
indicator. The response of stochastic input yields a PDF
distribution of Gaussian-distributed bells, while the harmonic
component will produce a deterministic sinusoidal response at
their excitation frequency.

Kurtosis [16,24–27]

Kurtosis criteria have also been used to identify harmonic
components and structural modes based on a significant
difference in the statistical properties of PDF. The kurtosis value,
γ for PDF of the sinusoidal function, is 1.5 by showing it as more
“pointier”. Meanwhile, a Gaussian PDF is much wider with
kurtosis value γ of 3.
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In the context of a system subjected to random excitation combined with the steady-state signal,
the subspace-based methods identify the harmonics as very lightly damped modes that one can filter
in the mode selection process [28]. Difficulties arise when automating this procedure in the parametric
method without the need of any human interaction because in traditional modal identification using
the parametric method, the model order is often oversized in order to capture all physical modes
in the frequency range of interest. Model oversizing is needed as models are often biased and do
not include any noise modeling. The separation between physical and spurious modes involves
a lot of interaction by a skilled analyst. Thus, a significant tool, such as a stabilization diagram,
is needed to distinguish between physical and spurious modes. The selection of physical modes
can be a complex task because it involves the setting of inconsistency thresholds for each modal
parameter by the user. The development of automated OMA procedures marked a fundamental
step toward the elimination of user intervention since traditional modal analysis requires a large
amount of human intervention, particularly by an expert user. Since a lot of human intervention is for
monitoring purposes, clustering tools are proposed to automate modal identification by discriminating
physical poles from others. The current clustering tools require at least one user-defined parameter, the
maximum within-cluster distance between representations of the same physical mode from different
system orders and the supplementary adaptive approaches have to be employed to optimize the
selection of cluster validation criteria [8,11,21,29]. In addition, the values for thresholds and parameters
are inconsistent due to natural variations in modal properties of structures that come from damage or
environmental influences that bring more difficulties to existing approaches [30].

In that case, a desirable solution is required to effectively identify and discard the harmonic
influence over the output signal by neglecting any calibration or user-defined parameter at start-up and
then automatically reconstructing back to become a useful output signal prior to system identification.
Thus, the development of such a novel approach for an automated harmonic removal method in the
SSI framework using image-based feature extraction for clustering and classification of harmonic
components from structural poles and also for modal system identification is the focus of the present
paper. As a fundamental necessary condition, the algorithm has been assessed first from computed
numerical responses based on random white noise, acting on three shear-type frame structures,
corrupted with noise and with the addition of harmonic excitation. Then, the original implementation
is also applied to the experimental dataset with the presence of harmonic excitation.

The rest of the paper is organized as follows. Section 2 covers the steps of the theoretical formulation
of an automated harmonic signal removal, while Section 3.1 discusses the preliminary analysis using
the proposed approach on the simulated signal analysis using white noise input on a three-story frame
and with the addition of harmonic excitation and multiples of it. Then, the comprehensive results and
discussion of the experimental study on the three-story steel are presented in Section 3.1. Section 4
conclude the paper.

2. Materials and Methods

The automated harmonic signal removal technique in OMA based on parametric methods consists
of the following steps, as shown in Figure 1:
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The steps required for the automated denoising technique are outlined in Figure 1. The first step
is to estimate the modal parameters of the responses of the structure using the parametric method
with a high model order. When the modal parameters are estimated, the stabilisation diagram can
be constructed. Harmonic component can be identified by adjusting the valid limit range of modal
damping ratios to be very low in the stabilization diagram. Then, image-based feature extraction is
applied to cluster all poles according to modes of interest, all stabilized poles (structural or harmonic
component). Classification of structural modes and harmonic component frequency is performed
using image shape recognition and classifier. Finally, the identified harmonic frequency is filtered out
from the measured response signal and only the useful signal using sinusoidal model fitting is left.

2.1. Stochastic Subspace Identification Technique (SSI)

Stochastic Subspace Identification (SSI) has been a recognized approach since the previous
decade, primarily because of its user-friendly execution [31]. This paper is only concerned with
correlation-driven SSI (COV-SSI), one of the SSI methods. The COV-SSI analyzes a stochastic state-space
model from the response data of the structure [21] and a working algorithm almost similar to the
Eigenvalue Realization Algorithm (ERA) [32]. Using SSI according to algorithm 1 for the principal
component version requires a large model with 80 block rows of the half-block Hankel matrix for the
estimation. The further details of its derivation are defined in the literature review.

The initial step is to compute the output correlations as shown in Equation (1). [Ri] indicates the
correlation matrix at time lag i based on discrete data, as follows:

[Ri] =
1

N − i

[
Y(1:N−i)

][
Y(i:N)

]T
(1)

where
[
Y(1:N−i)

]
is the data matrix Y with the last block rows, i, removed and

[
Y(1:N−i)

]
is the

transpose data matrix with the first block rows, i, removed. Hence, each [Ri] matrix gets dimensions
l*l. The computed correlations at different time lags are then stored in the block Toeplitz matrix.
The size of the Toeplitz matrix becomes n*n when estimating modal parameter with model order n.
Thus, the subsequent Equation (2) should correct for the number of block rows i:

li ≥ n, imin = x
nmax

l
(2)
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The magnitude, x, and maximum system order, n, were set as 2 and 50 modes, respectively.
The next step is to calculate the singular value decomposition (SVD) of the block Toeplitz that can
provide the unitary matrices [U] and [V]. The positive singular values are ranked in descendant order
of the diagonal matrix [Σ] as in Equation (3) [33]:[

T1|i
]
= [U1][Σ1][V1]

T = [Oi][Γi] (3)

To extract the dynamic response, the state matrix [A] needs to be obtained. This is done for each
order from 1 to nmax. The observability matrix [Oi] and the reversed controllability matrix [Γi] are found
by the factorization of

[
T1|i

]
. The result of SVD of

[
T1|i

]
computed in Equation (3) can be used to find

[Oi] and [Γi] by separating the SVD into two parts and using the identity matrix [I], as in Equations (4)
and (5):

[Oi] = [U1][Σ1]
1/2[I]T (4)

[Γi] = [I]−1[Σ1]
1/2[V1]

T (5)

Now that [Oi] and [Γi] have been obtained, the output influence matrix [C] and the state-output
covariance matrix [G] can be computed. Matrix [C] is attained from the first row of [Oi]. Meanwhile,
[G] is obtained from the last column of [Γi]. The normal Toeplitz matrix produces Equation (6):[

T2|i+1

]
= [Oi][A][Γi] (6)

Resolving the eigenvalue problem for [A] produces the diagonal matrix [M] and the eigenvectors
[Ψ], as in Equation (7):

[A] = [Ψ][M][Ψ]−1 (7)

The mode shapes of the system [Φ] are obtained from [Ψ] and [C], and the other modal parameters
are attained from the eigenvalues µm, which are found in the diagonal matrix [M]. The values are in
discrete time and need to be transformed to continuous time, as in Equation (8):

λm =
ln(µm)

∆t
(8)

the complex λm which contains the continuous time eigenvalues of each mode for the current order.
This can be used to find the natural frequencies (ωn), damped modal frequencies (ωd) and modal
damping ratio (ζ) for the r-th mode, as in Equations (9)–(11) as follows:

ωn,r =
∣∣∣λm,r

∣∣∣ (9)

ωd,r = Im(λm,r) (10)

ζr = −
Re(λm,r)∣∣∣λm,r

∣∣∣ (11)

The step of identifying the state matrix and the modal parameters are repeated for each order up
until nmax before being plotted in a stabilization diagram.

2.2. Harmonic Detection Using Stabilization Diagram

When the modal parameters are estimated using the SSI techniques, the stabilization diagram can
be constructed in order to select the optimal State Space Dimension. This tool is a typical means to
distinguish between stable, unstable and noise modes, which is performed by estimating poles with
an increasing model order. The unstable and noise modes appear due to an oversized model system.
The noise modes are caused by physical reasons, while the unstable modes are generated to ensure the
mathematical description of the measured data. Theoretically, the stabilized physical modes can be
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identified by the vertical alignment of stable poles, while noise modes are scattered. This is based on
the poles’ comparability with respect to the order of the given model with that obtained from a lower
order model [21].

The natural frequencies and damping ratio of poles from two orders are compared using
Equations (12) and (13) as follows [22]: ∣∣∣ f (n− 1) − f (n)

∣∣∣
f (n− 1)

< x (12)

∣∣∣ζ(n− 1) − ζ(n)
∣∣∣

ζ(n− 1)
< y (13)

For modes to be classified as stable, they must meet the specific requirements of the mode
indicator with respect to the following thresholds which are set for variation between models of
consecutive orders: natural frequency variation <1% [34], and modal damping ratio variation <5%.
Meanwhile, a stabilization criterion for harmonic components is identified by adjusting the valid
range of damping ratios to be of very low value, which is a modal damping ratio variation of less
than 0.1%, as a limit for variations between models of consecutive orders, since damping ratio is an a
priori indicator to distinguish between harmonics and structural poles. Generally, the damping ratios
of real poles vary between 0.1% and 2%, while harmonic components exhibit the very low value of
the damping ratios due to the appearance of the sharp peak. This information enables modes with
negative and high damping to be eliminated [35]. These thresholds allow the clear distinction of vertical
alignments as stable modes that represent the modes of vibration and both harmonic components and
non-physical modes that can be filtered out.

Then, all the distinguished poles displayed in the stabilization diagram plot are labelled into
specific color and type of shape accordingly, as characterized in Table 2 below. Examples of an edited
stabilization plot are shown in Figure 2 below.

Table 2. Specification of shape and color according to the type of poles.

Type of Poles Type of Shape Color

Stable Diamond Blue
Unstable Circle Red

Harmonic Square Green
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2.3. Clustering Using Image Feature Extraction

The procedure of using image clustering with respect to the similar physical pole of the stabilization
diagrams is outlined below.

2.3.1. Input Image

The process of image clustering requires the input image of the stabilization diagram that has
been cut down into a certain interval frequency accordingly. In this case, the stabilization diagram was
generated and displayed separately into every frequency according to a 0.01 interval as in Equations (14)
and (15) below:

(maximum frequency)/0.01 = total images (14)

xlim([(p− 0.01) p]) (15)

where p is the value of natural frequency. Thus, every image represents a frequency of 0.01 Hz.
The process of this procedure is shown in Figures 3 and 4 below. In order to make image feature
extraction more efficient, all axes and legends in the plot of these images have to be removed.
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2.3.2. Image Feature Extraction

Then, the standardized image features from MATLAB software (a multi-paradigm numerical
computing environment and proprietary programming language developed by MathWorks) were
applied in this study to extract the image features of each image of stabilization diagrams that were
previously generated. These features specifically represent the characteristics of each parameter (natural
frequencies, damping ratios) for different conditions, either stable or unstable. The standardized image
feature, Maximally Stable External Regions based on regions as the characteristic value, was used
in this study in order to capture all the modes of interest particularly in terms of computational
mode appearance.

Generally, the image feature will provide a certain value based on its image characteristics. If the
image is blank, the value will become zero, otherwise, if the pole appears, the value will increase.
The increasing value of image feature extraction depends on the number of poles appeared in that
particular image. It works well with stabilization diagram because the stabilize physical modes
consist of the vertical alignment of stable poles, while noise modes are scattered. By generating
the image of stabilization diagram according to 0.01 interval frequency (cut down vertically),
the poles can be clustered accordingly. Therefore, the generated input image based on the interval
frequency of stabilization diagram plays a key role in the performance of the image feature extraction.
Details explanation about the process of this procedure was shown in Figure 5 below.
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This algorithm was configured to group all the physical poles of the stabilization diagram by
using image features extraction and then constructing an image clustering plot, as shown in Figure 6
below. The selection of the physical modes of the system that were autonomously implemented,
involved MATLAB command—find and the threshold in order to discriminate the weak ones and leave
only the dominant modes. The approach is based on excluding the weak modes with lower value
than the threshold. The threshold is set to be 20 features in an image clustering plot (10 poles only
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considered as stable). The example of the generated images that have been classified as physical modes
from the clustering plot are displayed in Figure 7.J. Imaging 2020, 6, x FOR PEER REVIEW 9 of 39 
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2.4. Classification of Structural Modes and Harmonic Component Using Shape Recognition

The classification of structural modes and the harmonic component of the system was
autonomously implemented in MATLAB using shape recognition process.

The process of shape recognition starts with the reading input image from the graphics file.
Then, the input RGB image (stands for “Red Green Blue” and refers to three hues of light that can be
mixed together to create different colors image) is converted to the greyscale image by eliminating the
hue and saturation information while retaining the luminance. The computation of a global threshold
from the grayscale image is performed using Otsu’s method [36] before being converted into a binary
image based on this threshold by replacing all pixels in the input image with luminance greater than a
level with the value 1 (white) and replacing all other pixels with the value 0 (black). Otsu’s method
chooses a threshold that minimizes the intraclass variance of the threshold black and white pixels.
Next, the binary image is inverted and the subsequent process of tracing the exterior boundaries region
is implemented in order to determine shape properties. Lastly, all input images are classified according
to shape properties that have been identified before. The overall steps of the shape recognition and
classifier process is shown in Figures 8 and 9.
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Figure 9. Steps of the shape recognition process (a) original image, (b) grey image, (c) binary image,
(d) inverted binary image and (e) results in images respectively, of the three-story frame model from
numerical simulations.

Harmonic frequencies are determined based on the presence of square-shape poles recognized
inside an image that represent a harmonic component. The square-shape pole is detected by a magenta
square marker type as shown in Figure 10 below and the obtained image number represents harmonic
frequency after multiplying by 0.01 because every image represents the frequency of 0.01 Hz.
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Figure 10. (a–c) First, second and third harmonic modes respectively, detected by magenta square
marker type, of the three-story frame model from numerical simulations.

2.5. Remove Harmonic Signal Using Sinusoidal Model Fitting

The next step is to remove the harmonic signal by applying nonlinear regression (by the use of
MATLAB command, nlinfit) of the responses input signal on the predictors in time using a sinusoidal
model function, ys, as in Equation (16) below, since harmonic excitations produce a deterministic
sinusoidal response at their excitation frequency throughout the measurement duration [19]:

ys = A sin(2πtB) (16)

where t represents the vector of time, A and B are the coefficients parameters to be fitted. The coefficients
are estimated using iterative least squares estimation, with initial values specified by [A B]. The value
of A and B are 1 and the identified harmonic frequencies (obtained from the previous step) respectively.

Then, the estimated regression coefficients are used to reconstruct the sinusoidal signal that
represents harmonic frequency. Then, the generated sinusoidal signals, yh are automatically removed
from the original signal, yo and leave only the useful input time series response signal, yc that free
from the harmonic component by simple means, as shown in Equation (17):

yc = yo − yh (17)

2.6. Estimate Modal Parameter

The identification of modal parameters is essential in order to determine the inherent dynamic
characteristics of a system. For the estimation of natural frequencies, it has been discussed in the
previous section. Therefore, this section only focuses on the estimation of modal damping ratios.
Generally, the process of estimating the modal damping ratios depends on the identified natural
frequencies which are based on the frequency versus modal damping ratios plot in the stabilization
diagram. Only stable poles are chosen to be displayed in this plot, as shown in Figure 11 below.
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Figure 11. Plot frequency versus modal damping ratio of the three-story frame model from
numerical simulations.

The process of extracting modal damping ratios from the frequency versus modal damping ratio
plot involves the same process as the natural frequency, which uses image clustering, but in terms of
the generated input images, it is quite different.

The process of the generated input image for modal damping ratios from the frequency versus
modal damping ratios plot requires the identified natural frequencies as a fixed x-axis and the value of
modal damping ratios along the y-axis. In this case, the input image was generated and displayed
separately into every value of the modal damping ratio according to a 0.002 interval along the y-axis
with the fixed value of identified natural frequency in the x-axis, as characterized in Equations (18)
and (19), respectively. In order to make image feature extraction more efficient, all axes and legends in
the plot of these images must be removed.

ylim([(p− 0.002) p]) (18)

xlim([(d− 0.01) (d + 0.01)]) (19)

where p and d are the value of modal damping ratio and estimated natural frequency respectively, in the
frequency versus modal damping ratio plot. The selection of 0.002 as an interval for the generated
modal damping ratio along the y-axis is because it can provide more sensitivity and more accurate
results. The results of the estimation modal damping ratio according to the 0.002 interval exhibits very
satisfying results that are close to target value compared to the 0.01, 0.005 and 0.001 intervals. The use
of the 0.002 interval is appropriate to capture all the poles of interest. The process is repeated for each
mode because each mode has its own natural frequency. In order to make image feature extraction
more efficient, all axes and legends in the plot of these images must be removed.

The standardized image features from MATLAB, Maximally Stable External Regions based
on regions as the characteristic value, was applied to extract the image features of each image of
stabilization diagrams that were previously generated. The image feature will provide a certain value
based on its image characteristics. If the image is blank, the value will become zero, otherwise, if the
pole appears, the value will increase. Each pole presents the value of 2, the increasing value of
image feature extraction depends on the number of poles that appeared in that particular image.
This identified image features extraction are then constructed in image clustering plot, as shown in
Figure 21. The process is repeated for each mode because each mode has its own natural frequency.

The estimation of the modal damping ratio for each mode is autonomously implemented,
and involves the MATLAB command—find and is based on the maximum number of images featured
in image clustering plot.
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3. Results and Discussion

3.1. Validation with Numerical Simulations

As a fundamentally necessary condition, the algorithm has been assessed first from computed
numerical responses based on random white noise, acting on different ideal shear-type frame structures.
In this section, the proposed algorithms are validated using simulated data from a simple three-story
shear-type model consisting of three degrees of freedom (DOF), as illustrated in Figure 12. All these
structural features with different DOFs are examined first [37–39].

The characteristics of the simulated three-story shear-type models which present well-separated
modes are provided in Appendix A by the stiffness (K), mass (M) and damping (C) matrices and
by the corresponding modal parameters: natural frequencies, modal damping ratios and mode
shapes. The well-separated modes and different DOFs are used in this study in order to discover the
effectiveness of the proposed approach for the diversity of features and type of structure. The damping
of the structure is viscous (damping forces proportional to velocity) and proportional Rayleigh damping,
described by mass and stiffness:

[C] = [Cm] + [Ck] = a0[M] + a1[K] (20)

where [Cm], [Ck], [M] and [K] are the mass proportional damping, stiffness proportional damping,
mass and stiffness matrices, respectively. Meanwhile, a0 and a1 are the coefficients describing the mass
and stiffness proportional damping.

To determine the coefficients a0 and a1, the prescribed modal damping ratios for three-storey
shear-type models are set to ζk = ζ j = 1% of critical damping. In the literature, only lightly damped
structures that contain modal damping ratios below 2% are considered for analysis [40–45]. The system
matrices were defined with the aim of achieving modal parameters with values of the same order of
magnitude as the ones usually found in current civil engineering structures.
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Figure 12. Three-story frame models.

Input is taken as a stationary broadband ambient excitation with normally distributed random
numbers assuming independent inputs for all DOF of the models. It has a constant power spectral
density (PSD) which can cover a wide range of frequencies and is adequate to excite all the structural
modes. The random input excitation, which is also known as zero-mean Gaussian white noise, takes the
assumption of the excitation system to be linear and time-invariant. The response of the system is
simulated using Newmark’s method with constant average acceleration (i.e., γ = 12 and β = 14) [46].
The adopted parameters in the processing are shown in Table 3 below.
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Table 3. The adopted parameters for the three-story frame in the processing.

Parameters Three-Story Frame

Length of time series, t (s) 600
Sampling frequency, fs (Hz) 200

Adopted frequency resolution, ∆ f (Hz) 0.00167

The simulated outputs, which are time series with the accelerations of all the DOFs of the models,
are corrupted with noise that mimics the influence of the sensors and measuring chain noise. This is
simulated by normally distributed random numbers with a standard deviation equal to 10% of the
standard deviation of the simulated outputs (this percentage of noise is quite conservative in the case
of well-conducted ambient vibration tests [34]).

In order to evaluate the influence of the presence of harmonic components on the exciting force,
and to check the efficiency of the proposed automated harmonic signal removal, a combination of
harmonic excitation and Gaussian white noise excitation with zero mean is applied to each mass
separately. The frequencies of the applied harmonic excitation to structural modes are equal to 3 Hz
and multiples of it (6 Hz and 9 Hz), as shown in Table 4. The estimated first singular value of the
power spectral density (PSD) matrix and the spectrogram of the simulated temporal response are
shown in Figures 13 and 14 respectively, which present six dominant peaks combining structural and
harmonic modes. Among the six dominant modes, three of them are harmonic component frequencies
and the other three are structural modes. The aim of this study is to determine the effectiveness of the
proposed approach in the case of the closely spaced modes between harmonic and structural modes.

The effectiveness of the proposed algorithm is verified by the target values of all the structural
modal parameters on three-story frames using eigenvalue problem analysis and the assigned value for
the modal damping ratio, as described in Table 5 below. In order to describe the robustness of the
proposed algorithm, the numerical simulation was run.

Table 4. Application of fixed harmonic excitation on the three-shear frame model.

Components Harmonic Frequency (Hz)

1st 3
2nd 6
3rd 9

Table 5. Exact modal parameter of the three-shear frame model.

Mode Natural Frequency (Hz) Modal Damping Ratio (%)

1st 2.657 1.00
2nd 7.44 0.84
3rd 10.76 1.00
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The results of the automated harmonic removal technique are characterized in Figures 15–20 and
Tables 6–8.

Table 6. Estimated dominant frequencies of the three-shear frame model.

Components No. of the Feature Region No. of Figure Identified Frequency Nature

1st 66 267 2.67 Structural
2nd 39 301 3.01 Harmonic
3rd 40 600 6.00 Harmonic
4th 69 742 7.42 Structural
5th 40 901 9.01 Harmonic
6th 33 1065 10.65 Structural

Table 7. Estimated harmonic components of the three-shear frame model.

Component Frequency (Hz) No. of Square Shape Recognition

1st 3.01 39
2nd 6.00 40
3rd 9.01 30
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Table 8. Estimated coefficient values for sinusoidal model fitting of harmonic components in the
three-shear frame model.

Component
Target Coefficient Value Estimated Coefficient Value

A [10−5] B A [10−5] B

1st 1.500 3 1.491 3.01
2nd 1.500 6 1.495 6.00
3rd 1.500 9 1.505 9.01

Generated harmonic signals in the time and frequency domain are shown in Figures 15 and 16,
respectively.J. Imaging 2020, 6, x FOR PEER REVIEW 18 of 39 
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Figure 17. Top and bottom plots are in the time domain and frequency domain respectively, while left
and right side indicate signal before and after the harmonic removal process.
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Figure 18. The first singular values plot of the PSD matrix of the response signal after removing
harmonic components.
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Figure 19. Computation of the spectrogram of the denoising harmonic signal displayed as a
waterfall plot.
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The image clustering plots for identifying modal damping ratios for the three-story frame
model from numerical simulations after removing the harmonic signal are displayed in Table 9 and
Figure 21 below.
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Table 9. Estimated damping ratios of the three-shear frame model.

Mode Number of the Feature Region No. of Figure Identified Damping Ratios (%)

1st 27 516 1.032
2nd 16 421 0.842
3rd 5 491 0.982
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Results obtained from the two different approaches are also presented in Tables 10–13 below and
compared with the proposed SSI-Covariance with the image-based feature extraction technique.

Table 10. Comparison of estimated natural frequencies of the three-shear frame model before removing
the harmonic signal.

Mode Target Natural
Frequency (Hz)

Natural Frequency (Hz)

Proposed
SSI Error (%) Classical

SSI Error (%) SSI-Data Error (%)

1st 2.657 2.67 0.49 2.67 0.49 2.67 0.49
2nd 7.445 7.42 0.34 7.41 0.47 7.42 0.34
3rd 10.759 10.65 1.01 10.66 0.92 10.66 0.92

Table 11. Comparison of estimated natural frequencies of the three-shear frame model after removing
the harmonic signal.

Mode Target Natural
Frequency (Hz)

Natural Frequency (Hz)

Proposed
SSI Error (%) Classical

SSI Error (%) SSI-Data Error (%)

1st 2.657 2.67 0.49 2.66 0.11 2.66 0.11
2nd 7.445 7.42 0.34 7.41 0.47 7.42 0.34
3rd 10.759 10.65 1.01 10.66 0.92 10.65 1.01

Table 12. Estimated modal damping ratios of the three-shear frame model before removing the
harmonic signal.

Mode Target Modal
Damping Ratio (%)

Modal Damping Ratio (%)

Proposed
SSI Error (%) Classical

SSI Error (%) SSI-Data Error (%)

1st 1.000 1.040 4.00 1.276 27.60 1.049 4.90
2nd 0.841 0.842 0.12 0.876 4.16 0.863 2.62
3rd 1.000 0.982 1.80 0.976 2.40 0.969 3.10

Table 13. Comparison of estimated modal damping ratios of the three-shear frame model after removing
the harmonic signal.

Mode Target Modal
Damping Ratio (%)

Modal Damping Ratio (%)

Proposed
SSI Error (%) Classical

SSI Error (%) SSI-Data Error (%)

1st 1.000 1.032 3.20 0.995 0.50 0.983 1.70
2nd 0.841 0.842 0.12 0.879 4.52 0.861 2.38
3rd 1.000 0.982 1.80 0.973 2.70 0.968 3.2

Based on the image clustering result, plotted by using image features extraction from Maximally
Stable External Regions as displayed in Figure 6 with all the poles of the stabilization diagram that are
presented in Figure 2. Stabilization diagrams were used as an indicator to distinguish the physical
poles from the spurious modes which also consists of harmonic components by adjusting the limit
values of modal damping ratios. Using standardized image features in MATLAB, image clustering
able to capture and provide a clear appearance of all modes of interest including structural modes
and harmonic components in the stabilization diagram is characterized in Table 6. This standardized
image feature plays a vital role in identifying which image represents the vertical alignment of stable
modes. Clear identification of the harmonic component mode is at the frequency of 3, 6 and 9 Hz by
using image shape recognition that successfully classifies the harmonic components from structural
modes whose results are shown in Table 7. Knowing the frequency that represents the noise mode or
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the harmonic component is essential because it can be used for the next step to reconstruct a sinusoidal
signal that represents harmonic frequency by using a sinusoidal model fitting, of which results are
displayed in Figures 15 and 16. Then, the generated sinusoidal signals are automatically removed from
the original signal to become a clean input time-series signal that frees from the harmonic component.
The results of estimated coefficient values for the sinusoidal model fitting of harmonic components in
Table 8 exhibits very accurate results with respect to the target values. The results after going through
the harmonic removal process can be clearly seen in Figures 17–20, where only structural poles are left
and are free from harmonic components poles.

In order to demonstrate the novel ability of the proposed SSI-Covariance with image-based
feature extraction technique to eliminate harmonics, modal parameters are also identified using the SSI
method, classical SSI-Covariance and SSI-Data. Results obtained from the two different approaches are
also presented in Tables 10–13 and compared with the proposed SSI-Covariance with the image-based
feature extraction technique. Tables 10 and 11 provide the results of estimated natural frequency before
and after removing the harmonic components, respectively. Meanwhile, Tables 12 and 13 indicate the
results of estimated modal damping ratios for before and after removing the harmonic components,
respectively. Detailed results of modal damping ratios displayed in the image clustering plot for each
mode are also presented in Figure 21 which have been generated from the frequency versus modal
damping ratio plot in Figure 11.

Results of the proposed automated SSI-Covariance with a novel approach using image-based
feature extraction in estimating modal parameters, particularly natural frequencies, demonstrated
very high accuracy, exhibiting an average percentage deviation below 1% for all cases. In addition,
results of the estimated modal damping ratio are quite consistent and provide limited errors with
percentage deviation (error) below 4%, where classical SSI-Covariance can be up to 30% of percentage
deviation (error) before removing harmonic components from the response signal as presented in
Table 12. On the other hand, results of estimated modal parameters using SSI-Data are also quite
consistent and with limited errors with a percentage deviation (error) below 5% for modal damping
ratios. Meanwhile, the results of the estimated modal damping ratios after removing the harmonic
components from the original response signal as in Table 13 showed very limited errors and improved
significantly compared to before removing the harmonic components for all approaches. For the
proposed approach, results of percentage deviation (error) with respect to target values are below 3.2%,
where classical SSI-Covariance can be reduced to around 4.5% of percentage deviation (error) and
SSI-Data with percentage deviation (error) also below 3.2%. This shows that the corrupted response
signal with unwanted mode not only affects the decision making for the actual modes selection but
also strongly influences the identification of modal damping ratios by the presence of harmonics.

By comparing the results of the estimated modal parameter using the proposed automated
harmonic signal removal using SSI-Covariance with image-based feature extraction with other SSI
methods, which are classical SSI-Covariance and SSI-Data, the results yield quite accurate and consistent
results for before and after removing the harmonic component and it seems not very affected with
corrupted response signal with unwanted mode. Moreover, this approach is also highly efficient in
identifying and clearly separating closely spaced modes, as seen in Figure 6 for the first two closely
spaced modes from 2.6 to 3 Hz.

The results of this study also prove that the implementation of image-based feature extraction
for identification and classification of structural modes and harmonic component in a stabilization
diagram and sinusoidal model fitting as a tool for filtering purposes are a good combination as well as
an effective procedure, producing a good input signal that is free from unwanted modes.

3.2. Validation with Experimental Testing

A three-story steel frame is set up to experimentally demonstrate the applicability of the proposed
approach and to illustrate the theoretical concepts, described in this chapter. The masses on each story
are dominant and it is composed of 3 rigid iron masses connected to each other and to the base through
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flexible aluminum columns by connection elements, which are clamped at nodes 1–6 and the base
(Figure 22). Horizontal impact at the top floor is applied to the system, and the responses are measured
and transmitted into the data acquisition channels and then to the computer. The proposed algorithm
is implemented on the measured data.J. Imaging 2020, 6, x FOR PEER REVIEW 24 of 39 
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Figure 22. General view of the metallic frame.

In order to illustrate the complex candidate models of OMA, a vibration experiment of the metallic
frame was performed in the laboratory. It is assumed that the lateral response on nodes 1 and 4, 2 and
5, as well as on 3 and 6, are equal. So, only acceleration signals in nodes 1, 2 and 3 were measured.

The signal acquisition system used in the experiment consists of wicoson accelerometers,
signal conditioners and data acquisition equipment, as shown in Figure 23. The acceleration signals
were measured with sensors that are attached on top of each mass to record the system responses and
amplified with an injection control pressure (ICP) sensor signal conditioner. The signals were sampled
by OROS data acquisition equipment (DAQ) which is connected to a computer and control and using
NVGate software. The frame was excited by the slip shaker in order to induce random excitation.
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In order to induce random input excitation, a slip shaker is used to excite the three-story steel
frame. It has a constant PSD which can cover a wide range of frequencies and is adequate to excite all
the structural modes [21]. The random input excitation, which is also known as zero-mean Gaussian
white noise, takes the assumption of the excitation system to be linear and time-invariant, which is
characterized by constant parameters if all its fundamental properties are invariant with respect to time.

In addition to the random input excitation, the three-story steel frame is excited by harmonic
excitations provided by a motor of rechargeable hair trimmer turning at a nominal rotation of
9000 revolutions per minute (rpm), peaks at harmonic excitation of 150 Hz and multiples of it are
expected for top power motor with the shaft connecting the motor and blade. It has been placed on the
second floor of the three-story steel frame, as shown in Figure 24. Thus, only the measured response at
the second floor was used for the analysis. The handle of a rechargeable hair trimmer is coated with
adhesive tape. The coating is needed to attenuate the excitation because otherwise, excitation levels
would exceed the measurement range of 7 g of the accelerometers.
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The duration of each setup was 5 min and the maximum frequency was 250 Hz. The DAQ
employs some fixed signal processing filters which need to be addressed when taking measurements.
The hardware does not actually sample input channels with the specified sample rate frequency
sampling (fs) but samples it with 128 times the specified sample rate. This is to prevent aliasing effects.
A sampled dataset can only represent a limited bandwidth of the input signal. It can only distinguish
signal components with a maximum frequency of fNy = fs/2.56, called the Nyquist frequency. If the
analog input signal contains frequency components higher than the Nyquist frequency, the sampler
modulates those frequency components back into the baseband from 0 Hz to fs/2.56. This is called
aliasing. The adopted parameters in the processing are shown in Table 14 below.

Table 14. The adopted parameters for the steel frame in the processing.

Parameters Steel Frame

Length of time series, t (s) 300
Sampling frequency, fs (Hz) 640

Adopted frequency resolution, ∆ f (Hz) 0.0033
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The estimated first singular value of the power spectral density (PSD) matrix and the spectrogram
of the experimental temporal response are shown in Figures 25 and 26 respectively, which present four
dominant peaks combining structural and harmonic modes.J. Imaging 2020, 6, x FOR PEER REVIEW 26 of 39 
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The results of the automated harmonic removal technique are characterized in Figures 27–35 and
Tables 15 and 16. Meanwhile, results for modal parameter estimates consisting of natural frequencies
and modal damping ratios are shown in Figures 36 and 37 and Tables 17–21.
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Table 15. Estimated dominant frequencies of the steel frame.

Components No. of the Feature Region No. of Figure Identified Frequency Nature

1st 12 927 9.27 Structural
2nd 24 2699 26.99 Structural
3rd 71 3884 38.84 Structural
4th 36 14971 149.71 Harmonic

Table 16. Estimated harmonic components of the steel frame.

Component Frequency (Hz) Number of Square Shape Recognition

1st 149.71 36
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Figure 30. Top and bottom plots are in the time domain and frequency domain respectively, while left
and right side indicate signal before and after the harmonic removal process.
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Figure 35. FFT of the generated harmonic signal based on estimated coefficients using iterative
least-squares estimation.

Table 17. Comparison of estimated natural frequencies of the steel frame before removing the
harmonic signal.

Mode
Natural Frequency (Hz)

Proposed SSI Classical SSI SSI-Data

1st 9.27 9.28 9.27
2nd 26.99 26.99 26.99
3rd 38.84 38.83 38.83

Table 18. Comparison of estimated natural frequencies of the steel frame after removing the
harmonic signal.

Mode
Natural Frequency (Hz)

Proposed SSI Classical SSI SSI-Data

1st 9.27 9.28 9.27
2nd 27.05 26.99 26.99
3rd 38.84 38.83 38.83

Table 19. Comparison of estimated modal damping ratios of the steel frame before removing the
harmonic signal.

Mode
Modal Damping Ratio (%)

Proposed SSI Classical SSI SSI-Data

1st 2.380 2.633 2.468
2nd 0.748 0.729 0.714
3rd 0.432 0.427 0.426
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Table 20. Comparison of estimated modal damping ratios of the steel frame after removing the
harmonic signal.

Mode
Modal Damping Ratio (%)

Proposed SSI Classical SSI SSI-Data

1st 2.378 2.633 2.468
2nd 0.732 0.729 0.714
3rd 0.432 0.427 0.426
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Figure 37. (a–c) First, second and third modes for modal damping ratios, respectively.

The proposed algorithm was analyzed under a controlled room that was carried out for
experimental testing on a steel frame. The results are again consistent, even with the presence
of harmonic excitation or noise mode.

From the stabilization diagram plot in Figure 27 obtained using the proposed algorithm, we see a
clear distinction between harmonics and structural poles. The blue diamond shape indicates that a pole
is stable with respect to damping ratio and natural frequency and the red circle shape indicates that a
pole is unstable with respect to damping ratio and/or natural frequency. Meanwhile, the green square
shape indicates that a pole is a harmonic component with respect to the assigned limit values of modal
damping ratios. Here, it is clear that the three stable poles at frequencies 9.27, 27.05 and 38.84 Hz are real
structural poles and that the other peak is a harmonic component at frequency 150 Hz, whose results
are shown in Tables 15 and 16, respectively. In this case, only one harmonic component is considered in
this analysis due to the high frequencies for multiple harmonic components. The maximum frequency
of 250 Hz is more than enough to prove the efficiency of the proposed algorithm with the appearance
of a harmonic component in the response signal.

Based on the image clustering result, a plot using image features extraction from Maximally
Stable External Regions was displayed in Figure 28 with all the poles of the stabilization diagram
that are presented in Figure 27. Using standardized image features in MATLAB, image clustering
was able to capture and provide a clear appearance of all modes of interest, including structural
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modes and harmonic components in the stabilization diagram, as characterized in Table 15 and
Figure 29. Meanwhile, the result of image shape recognition for the harmonic components is shown
in Table 16. Knowing the frequency that represents noise mode or harmonic component is essential
because it can be used for the next step to reconstruct a sinusoidal signal that represents harmonic
frequency by using a sinusoidal model fitting, of which the results are displayed in Figures 34 and 35.
Then, the generated sinusoidal signals are automatically removed from the original signal to become
a clean input time-series signal that is free from the harmonic component. The results after going
through the harmonic removal process can be clearly seen in Figures 30–33, where only structural
poles are left, and they are free from harmonic components poles.

In order to demonstrate the novel ability of the proposed SSI-Covariance with the image-based
feature extraction technique to eliminate harmonics in realistic cases, modal parameters are also
analyzed. The proposed method is validated by using stochastic subspace identification-data (SSI-Data),
one of the well-known time-domain methods, mainly due to how robust and powerful it is in extracting
structural modal parameters. Then, the proposed algorithm is also compared with the classical
SSI-Covariance algorithm. Dealing with real or complex structures faces difficulties, especially in
validating data for output-only data by using floor mass and stiffness properties of the structure.
Besides that, the use of the EMA method with complete input-output data to validate data for the
whole structure seems to impose additional challenges as the forced vibration testing requires the
use of controlled and measurable dynamic excitation, which is very heavy and expensive devices for
artificially generated vibrations. This may also cause damage to a structure when subjected to severe
dynamic loading. In addition, the dynamic properties of a structure at a low level of vibration may be
different compared to artificially generated vibrations which are normally between 10% and 20% for
the natural periods of vibration but can exceed 30% for the reinforced concrete structure due to the
crack of the structural elements [31]. The best way to validate data is to conduct comparative studies
with different techniques with respect to modal parameters which will produce some confidence to
have a good estimation of the real system. The attempted simulations have confirmed the efficacy
of these two approaches to crosscheck along with the effectiveness of the proposed algorithm on the
steel frame during experimental testing. All SSI versions use the same 50 number of model orders for
the estimation.

Results obtained from the two different approaches are also presented in Tables 17–20 and
compared with the proposed SSI-Covariance with the image-based feature extraction technique.
Tables 17 and 18 provide the results of estimated natural frequency before and after removing the
harmonic components, respectively. Meanwhile, Tables 19 and 20 indicate the results of estimated modal
damping ratios for before and after removing the harmonic components, respectively. Detailed results
of modal damping ratios displayed in the image clustering plot for each mode are also presented in
Figure 37, which have been generated from the frequency versus modal damping ratio plot in Figure 36.
By comparing the results of the estimated modal parameter using the proposed automated harmonic
signal removal using SSI-Covariance with image-based feature extraction with other SSI methods,
which are classical SSI-Covariance and SSI-Data, results of the proposed approach in estimating natural
frequencies demonstrated very high accuracy, exhibiting an average percentage deviation less than
1% for the methods. In addition, the other modal parameter, particularly the modal damping ratio,
exhibited consistent results and was within the range for before and after removing the harmonic
components from the response signal among comparison methods and it seems not very affected with
the corrupted response signal with the unwanted mode. For the examined cases, it has been verified
that the developed algorithm works well and yields clear results that can effectively handle realistic
cases that consist of corrupted harmonic components as noise mode and are capable of structural health
monitoring. In the literature, the modal damping ratio is considered as a good practical parameter or
indicator for structural damage detection due to its sensitivity and is sufficiently responsive to damage
compared to mode shape and natural frequency.
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4. Conclusions

In this paper, an operational modal identification method was proposed for ambient vibration
testing in the presence of harmonics. This operational modal identification method, based on proposed
automated harmonic signal removal using SSI-Covariance with image-based feature extraction, was first
applied to a three-degrees-of-freedom system in order to validate its numerical implementation, and
then investigated via an experimental steel frame. Identified modal parameters were compared to those
found by a classical OMA approach based on the white noise excitation assumption, namely the SSI
method, classical SSI-Covariance and SSI Data. Results of the proposed approach in estimating modal
parameters demonstrated very high accuracy and exhibited consistent results for before and after
removing the harmonic components from the response signal compared to other comparison methods.

The main advantage of the proposed automated harmonic signal removal using SSI-Covariance
with image-based feature extraction is its independence from the nature of the excitation and its novel
ability to eliminate harmonic components. Consequently, it provides an accurate prediction of modal
parameters in the presence of harmonic excitations. Thus, it opens possibilities for application to more
complicated structures in the presence of harmonic excitations under operational conditions. The use of
an image clustering rather than a normal clustering algorithm can neglect any calibration or user-defined
parameter at start-up and any supplementary adaptive approach for cluster validation criteria.

In the present day, image-based vibration measurement has brought great attention to civil
engineering communities and is increasingly being used in the area of structural dynamics, particularly
for modal analysis and damage identification [47–51]. Optically acquired data, usually from digital
image correlation, as an alternative method was introduced to reduce labor-intensive tasks during
dynamic testing involving the multiple numbers of accelerometers and handling the wiring and the
connections [51,52]. Various image-processing techniques are being used to identify the displacements
from image sequences. Some of the most commonly used techniques are: Gradient-Based Optical
Flow [53–55], Gradient-Based Digital Image Correlation [50], in fact the Lucas-Kanade method from
Reference [54] is the general form of digital image correlation (DIC) [56], Point Tracking [49] and the
Phase-Based method [51,57]. Existing image-based applications are mostly used to detect movement of
target objects and act as virtual sensors, but in contrast to this study, the use of image-based applications
involves image-based feature extraction as a new tool for clustering of physical modes and unwanted
modes in the stabilization diagram and also be used for structural modal identification. This research
serves as a base for enhancing the automation of the OMA method without any user interaction.

This also verifies that the developed algorithm can be used for continuous structural health
monitoring by taking advantage of ambient excitation, which is always present. This allows for tracking
the evolution of modal parameters over time and can be used to detect structural integrity or problems
due to structural deterioration, or the occurrence of damage to the structure. For example, when the
structure gets old, the value of a modal parameter such as natural frequency will reduce over time due
to loss of stiffness, while the modal damping ratio will increase over time due to rusted steel. In general,
the variation of natural frequencies over time is more apparent to be adopted as a parameter for
damage detection due to consistent trends but, it has a somewhat low sensitivity unless severe damage
happens and is reported to be a less than 5% change in frequency associated with critical damage.
Conversely, the use of a modal damping ratio as a practical parameter or indicator for structural
damage detection is more ideal and suitable due to its sensitivity and is sufficiently responsive to
damage compared to natural frequency and mode shape, even though it is less popular among the
engineering community because of inconsistent trends [1,45]. Therefore, with the effectiveness of
the proposed approach in terms of removing unwanted signal from the response signal and estimate
modal identification, particularly modal damping ratio, to a sufficient degree of accuracy becomes
a stepping stone to achieve reliable modal estimates and to develop effective and reliable means of
modal-based damage detection for locating, quantifying structural damage and obtaining maximum
useful information at a minimum cost, because it can save the total cost of repairs and extends the
remaining service life of the structure through early damage detection.
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Appendix A

Mass and stiffness matrices are set fixed for three-story frame as reported below. Damping matrices
have been assumed to be diagonal in modal coordinates and represented by different modal damping
ratios in the numerical tests. Dynamic system models: main features of ideal multi shear-type frames
is shown in Figure A1 below.
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