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Abstract: An impossible structure gives us the impression of looking at a three-dimensional object,
even though this object cannot exist, since it possesses parts that are spatially non-connectable, and are
characterized by misleading geometrical properties not instantly evident. Therefore, impossible
artworks appeal to our intellect and challenge our perceptive capacities. We analyzed lithographs
containing impossible structures (e.g., the Necker cube), created by the famous Dutch painter Maurits
Cornelis Escher (1898–1972), and used one of them (The Belvedere, 1958) to unveil the artist’s hidden
secrets by means of a discrete model of the human retina based on a non-uniform distribution of
receptive fields. We demonstrated that the ability of Escher in composing his lithographs by connecting
spatial coherent details into an impossible whole lies in drawing these incoherent fragments just
outside the zone in which 3D coherence can be perceived during a single fixation pause. The main
aspects of our paper from the point of view of image processing and image understanding are the
following: (1) the peculiar and original digital filter to process the image, which simulates the human
vision process, by producing a space-variant sampling of the image; (2) the software for the filter,
which is homemade and created for our purposes. The filtered images resulting from the processing
are used to understand impossible figures. As an example, we demonstrate how the impossible
figures hidden in Escher’s paintings can be understood.
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1. Introduction

According to the dictionary definition, illusions are perceptions that represent what is perceived
in a way different from the way it is in reality; i.e., they are instances of a wrong or misinterpreted
perception of a sensory experience. Illusions can be considered powerful tools for the systematic
investigation of human perception [1]. Impossible structures are illusions [2]. An impossible structure
gives the onlooker the impression of looking at three-dimensional objects that cannot exist, since they
possess parts that are spatially non-connectable, and are characterized by misleading geometrical
properties that are not pre-attentively evident [3]. Pre-attentively means within the time pause of
fixation (120 ms); any perception possible within this time frame involves only the information available
in a single glimpse [4]. Examples of impossible structures are the Penrose triangle, the Penrose infinite
staircase, and the Necker cube [2].

Impossible structures have drawn attention because they cause a mental conflict, thus creating
emotions. Artists know this very well and utilize impossible figures to challenge the onlooker.
The famous Dutch graphic artist Maurits Cornelis Escher (1898–1972) is especially well-known for the
impossible structures he inserted in his lithographs, such as the Penrose triangle present in Waterfall
(1961), the Penrose infinite staircase present in Ascending and Descending (1960), and the Necker cube
present in Belvedere (1958) (Figure 1). Through these impossible structures, Escher challenged the
concept of the real world everyone possesses by tweaking our perception. The success of this artist is
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due to the fact that his lithographs give the idea of a real figure’s components and their spatial oddness
simultaneously [5].
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Figure 1. The Belvedere lithograph realized by Escher in 1958. The original dimensions of the 
artwork are 29.5 cm × 46.2 cm, which correspond to a visual angle of about 9° when the lithograph is 
viewed at a 1 m distance. 

When we look at a painting (generally at a 1 m distance), our attention moves from one point to 
another of the image. This means that our eyes are fixed on a point (fixation pause: time frame of 120 
ms) and then move to another point until the entire image has been perused [6]. The identification of 
the scene gist is pre-attentive, i.e., within the fixation pause [4]; the interpretation of the different 
depth clues that contribute to the identification of a general model of the structures present in the 
painting relies on a huge set of memorized models of various familiar shapes, and can be considered 
unconscious [7]. The image of the entire painting appears simultaneously defined and detailed, 
though during a fixation pause, only the small zone surrounding the fixation point is perfectly clear. 
Outside this small zone, the image is blurred due to the undersampling of the retina periphery. At 
the end of the visual inspection, all images acquired during the fixation pauses are re-assembled on a 
mnemonic base, producing a well-defined categorization of the objects present in the painting. 

In the case of paintings containing impossible structures, such as those created by Escher, we do 
not realize the three-dimensional inconsistency of the painting, because the re-assembling process 
does not take into account the spatial relationship among the acquired sub-images [8]. Still, we 
unconsciously perceive a sort of spatial incongruence challenging our attention [9,10]. Therefore, a 

Figure 1. The Belvedere lithograph realized by Escher in 1958. The original dimensions of the artwork
are 29.5 cm × 46.2 cm, which correspond to a visual angle of about 9◦ when the lithograph is viewed at
a 1 m distance.

When we look at a painting (generally at a 1 m distance), our attention moves from one point
to another of the image. This means that our eyes are fixed on a point (fixation pause: time frame of
120 ms) and then move to another point until the entire image has been perused [6]. The identification
of the scene gist is pre-attentive, i.e., within the fixation pause [4]; the interpretation of the different
depth clues that contribute to the identification of a general model of the structures present in the
painting relies on a huge set of memorized models of various familiar shapes, and can be considered
unconscious [7]. The image of the entire painting appears simultaneously defined and detailed, though
during a fixation pause, only the small zone surrounding the fixation point is perfectly clear. Outside
this small zone, the image is blurred due to the undersampling of the retina periphery. At the end of
the visual inspection, all images acquired during the fixation pauses are re-assembled on a mnemonic
base, producing a well-defined categorization of the objects present in the painting.

In the case of paintings containing impossible structures, such as those created by Escher, we do not
realize the three-dimensional inconsistency of the painting, because the re-assembling process does not
take into account the spatial relationship among the acquired sub-images [8]. Still, we unconsciously
perceive a sort of spatial incongruence challenging our attention [9,10]. Therefore, a more attentive
parsing of the painting is necessary to detect the impossibility of the physical realization of the
structures present in it.
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In this paper, we demonstrate that, when we look at one of the Escher’s lithographs containing
impossible structures, our visual system cannot work them out pre-attentively. We implemented
a simplified version of a discrete model of the retina [11] whose output is a faithful representation of the
image formed on the retina within a time fixation frame of 120 ms. This output is called pre-attentive
retina image (PRI). The Belvedere lithograph was chosen as a stimulus subject. The results showed
that, in a single glimpse (120 ms), an onlooker can realize the three-dimensional consistency of what
she/he is looking at, only in a very spatially limited area of high resolution centered at the fixation
point (visual angle ≈ 2.46◦) with no clue of the three-dimensional consistency in the periphery of that
area. Escher was aware of the structure and functioning of the human visual system; he challenged
the onlooker with images characterized by components whose 3D inconsistency is unperceivable
pre-attentively because they were drawn by the artist just outside the zone surrounding the fixation
point. This skillful creativity is very probably the reason of his success. The main aspects of our
paper from the point of view of image processing and image understanding are the following: (1) the
peculiar and original digital filter to process the image, which simulates the human vision process, by
producing a space-variant sampling of the image; (2) the software for the filter, which is homemade
and created for our purposes. The filtered images resulting from the processing are used to understand
impossible figures. As an example, we demonstrate how the impossible figures hidden in Escher’s
paintings can be understood.

2. Anatomy of Retina

During the fixation pauses, scenes are formed on the retina, which is the innermost coat of the
posterior part of the eyeball. The retina contains six different types of cells organized in three layers:
cones and rods (photoreceptors), horizontal cells, amacrine cells, interplexiform cells, bipolar cells,
and ganglion cells. Light transduction is performed at the level of the photoreceptors, and the output
signals of the retina are carried to the brain by the optic nerve composed of retinal ganglion cell axons
and glial cells [12].

The density of photoreceptors in the retina varies with topography (for details and figures, please
refer to reference 12). In the fovea, a small depression in the center of the retina, there are basically only
cones, densely packed (250,000 cones/mm2), with a center-to-center spacing of 2.5 µm. This distance
set the limit of resolution imposed by the eye optics [13]. The fovea is used for high acuity tasks since
each cone is connected with a single bipolar cell, which in turn is connected with a single ganglion
cell. In the retina periphery cone, density decreases (11,500 cones/mm2), while rod density increases
markedly to about 160,000 cones/mm2 and decreases to zero towards the far periphery [13]. In the far
periphery, a ganglion cell collects the output of many cones, thus viewing a larger portion of the image
and contributing more than the fovea to the scene gist recognition [4]. Therefore, the field of view can
be split into a homogeneous high resolution area, i.e., the fovea, and a peripheral zone with decreasing
resolution [12,13]. In analyzing images, the primate visual system functions on a compromise basis;
i.e., it uses a data reduction scheme that preserves high resolution at the center of the fixation point,
where the fovea is located (visual angle ≈ 1◦), and reduces the resolution in the sensorial peripheral
zone in function of the distance from the center of the fovea, i.e., in function of its eccentricity (visual
angle > 1◦). In this way, a wide field-of-view, high spatial resolution in the region of fixation and fast
processing are simultaneously obtained [14].

3. The Model

We simulated the retina structure with a model in which the receptive fields (RFs) are positioned
in a log–polar triangular lattice [11]. As the anatomical retina, the model is divided into two regions:
the central zone (inside the green line, Figure 2a) and the peripheral zone (outside the green line,
Figure 2a). In the central zone, which corresponds to the anatomical fovea, the RFs have all the same
size, i.e., the size of a single cone; hence, spatial resolution is the highest achievable and uniform
all over.
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The peripheral zone corresponds to a zone with eccentricity higher than 1◦. To build the RFs in
this region, we traced a set of concentric rings with exponentially increasing radii with respect to ring
index h, and divided the region into 2N equal sectors by means of 2N rays originating at the center of
the fovea with a ray spacing angle of π/N. For each concentric ring, there are N RFs, which are built
as circles, since the ganglion cell receptive field is more or less circular [15]. The center of each RF is
calculated as the intersection between the odd or even rays with the odd or even rings.

The polar coordinates (ρh, ηk) of the even–even intersections are

ρh = ρ0

(
1 +ω

2π
3N

)2h
0 ≤ h (1)

ηk =
π
N

(2
3
+ 2k

)
0 ≤ k < N (2)

while the polar coordinates of the odd-odd intersections are

ρh = ρ0

(
1 +ω
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3N

)2h+1
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π
N

(2
3
+ 2k + 1

)
0 ≤ k < N (4)

where ρ0 is the fovea radius (about 0.75 mm), and ω = 0.9 is the RF overlap factor.
The radius (r) of each RF increases linearly as a function of its distance from the center of the

fovea, i.e., as a function of its eccentricity [16] and is expressed in polar coordinates as

rh =
2π
3N

ρh (5)

The spatial resolution in the peripheral zone decrease with the increase of both the eccentricity
and the RF radius.

As a consequence of this construction strategy, the peripheral zone becomes a triangular lattice
of circular RF, positioned alternatively in adjacent rings, i.e., each RF is a sampling point shifted half
sample period between two consecutive rings. This model has a higher interpretative complexity
compared to other models of retina based on rectangular or pseudo-rectangular lattices. Still it achieves
the highest spatial coverage with the minimum overlapping of the RFs. This minimum overlapping is
eliminated by replacing circular RFs with inscribed irregular hexagons, which are still biologically
plausible [17], and allow a complete coverage of the peripheral zone (Figure 2a).

In the peripheral zone, there is an irreversible compression due to the multi-to-one correspondence
of the RFs with the ganglion cells, since a single ganglion cell collects the output of many cones, thus
viewing a larger portion of the image. The peripheral zone becomes a sort of variable spatial filter, less
sensitive to fine details compared to the fovea.

In our model, the value of the output of each irregular hexagon (i.e., each RF) is calculated as
the Gaussian weighted sum of the gray level of all the pixels

(
P j

)
of the acquired image present in

that hexagon:
RFi =

∑
j
wijPj (6)

where the weights wi j are the values of a normalized Gaussian centered on the ith RF. The standard
deviation of the Gaussian is chosen to have 99% of its area inside the RF.

The output of our model is the image formed on the retina during a fixation pause of 120 ms,
which we called the pre-attentive retina image (PRI).

To show how the model works, we simulated the observation of the Belvedere lithography from a 1
m viewing distance, taken as the average viewing distance for an onlooker in a picture exhibition [18].
The number of RFs in each concentric ring, i.e., the compression in the peripheral zone of the model,
was experimentally selected (see Experiment #1). For visual clarity, the model shown in Figure 2a
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has N = 40; i.e., each concentric ring of the peripheral zone (i.e., outside the green line) contains 40
RFs. A particular of the Belvedere lithograph processed by the model is shown in Figure 2b, and the
corresponding PRI is shown in Figure 2c.J. Imaging 2020, 6, 5 5 of 12 

 

 
Figure 2. (a) Log-polar triangular lattice of the RFs in the retina model. The right upper part shows 
the building elements of the model: rays (blue lines) and rings (thick blue and red lines). The 
intersections between the rays and the rings mark the centers of the RFs (asterisks). RFs’ overlapping 
is minimized by replacing circular RFs with the corresponding inscribed irregular hexagons. The 
lattice triangles result from the joining of RF centers placed on successive rings (left upper part, black 
line). The serrated green line marks the border between the central zone and the peripheral zone. For 
the sake of clarity, N is set to 40. (b) Detail of the Belvedere lithograph chosen to test the retina model. 
(c) The pre-attentive retina image (PRI) of the Belvedere detail shown in Figure 2b. The serrated 
green line marks the border between the central zone and the peripheral zone. 

Figure 2. (a) Log-polar triangular lattice of the RFs in the retina model. The right upper part shows the
building elements of the model: rays (blue lines) and rings (thick blue and red lines). The intersections
between the rays and the rings mark the centers of the RFs (asterisks). RFs’ overlapping is minimized
by replacing circular RFs with the corresponding inscribed irregular hexagons. The lattice triangles
result from the joining of RF centers placed on successive rings (left upper part, black line). The serrated
green line marks the border between the central zone and the peripheral zone. For the sake of clarity, N
is set to 40. (b) Detail of the Belvedere lithograph chosen to test the retina model. (c) The pre-attentive
retina image (PRI) of the Belvedere detail shown in Figure 2b. The serrated green line marks the border
between the central zone and the peripheral zone.
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4. Experiment #1—Matching the PRIs

Method, Procedure, and Results

Thirty volunteer participants, between the ages of 20 and 40, with normal or corrected-to-normal
vision, and normal color discrimination, took part in the experiment. The number of participants was
chosen according to [4]. The protocol was approved by the local Ethic Committee, and all patients
signed the required consent form before the study.

Stimuli were presented on a 24” HP W2408H monitor with a resolution of 1920 × 1200 pixels
and a refresh rate of 60 Hz. The monitor was standing in a vertical position to better reproduce the
real size of the Belvedere lithograph (29.5 × 46.2 cm). A head-chin rest reduced participants’ head
movements and ensured a constant viewing distance of 1 m. We chose a 1 m viewing distance since
this is the average viewing distance for observing paintings of this size in an exhibition [18], but any
other distance would work as well, since our demonstration is valid in all cases, no matter the distance.

Before the trial, a fixation cross on a gray background was shown for 1 s. Participants were
instructed to press a next button to initiate the trial. The first stimulus presented for 120 ms was the
Belvedere original lithograph, downloaded from www.epsilones.com. The fixation cross was then
presented again for 1 s, followed by the second stimulus, i.e., the PRI of the lithograph obtained by our
model, presented for 120 ms. The participants were asked to answer “Yes” or “No” to state whether or
not they perceived the second image as matching the first one. This means that the participants had to
compare the PRI produced by their visual system with the PRI produced by the model.

The procedure gradually reduced the spatial resolution of the PRI produced by the model by
reducing the number of the RFs in each peripheral ring one at a time, until the participants recognized
a difference with the first stimulus, reaching their threshold, i.e., the resolution limit set by the number
(N) of RFs in each ring of the peripheral zone of the last PRI matching the Belvedere original lithograph.

If the participant doubted his/her choice, he/she could repeat the procedure until he/she felt at
ease with the selected threshold.

All the threshold values (N) resulting from the experiment were averaged, obtaining a mean of
80.71 ± 3.1 as S.D. Eighty was the closest integer to the average, and was chosen as the number of RFs
in each concentric ring of the model. As a consequence, the radius of the RFs in the first line of the
peripheral zone was about 0.4 mm.

5. Experiment #2—The Angle of the Pre-Attentive Perception of 3D Incoherence

Method, Procedure, and Results

The experimental conditions were the same as the first experiment. Before the trial, a fixation
cross on a gray background was shown for 1 s. Participants were instructed to press a next button to
initiate the trial. The stimulus presented for 120 ms was the devil’s pitchfork, an impossible structure
also known as Schuster’s conundrum, 16 cm long [19]; the fixation point was positioned at the base of
the tines (Figure 3a). The participants were asked to respond “Yes” or “No” to say whether or not they
recognized the 3D incoherence of the image. The test gradually reduced the length of the tines until
the participant could detect its 3D incoherence pre-attentively, reaching their threshold, i.e., the visual
angle that contains the entire pitchfork image (Figure 3b).

All the visual angles resulting from the experiment were averaged, obtaining a mean value of
2.46◦ ± 0.09◦, which corresponds to a window with a 43.0 mm radius with ±1.6 mm as S.D., at which 3D
incoherence could be pre-attentively perceived. In our model the radius of this window approximated
to the 42.80 mm radius of the 38th ring, corresponding to a visual angle of 2.45◦.

The PRI of Figure 3a is shown in Figure 3b. It clearly demonstrates that, with a single glimpse, it
is impossible to perceive 3D incoherence in the image since the tines outside the window have a very
low spatial resolution. Therefore, it is necessary to move the fixation point along the tines to produce
more than one PRI, whose assembling is mandatory to perceive the spatial incoherence of the whole.

www.epsilones.com
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Figure 3d shows the PRI of Figure 3b. In this case, the pitchfork is entirely represented in the window
of a 42.80 mm radius with a minimal loss of spatial resolution (the radius of the RFs of the 38th ring is
1.0 mm); hence, the 3D incoherence of the object can be pre-attentively detected.
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portion of the image and blocking all the peripheral information with a gray layer (Figure 4a). After 
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keyboard. A new window was then displayed for 120 ms, and the participants were asked to say 
whether they could recognize some spatial incoherence within the window. No incoherence was 
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would not have allowed the perception of any 3D incoherence due to the minimal loss of spatial 
resolution within the visual angle. 

Figure 3. (a) The impossible figure used as stimulus in Experiment #2, known as the devil’s pitchfork or
Schuster’s conundrum. (b) The result of Experiment #2: the tines of the fork have been reduced to the
point at which 3D incoherence can be pre-attentively perceived, identifying the corresponding visual
angle (2.45◦). (c) The PRI of the devil’s pitchfork shown in Figure 3a: The fixation point (green cross)
was positioned at the base of the tines. The cyan circle marks the limit of the window (42.80 mm radius)
in which 3D incoherence can be pre-attentively perceived. Outside the window, the spatial resolution
drops, hindering the detection of the image oddity. (d) The PRI of the trimmed devil’s pitchfork shown
in Figure 3b: the fixation point (green cross) has the same position of Figure 3c. The entire impossible
figure is represented within the window (cyan line) in which 3D incoherence can be pre-attentively
perceived with minimal loss of spatial resolution, so its oddity is perceived in a single glimpse.

6. Experiment #3—Looking for Incoherence in the Belvedere Lithograph within the Window of
Pre-Attentive Perception

Method, Procedure, and Results

The experimental conditions were the same as the first experiment. The stimulus was the image
of the Belvedere lithograph overlaid with a window of a 42.80 mm radius, showing only the central
portion of the image and blocking all the peripheral information with a gray layer (Figure 4a). After 120
ms, the window was obscured and the participants could change its position by means of the keyboard.
A new window was then displayed for 120 ms, and the participants were asked to say whether they
could recognize some spatial incoherence within the window. No incoherence was pre-attentively
detected by the participants. As in the case of Experiment #2, the PRI (Figure 4b) would not have
allowed the perception of any 3D incoherence due to the minimal loss of spatial resolution within the
visual angle.
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Figure 4. (a) The stimulus used in Experiment #3: The Belvedere lithograph overlaid with a window of
a 42.80 mm radius showing only a detail of the artwork and blocking all the peripheral information.
For the sake of clarity, only a part of the lithograph is shown. (b) The PRI of Figure 4a: Since the loss of
spatial resolution within the window is minimal, any 3D incoherence present herein would have been
pre-attentively perceived.

7. Experiment #4—The Window of 3D Incoherence in the Belvedere Lithograph

Method, Procedure, and Results

The experimental conditions were the same as the previous experiments. The image of the
Belvedere lithograph was overlaid with a window of a 43.00 mm radius, corresponding to a visual
angle of 2.46◦. The window was initially positioned on the zone of the interposition between the upper
and lower level of the building where 3D incoherence is present. All the peripheral information was
blocked. The participants could freely move the window over the lithograph and gradually increase
the window radius by a 0.5 mm step by means of the keyboard until they perceived some spatial
incoherence in a free viewing mode (i.e., with more than one glimpse).
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The window that allowed for the perception of 3D incoherence had an average radius of 51.0
mm, with ±2.0 mm as S.D., corresponding to a visual angle of 2.92◦ ± 0.11◦ (Figure 5a). In our model,
the radius of this window approximates to the 51.6 mm radius of the 46th ring, which corresponds
to a visual angle of 2.95◦. Figure 5b shows the corresponding PRI image of the Belvedere lithograph.
This image clearly demonstrates that an onlooker looking at this lithograph cannot pre-attentively
perceive the impossible cuboid inserted by Escher in the image since the spatial resolution outside the
limit of pre-attentive perception (2.46◦) is too low (the radius of the RFs belonging to the 46th ring is
2.85 mm).
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mm radius, which allows the perception of 3D incoherence in a free viewing mode at a 1 m observation
distance. (b) The PRI of Figure 5a: The spatial resolution outside the limit of the pre-attentive perception
window (42.80 mm, cyan line) is too low to allow the perception of 3D incoherence. (c) The PRI of
Figure 5a viewed at a 0.5 m distance: At this distance, the perception of 3D incoherence is also hindered
by the low spatial resolution outside the pre-attentive perception window. (d) The PRI of Figure 5a
viewed at a 2 m distance: The spatial resolution outside the pre-attentive perception window is still too
low to allow perception of any incoherence.

8. Discussion

In this paper, we demonstrated that, when we look at one of Escher’s lithographs containing
impossible structures, we cannot work out their 3D incoherence pre-attentively (i.e., within a time
frame of 120 ms), because the artist has inserted these structures just outside a definite and limited
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zone surrounding the fixation point. This means that these artworks need many successive fixations to
be wholly inspected, followed by a mnemonic process of re-assembling of all the sub-images acquired
by the brain. Notwithstanding, 3D incoherence cannot be perceived yet, because image re-assembling
does not take spatial relationship into account; however, a sort of spatial incongruence is unconsciously
perceived [8–10]. Therefore, Escher’s lithographs provoke our intelligence by tweaking our perception
of dimensions and push our mind to discover more beyond the first observation, challenging our
concepts of the real world. This unsettling perceptual state forces the attention to a more painstaking
examination of the lithographs to sort out contradictory details and realize how improbable the entire
scene is. To our knowledge, the demonstration of how 3D incoherence is comprehensible only after
a detailed parsing of his artworks is lacking, though there is a lot of literature on Escher’s works.

The output of the discrete model of the retina we implemented is the image formed on the retina
within a time fixation frame of 120 ms (PRI). Experiment #1 allowed us to establish which PRI produced
by the model has an RF lattice more similar to that of the PRI produced by the visual system. We
tested the model on the image of the Belvedere lithograph viewed from a 1 m distance. Figure 2 shows
an example of a PRI in which, for the sake of clarity, the number of RFs is much lower (N = 40) than
that resulting from the experiment (N = 80).

Experiment #2 allowed us to establish the amplitude of the critical angle of pre-attentive 3D
incoherence perception. We tested our retina model on the devil’s pitchfork image viewed from a 1 m
distance (Figure 3a). Figure 3c shows the PRI of Figure 3a. The tines are long and merged due to the
size of RFs in the periphery of the model (2.85 mm), so it is impossible to perceive the ambiguity of the
image. Reducing the length of the tines until it is possible to perceive the ambiguity of the image in
a single glimpse allows for a determination of the critical angle (≈2.46◦). Figure 3d shows the PRI of
Figure 3b: in this PRI, the tines are still well defined because of the size of RFs (1.0 mm) within the
critical angle of view.

Experiment #3 allowed us to check the Belvedere lithograph for pre-attentively perceivable
incoherence within the visual critical angle determined by Experiment #2. The PRIs of Figure 4a,b
(positioned on the zone of the interposition between the upper and lower level of the building where
3D incoherence is present) confirmed that any incoherence presented in this zone would have been
recognized because of the minimal loss of spatial resolution.

Experiment #4 allowed us to find the distance from the fixation point at which Escher inserted 3D
incoherence structures in the Belvedere lithograph. The resulting window, obtained in free viewing
mode, has a radius of about 51 mm, which corresponds to a visual angle of about 2.92◦ (Figure 5a),
greater than the critical angle of pre-attentive 3D incoherence perception (2.46◦). Figure 5b shows the
corresponding PRI image, which confirms that the spatial resolution in the area between 2.46◦ (cyan
line) and 2.92◦ is too low, i.e., the radii of the RFs are about 2.8 mm, and the under-sampled details in
the lithograph appear merged and fuzzy.

The distance of observation of a lithography is not relevant in the analysis. The size of the
lithography does not change with the distance, while the visual field increases as distance increases
due to geometrical constraints; consequently, the area sampled by each RF increases, which will be
located at an increasing distance with respect to the axis of the visual field.

This means that, at a 1 m distance, an RF that samples, for example, an area A belonging to the
frame of the lithography, at a greater distance of observation, will sample a greater area, located at
a greater distance from the visual field center, and belonging to the wall around the lithography. At this
greater distance of observation, the area A will be sampled by an RF located closer to the visual field
center, which will undergo an increase of its sampling area up the size of A. Decreasing the distance
(i.e., 0.5 m), the opposite occurs. As a consequence, no matter the distance of observation of the
lithography, outside the pre-attentive perception window (cyan line), the model will produce identical
PRIs. As shown in Figure 5c (observation distance: 0.5 m) and Figure 5d (observation distance: 2 m),
the resolution is as low as it is in Figure 5b and does not allow any 3D incoherence perception.
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These geometrical considerations are taken into account by Equation (5), which shows the
constancy of the ratio between the RF radius, rh, and the eccentricity, ρh (distance from the center of
the visual field).

Figure 6a–d show the PRIs produced by the model on the entire Belvedere lithograph viewed at
four different distances, i.e., 0.5, 1, 2, and 3 m. The four PRIs are indistinguishable from each other,
since the spatial resolution outside the pre-attentive perception window (cyan line) is comparably too
low to allow any 3D incoherence perception.
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Figure 6. (a) The PRI of the entire Belvedere lithograph viewed at a 0.5 m distance. (b) The PRI of the
entire Belvedere lithograph viewed at a 1 m distance. (c) The PRI of the entire Belvedere lithograph
viewed at a 2 m distance. (d) The PRI of the entire Belvedere lithograph viewed at a 3 m distance.
In the four images, the cyan line sets the limit of the pre-attentive perception window, outside of which
the spatial resolution is comparably too low to allow any incoherence perception, making the four PRIs
indistinguishable from each other.

In our opinion, Escher knew very well the structure and functioning of the human visual system.
In fact, he challenged our mind with 3D inconsistent objects that overflow and defy our conceptions of
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the border of reality. In a single glimpse, it is impossible to perceive the spatial incoherence hidden in
his artwork because Escher very cleverly drew it just outside the zone surrounding the fixation point,
making this ability his own seal [20].
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